Theoretische Physik in 2 Semestern II 5. Übung

www.thp.uni-koeln.de/~as/thp2sem1112.html

Abgabe: Dienstag, 15. November

16. Knotensatz 6+10 Punkte

Gegeben sei der Hamilton-Operator

$$\hat{H} = -\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V(x)$$

mit zweimal stetig differenzierbaren Eigenfunktion $\psi_n(x)$ $(n=0,1,2,\ldots)$ zu den Eigenenergien $E_0 < E_1 < E_2 < \ldots$, d.h. $\hat{H}\psi_n(x) = E_n\psi_n(x)$.

a) Zeigen Sie, dass für die Wronski-Determinante $W_{nm}(x) = \psi_n(x)\psi_m'(x) - \psi_n'(x)\psi_m(x)$ die Identität

$$W_{nm}(b) - W_{nm}(a) = \frac{2m}{\hbar} (E_n - E_m) \int_a^b \psi_n(x) \psi_m(x) dx$$

gilt.

b) Seien x_0 und $x_1 > x_0$ zwei benachbarte Nullstellen von $\psi_n(x)$ für beliebiges n. Zeigen Sie, dass $\psi_m(x)$ mit m > n mindestens eine Nullstelle im Intervall $[x_0, x_1]$ besitzt. Hinweis: Betrachten Sie die in a) gezeigte Identität und führen Sie die Annahme, dass $\psi_m(x)$ keine Nullstelle in $[x_0, x_1]$ besitzt, zu einem Widerspruch.

17. Heisenberg- und Schrödingerbild

8 Punkte

Leiten Sie die in der Vorlesung angegebene Heisenbergsche Bewegungsgleichung

$$i\hbar \frac{d}{dt}A_H(t) = [A_H(t), H] + i\hbar \frac{\partial}{\partial t}A_H(t)$$

her.

Hinweis: Setzen Sie die zeitabhängigen Wellenfunktionen $|\psi_{S}(t)\rangle = U(t,t_{0})|\psi_{S}(0)\rangle$ in die Schrödingergleichung ein und leiten Sie den Operator $A_{H}(t) := U^{\dagger}(t,t_{0})A_{S}U(t,t_{0})$ ab.

18. Baker-Campbell-Hausdorff Formel

4+7+7+2 Punkte

Für einen Operator \hat{A} ist der Operator $e^{\hat{A}}$ gegeben durch

$$e^{\hat{A}} = \sum_{k=0}^{\infty} \frac{1}{k!} \hat{A}^k.$$

a) Zeigen Sie, dass gilt:

$$\frac{d}{dt}e^{t\hat{A}} = \hat{A}e^{t\hat{A}} = e^{t\hat{A}}\hat{A}$$

b) Für den Operator \hat{B} definieren wir $\hat{B}(t) := e^{t\hat{A}}\hat{B}e^{-t\hat{A}}$. Zeigen Sie, dass gilt:

$$\hat{B}(t) = \sum_{k=0}^{\infty} \frac{t^k}{k!} \hat{B}_k$$
, mit $\hat{B}_0 = \hat{B}$, $\hat{B}_k := \underbrace{[\hat{A}, [\hat{A}, \cdots [\hat{A}, \hat{B}]]]}_{k-\text{mal}}$.

Mit t = 1 folgt dann die Baker-Campbell-Hausdorff Formel:

$$e^{\hat{A}}\hat{B}e^{-\hat{A}} = \hat{B} + [\hat{A}, \hat{B}] + \frac{1}{2}[\hat{A}, [\hat{A}, \hat{B}]] + \cdots$$

Hinweis: Zeigen Sie dazu, dass beide Ausdrücke für $\hat{B}(t)$ der gleichen Differentialgleichung genügen und beide $\hat{B}(0) = \hat{B}$ erfüllen.

c) Es gelte nun $[\hat{A}, [\hat{A}, \hat{B}]] = [\hat{B}, [\hat{A}, \hat{B}]] = 0$. Zeigen Sie:

$$e^{\hat{A}}e^{\hat{B}} = e^{\hat{A}+\hat{B}}e^{\frac{1}{2}[\hat{A},\hat{B}]}.$$

Hinweis: Definieren Sie $\hat{C}(t) := e^{t\hat{A}}e^{t\hat{B}}$ und $\hat{D}(t) := e^{t(\hat{A}+\hat{B})}e^{\frac{1}{2}[\hat{A},\hat{B}]t^2}$ und zeigen Sie mit Hilfe der gleichen Strategie wie in der letzten Teilaufgabe, dass $\hat{C} = \hat{D}$.

d) Zeigen Sie, dass für kommutierende Operatoren $[\hat{A}, \hat{B}] = 0$ gilt:

$$e^A e^B = e^{A+B}$$

19. Bahndrehimpuls

6 Punkte

Der Bahndrehimpuls ist definiert als

$$\hat{\vec{L}} = \hat{\vec{r}} \times \hat{\vec{p}}.$$

Berechnen Sie den Kommutator $[\hat{L}_i, \hat{L}_j]$ für alle i, j. Zusammengefasst kann man das Ergebnis schreiben als $[\hat{L}_i, \hat{L}_j] = i\hbar \varepsilon_{ijk} L_k$, wobei ε_{ijk} der vollständig antisymmetrische Tensor ist.