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In order to express specific genes at the right time, the transcription of genes is regulated by the
presence and absence of transcription factor molecules. With transcription factor concentrations under-
going constant changes, gene transcription takes place out of equilibrium. In this Letter we discuss a
simple mapping between dynamic models of gene expression and stochastic systems driven out of
equilibrium. Using this mapping, results of out-of-equilibrium statistical mechanics such as the Jarzynski
equality and the fluctuation theorem are demonstrated for gene expression dynamics. Applications of this
approach include the determination of regulatory interactions between genes from experimental gene
expression data.
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Cellular dynamics is based on the expression of specific
genes at specific times. The control over gene expression is
a crucial feature of nearly all forms of life, as it allows an
organism to respond to changing external and internal
conditions. With perfect regulatory control, only the
DNA of those genes whose products are required at a given
instant would be transcribed to m(essenger)RNA mole-
cules. These mRNA molecules are in turn translated to
proteins. For example, enzymes to break down nutrients
are produced only when nutrients are present, or repair
proteins are assembled to respond to DNA damage.

To initiate the transcription of a gene, specific mole-
cules, called transcription factors, locate and bind to DNA
near the starting site of a gene. These molecules attract and
activate an enzyme which reads off DNA, producing an
RNA chain molecule according to the DNA template.
Transcription factor molecules are themselves proteins
and thus subject to regulatory control, through other tran-
scription factors, or through themselves. As a result,
mRNA and protein concentrations of different genes may
have highly nontrivial interdependencies. A prominent
example is the spatial-temporal evolution of protein con-
centrations in the early stages of embryonic development,
leading to the formation of the body plan of an organism
[1].

Despite the need for stringent control, gene regulation is
an inherently noisy process [2]. At the level of single cells,
only few molecules are involved, with single events poten-
tially having a large impact [3,4].

In this paper, the dynamics of mRNA concentrations in
synchronized cell populations is studied. The simplest
model for the concentration x�t� of a given mRNA is [5–7]

 @tx � ��x� f�
����
D
p

��t�; (1)

where � is the decay constant of the mRNA molecule and
f is the average rate at which new molecules are produced
by transcription of the corresponding gene. The term ��t�
describes all other processes, including changes in the

transcription rate due to changing transcription factor con-
centrations. Their influence has been modeled by a random
uncorrelated variable with mean zero and covariance
h��t���t0�i � ��t� t0� [6,7]. Equation (1) is well-known
as the Langevin-equation of an Ornstein-Uhlenbeck pro-
cess describing the motion of an overdamped particle with
position x in a quadratic potential V�x� � ��x� f�2=�2��
[8]. A thermal bath with inverse temperature � � 2=D
given by the Einstein relation exerts a random force lead-
ing to an equilibrium solution Peq�x� � expf��V�x�g; see
Fig. 1.

We probe this equilibrium scenario using experimental
measurements [9] of expression levels of all yeast genes
taken at discrete intervals �t [10]. In order to allow com-
parison across genes, we rescale the expression levels x of
each gene using q �

����������������
2=�D��

p
��x� f� so the distribution

of q in equilibrium is P�q� � expf�q2=2g. The param-
eters �, f, D for each gene were determined by maximiz-
ing the likelihood P �;f;D�x� of the expression levels
x � fx�t�g with respect to the free parameters. The like-
lihood P�;f;D�x� �

QT�1
t�1 G�;f;D�xt��jxt�, where

G�;f;D�xt��jxt� �
1����������

2�D�
p expf� �

2D �@tx� �xt � f�
2g is

given in terms of the short-term propagator of the
Langevin equation (1). Drift and diffusion under this

FIG. 1 (color online). Transcription and mRNA decay.
(a) Transcription of a gene is controlled by the binding of
transcription factors (bottom left) to the regulatory region of a
gene. (b) The resulting dynamics of mRNA concentration x can
be mapped onto an harmonic oscillator.
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propagator can be compared in detail with the experimen-
tally measured expression levels [12].

Figure 2 shows the distribution of rescaled expression
levels q across all genes and times. While the observed
distribution P�q� is roughly compatible with the equilib-
rium Gaussian distribution, the statistics of expression
levels is not stationary. As an example, we consider the
set of target genes of a transcription factor called Swi4
[13]. The average value hq�t�iSwi4 of the target genes at
different times varies over the experimental time course,
and these average values are correlated with the expression
levels of the transcription factor Swi4; see inset of Fig. 2.

This result is not unexpected: mRNA and protein con-
centrations of transcription factors change on the same
timescales as the concentrations of products of other genes.
Rather than the rapid fluctuations of the stochastic term in
the Langevin equation (1), the effects of transcription
factors on their targets is a driving force with a dynamics
on the same time scale as that of the target genes. In
consequence, mRNA concentrations are kept out of
equilibrium.

These observations call for an out-of-equilibrium ap-
proach to gene expression dynamics, which is the subject
of this Letter. The out-of-equilibrium regime is character-
ized by changes in the statistics of gene expression levels
over time. These are correlated with the expression levels
of the corresponding transcription factors. We model the
dynamics of mRNA concentration by the driven Langevin
equation

 @tx � ��x� f�y� �
����
D
p

��t�; (2)

with the transcription rate f�y� depending on the concen-
tration y of a given transcription factor at time t. This
equation can easily be generalized to describe the effects
of several transcription factors. The stochastic term ��t�
characterizes all processes not yet described by f�y; . . .�. In
this sense, (2) serves as a first starting point towards an
increasingly deterministic description of mRNA dynamics.
In the following, we will neglect post-transcriptional regu-
lation and take the mRNA expression level of a transcrip-
tion factor as a proxy for its protein concentration [16].

The equation of motion for the mRNA concentration (2)
describes an overdamped harmonic oscillator subject to an
external force f�y�. Thus the dynamics of transcription
factor concentration y�t� results in a time-dependent exter-
nal force f�t� � f�y�t��. In the picture of a particle moving
in a quadratic potential, V�x; t� � ��x� f�t��2=�2�� now
is a time-dependent potential whose origin changes with
time. With each change of the external force �ft � ft �
ft�1, with each change in the potential, work is performed
on the system. The total work performed by the external
force f�t� between initial and final point of the time course
is denoted W �

Ptf
ti �Wt, with �W � �@V=@f�x�f �

���x� f�=��f.
The work W quantifies the coupling of changes in the

transcription factor concentration to the mRNA concentra-
tion of a target gene and serves as the central measure of
the out-of-equilibrium approach. To evaluate this quantity,
we determine f�y�within a simple model of transcriptional
activation: the probability of a transcription factor being
bound at a given binding site in the regulatory region of a
target gene depends on its concentration y, binding energy
�, and the free energy F of the transcription factor in
solution or bound elsewhere [17]. This model gives

 f�y� � f0 �
�ye��=�kT�

ye��=�kT� � e�F =�kT�
; (3)

assuming the transcription rate to depend linearly on the
probability that the binding site is occupied at a given time.
f0 is a basal transcription rate in the absence of transcrip-
tion factors and � quantifies the change of the transcription
rate due to transcription factor binding. The functional
form (3) is the celebrated Michaelis-Menten kinetics, first
studied in the context of enzymatic reactions nearly a
century ago [18] and used widely in transcription model-
ling [19]. The free parameters of the model (3) are inferred
for each gene from its mRNA concentration trajectory as
above.

Figure 3(a) shows, for different targets of the transcrip-
tion factor Swi4, the distribution of work W performed by
changes in the Swi4 expression level over the time course.
The free energy F of the equilibrium distribution of x,
given by expf��Fg �

R
dx expf��V�x�g �

��������������
�D=�

p
,

does not change with f, since changes in the force f only
shift the origin of the potential V�x�. The distribution of
work for the different genes obeys hWi � �F � 0 as
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FIG. 2 (color online). Empirical statistics of gene expression
levels. The set of (rescaled) expression levels of all yeast genes at
different times along the cell cycle has a distribution roughly
compatible with the equilibrium distribution of the Langevin
equation (1) (solid line). Inset: However, the distribution of
expression levels is not stationary, but changes with the expres-
sion level of transcription factors. The mean expression levels
hq�t�iSwi4 of Swi4 target genes at a given time t are plotted
against the expression level y�t��t� of their transcription factor
Swi4 at the preceding measurement.
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required by the second law of thermodynamics. However, a
small number of trajectories has W < �F.

A remarkable equality derived by Jarzynski [20] links
the work performed on the system averaged over many
realizations of the external forcing time course with the
associated change in free energy,

 hexpf��Wgi � expf���Fg: (4)

For a single trajectory of the system driven out of equilib-
rium by the external force, W is a random number depend-
ing on microscopic details. According to the Jarzynski
equality, however, the average of expf��Wg over all

trajectories equals expf���Fg. Its use in chemical reac-
tion networks has been described theoretically in [21].

In a living organism, a specific time course of tran-
scription factor concentration is hard to repeat many times
in order to perform an average over trajectories. However,
many target genes respond to the time course of the tran-
scription factor, and each target has a W that is a random
number which depends on the detailed trajectory, but has a
mean of expf��Wg equal to expf���Fg � 1. The inset
of Fig. 3(a) shows the distribution of expf��Wg across the
target genes of Swi4. It displays a broad distribution with
mean and standard error 0:96	 0:33 in agreement with the
Jarzynski equality (4) [22].

An even stronger statement holds, from which the
Jarzynski equality follows. Figure 3(b)] shows the proba-
bilities of positive and negative work P�W� and P��W� to
be linked by a detailed fluctuation theorem [23,24]

 P��W � ��F � �w�=P��W � ��F � ��w�

� expf�wg; (5)

which shows how trajectories with work less than the
change in free energy are exponentially less likely than
those with work performed in excess of the free energy
change. This relationship can be derived for generic time
courses involving shifts of the origin of a quadratic poten-
tial [25]. Thus the result that a detailed fluctuation theorem
holds for the work performed by the changing transcription
factor concentration serves as evidence for the linear equa-
tion of motion (2). These results also hold under cross
validation, where different parts of the data are used to
infer the model parameters and to compute the work
performed.

So far, we have focused on the statistics of mRNA
concentration trajectories given the parameters of stochas-
tic models like (2). The reverse question, namely, what
information on transcription regulation can be extracted
from experimentally measured expression levels is an im-
portant question in systems biology and bioinformatics
[26]. Some simple attributes are already inherent in the
observations of out-of-equilibrium behavior. For instance,
from the example in Fig. 2 one can deduce that the tran-
scription factor Swi4 acts as an enhancer of transcription,
rather than a repressor, since the average expression level
of its targets increases with expression level of Swi4.
Similarly, the targets of a transcription factor can be de-
termined from the inferred relationship f�y� between the
expression levels of a transcription factor and that of a
(potential) target gene. This ‘‘reverse engineering’’ of
regulatory interactions is particularly relevant for tran-
scription factors with ill-characterized binding sequence,
and for factors which do not bind directly to regulatory
DNA (so-called cofactors). For all genes we compute the
range of values of f�y� over the range of y. Genes with a
large response jf�ymax� � f�ymin�j to changing transcrip-
tion factor expression levels are presumed target genes.
The top ten targets of Swi4 predicted in this way are listed
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FIG. 3. The Jarzynski equality for gene expression. (a) The
target genes of transcription factor Swi4 show a broad distribu-
tion of work �W performed by changes in Swi4 expression
levels, with hWi>�F � 0. Inset: The distribution of
expf��Wg has a mean of 0:96	 0:33 compatible with the
Jarzynski equality. (b) A detailed relationship links the proba-
bilities of paths with positive and negative work performed; see
text. The main figure shows the relationship for work �Wt
performed between individual time steps; the inset shows the
same relationship for the overall work W performed over the full
time course.
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in Table I. We test these predictions by searching the
regulatory regions of the predicted targets for copies of
the binding sequence [10]. In all but one of the predicted
targets one finds at least one Swi4 binding site.
Furthermore, 8 of the 10 predictions have been previously
found experimentally [27]. A more detailed account ap-
pears in [12].

In summary, we have shown how regulatory interactions
generate correlations between expression levels of tran-
scription factors and their target genes. A simple mapping
to a driven harmonic oscillator depicts the transcription
factor concentrations as an external force, which drives the
expression levels of target genes out of equilibrium.
Central quantity of this approach is the work performed
by the external force. Such dynamic observables provide a
more detailed fingerprint of the complex biophysical ma-
chinery behind gene expression than heuristic measures
like correlation coefficients.

It turns out that the work performed by the external force
is of the same order of magnitude as the temperature of the
heat bath describing stochastic effects, so j�Wj � 1.
Macroscopic systems generally have j�Wj 
 1. As a
result, the experimental observation of the fluctuations at
the center of the Jarzynski equality has been limited to the
mechanical properties of biomolecules [28] and colloidal
systems [29]. The correlated dynamics and complex re-
sponses of gene expression offer a proving ground for
stochastic thermodynamics. Temporal data on other types
of molecules apart mRNA will lead to new challenges in
the out-of-equilibrium dynamics of genetic regulation.
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CDC9 1  RAD27 1 �
RNR1 1 � PRY2 3 �
YG3N 1 � CSI2 4 �
CRH1 1 � PMS5 2 

YIO1 1 � CDC21 0 �
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