
Advanced Statistical Physics

Lecture: Prof. Dr. Johannes Berg
Notes: Gerold Busch, BSc

Wintersemester 2011/12

Institut für Theoretische Physik
Universität zu Köln





Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Stochastic Processes and the Approach to Equilibrium 1
1.1 The Ehrenfest Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Microscopic Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Deterministic Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Macroscopic Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.4 Ergodicity Breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Time Reversal and Detailed Balance . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Markov process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 The master equation in continuous time . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Physical systems, free energy and the approach to equilibrium . . . . . . . . . . . . 7
1.6 Properties of the Boltzmann measure . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Mean Field Theory 12
2.1 The Weiss Ferromagnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 The expected magnetisation . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Behaviour near the critical temperature . . . . . . . . . . . . . . . . . . . . 15

2.2 General mean field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Statistical Field Theory and Landau-Ginzburg Models 19
3.1 Statistical Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Landau-Ginzburg theory for the ferromagnetic phase transition . . . . . . . . . . . . 20
3.3 Stability analysis and upper critical dimension . . . . . . . . . . . . . . . . . . . . . 21

4 Lattice Models 25
4.1 Some examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Monte-Carlo simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.1 Markov chain Monte Carlo (MCMC) . . . . . . . . . . . . . . . . . . . . . . 26
4.3 The lower critical dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 The Ising Model in d = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Approximation at high and at low temperature . . . . . . . . . . . . . . . . . . . . . 30

4.5.1 The low temperature expansion . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5.2 High-temperature approximation (general) . . . . . . . . . . . . . . . . . . . 31

4.6 The Ising Model and graphs on the lattice . . . . . . . . . . . . . . . . . . . . . . . 31
4.7 The Ising model in 2 dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.7.1 Graphs and walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.7.2 Multiple Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.7.3 Walks on the lattice and transfer matrices . . . . . . . . . . . . . . . . . . . 34
4.7.4 The phase term (−1)nc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.7.5 Critical behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

iii



5 Renormalization 38
5.1 The idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Three examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.1 1d Ising model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.2 2d Ising model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.3 The Gaussian model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 General Framework of GR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Disordered Systems 47
6.1 A mean-field model of spin glasses . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1.1 Modeling the disorder by random variables . . . . . . . . . . . . . . . . . . . 49
6.1.2 The ”annealed“ average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1.3 The ”quenched“ average . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7 Diffusion and growth processes 53
7.1 Fokker-Planck equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2 Stochastic differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.3 Scaling of the Wiener process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.4 Growth of interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.4.1 A simple model: Ballistic deposition (BD) . . . . . . . . . . . . . . . . . . . 58
7.4.2 An even simpler model: Random deposition . . . . . . . . . . . . . . . . . . 59
7.4.3 Random deposition with surface relaxation . . . . . . . . . . . . . . . . . . . 60
7.4.4 Kardar-Parisi-Zhang equation . . . . . . . . . . . . . . . . . . . . . . . . . . 62

iv



Preface

We proudly present the lecture notes of the master course ”Advanced Statistical Physics”. The notes
follow the lecture given by Johannes Berg in the winter term 2011/12 at the University of Cologne.

Of course, there will be some mistakes in these notes. So read carefully and with caution. If you
find something wrong or have questions, tell me (busch@ph1.uni-koeln.de)!
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1 Stochastic Processes and the Approach to
Equilibrium

Consider a particle moving in a gas (Brownian motion). The collisions with gas molecules can be
modelled as random events, pushing the particle in random directions. By definition, there is no way
of predicting the trajectory of a particle. One might think that the search for deterministic laws of
motion is doomed in this case.

However, at least in principle we can repeat the experiment of suspending a particle in a gas many
times over, and observe the statistics over many trajectories. Examples are the average position at
a given moment in time, the variance, and so on. These statistics all stem from a probability density
of finding the particle in a given position (and momentum, and other variables needed to describe
our particle). We can ask if this probability evolves over time according to a deterministic law of
motion.

One convenient way of doing this, which is easy to visualize, is to suspend many non-interacting
particles at once, like a blob of ink in a glass of water. Here the variance of the particles’ displacement,
or the variance of the probability distribution function of a single particle, of a single particle will
evolve deterministically with time (according to the law of diffusion).

This chapter will introduce the notion of a deterministic evolution of a probability density. A
particular question will be how a system approaches a steady state at long times, when the statistics
no longer changes (and our ink has ended up being uniformly distributed in a glass of water.) Before
studying a general approach, we will look at a simple model.

1.1 The Ehrenfest Model

A very instructive model to investigate the approach to the steady state is the Ehrenfest model
(1907). Consider two urns, termed ”R” and ”L”, and N balls, which can be in either urn. Start with
all balls in one of the urns, say L. At each time step, one of the N balls is picked at random (with
equal probability) and moved to the other urn.

After a sufficiently long time, we observe that the number of balls in each urn has equalized. In
this steady state, on average, each urn contains N/2 balls, and fluctuations around this average
are of order

√
N . Observing the system in this state, it is impossible to tell whether initially all urns

were in the left, or the right urn, or whether the system was started with an equal number of balls
in either urn.

Moreover, making a movie of this process in the steady state, and playing the movie either forwards
or backwards, it would be impossible to tell which direction was being shown. This is different during
the approach to the steady state, where when running the movie backwards it would appear the
model has a different rule which favours picking balls in the right urn and moving them to the left.

1.1.1 Microscopic Description

We label the balls b = 1, 2, 3, ...N and assign a variable sb = ±1 to each of them, sb = +1 indicating
ball b sitting in the right urn, and −1 in the left urn. Thus, the configuration of the system is described
by a N -dimensional vector s. At any moment in time, a given configuration occurs with probability
p(s). The initial configuration has p(−1,−1, . . .) = 1, and zero for all the other configurations. Our
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aim is to find a deterministic law of motion for p(s, t) over time. The limit limt→∞ p(s, t) describes
the steady state (if it exists).

1.1.2 Deterministic Description

Before this, we ask how the centre of mass of the system changes with time. If at a given time there
are i balls in the right-hand urn, with probability i/N the move will take a ball from right to left
(decreasing i by one), with probability 1− i/N from left to right (increasing i by one). The expected
net change of i is −i/N + (1 − i/N) = 1 − 2i/N . Denoting the expected number of balls in the
right urn by y(t) we have

∂ty = P (i+ 1|i)− P (i− 1|i) = 1− 2y

N
. (1.1)

The more particles are in the left urn, the higher the probability that a particle in the left urn will be
picked at the next step. This equation of motion is solved by

y(t) =
N

2
+

(
y(0)− N

2

)
· e−

2y
N (1.2)

We see that for t → ∞, the second term vanishes and the steady state of y(t) = N/2 is reached,
regardless of which initial configuration one begins in. The rate at which the expected value of i
approaches that of the steady state is also N/2. Figure 1.1 shows a simulation of the Ehrenfest
model.

1.1.3 Macroscopic Description

Our experience with the deterministic approach suggest not monitor the position each ball individually,
but to look at one macroscopic variable only, the number I of balls in the right urn. This variable
may on the possible values i = 0, 1, . . . N . The event that a ball from the right urn is picked and

 400

 500

 600

 700

 800

 900

 1000

 1  10  100  1000  10000  100000  1e+06

y
(t

)=
<

i>

t

numerical simulation
analytical solution

Figure 1.1: A single run of the Ehrenfest model with N = 1000 starting all balls in the left urn.
The number of balls in the left urn is plotted against the number of moves taken.In the
steady state the particle number in the left urn fluctuates around N/2. The analytical
solution is given by equation 1.2. The apparent increase of the fluctuations at large times
is an effect of the logarithmic scale on the time axis, since in larger time intervals larger
deviations from the mean appear.
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put into the left corresponds to I = i at time t changing to I = i − 1 at time t + 1. This event
occurs with probability denoted

P (i− 1, t+ 1|i, t) =
i

N
the opposite event has

P (i+ 1, t+ 1|i, t) = 1− i

N
.

These are conditional probabilities of finding the system in a certain configuration, given the config-
uration at the previous time.

The probability p(i, t) of finding variable I in the configuration i at time t changes with time.
Since at each step, I either decreases or increases by one with probabilities specified above, p(i, t+1)
depends only on p(i+ 1, t) and p(i− 1, t), giving

p(i, t+ 1) = P (i+ 1, t+ 1|i, t)p(i+ 1, t) + P (i− 1, t+ 1|i, t)p(i− 1, t) (1.3)

=
∑
j

W (i|j)p(j, t) (1.4)

= W · p(t) . (1.5)

This equation defines the so-called stochastic matrix (W)ij ≡W (i|j) of the system, and we defined
a vector pi(t) = p(i, t). In the case of the Ehrenfest model, it is

W =
1

N


0 1 0 · · ·
N 0 2 · · ·
0 N − 1 0 · · ·
...

...
...

. . .


We can now write p(t = 1) = Wp(0), iterating gives

p(t) = (W)t p(0) (1.6)

for all t. p(t+ 1) = Wp(t) is the sought-after deterministic equation of motion of the system, (1.6)
is its solution.

For any system, the stochastic matrix W must have the following properties:

• W (i|j) ≥ 0 ∀ i, j since the entries of the matrix are the probabilities of transitions from
configuration i to j.

•
∑

iW (i|j) = 1 i.e. with probability the system has to take on some configuration at the next
step.

From these two conditions, the following two properties follow:

• All left eigenvalues of W have the property |λL| ≤ 1. 1

1Proof:

|λLeLj | =

∣∣∣∣∣∑
i

eLi Wij

∣∣∣∣∣∣∣∣∣∣∑
i

eLi Wij

∣∣∣∣∣ ≤ max
l

∣∣∣eLl ∣∣∣∑
i

Wij

⇒
∣∣∣λLeLj ∣∣∣ ≤ max

l

∣∣∣eLl ∣∣∣
⇒
∣∣∣λL∣∣∣ ≤ 1.
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• Any stochastic matrix has a left eigenvector with λ1 = 1 such that e1L
i = 1∀i. 2

These two properties are the key to the behaviour of the system at long times. Since in general,
W will not be a symmetric matrix, we obtain the spectral decomposition

Wij =
∑
k

λke
kR
i ekLj (1.7)

in terms of left and right eigenvectors of W. For now, we assume that eigenvalues λ are not
degenerate and use the orthogonality of eigenvectors ekmL · eknR = δkmkn , we get

(Wij)
n =

∑
k

λnke
kR
i ekLj (1.8)

Thus, from the solution (1.6) for the probabilities pi(t), we have

pi(t) =
∑
j,k

λtke
kR
i ekLj pj(0) (1.9)

As t → ∞, the contribution from eigenvalues different from ±1 in the sum over k will go to 0.
Assuming non degeneracy and labelling, without loss of generality, the eigenvalue with value λ = 1
by k = 1, we obtain

lim
n→∞

pi(n) = e1R
i

∑
j

e1L
j pj(0) = e1R

i (1.10)

as e1L
i = 1∀i. We see that in the long term, all dependence on initial conditions is lost and the

system goes to an steady state defined by the right eigenvector with eigenvalue 1. Note that this
approach not only generates the expected number of i in the steady state, but the full distribution
of pi, that is all moments of the fluctuations around the expected value.

1.1.4 Ergodicity Breaking

Our derivation assumed a non-degenerate eigenvalue λ = 1. We briefly discuss two ways in which
this condition can be violated. One simple scenario is to combine two stochastic matrices in a
block-diagonal structure, such as 

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


This stochastic matrix defines transitions between configurations that toggle between 1↔ 2, 3↔ 4.
If the system is started in configuration 1, or a linear combination of configurations 1, 2, it will never
be found in configurations 3 or 4 (all powers of W are also block-diagonal).

A somewhat different scenario can occur in large systems. The stochastic matrix is exponentially
large in the number of degrees of freedom (since the number of configurations grows exponentially
with the system size). It is possible that the second largest eigenvalues λ2 → 1 as N → ∞. Any
finite system will then reach a steady state on a timescale of 1/ log (λ1/λ2), which diverges in the
thermodynamic limit. Thus in a macroscopically large system, a dependence of p(t) on the initial
state can remain for a very long time; an example is hysteresis.

2Proof: Assume eLi = 1∀i. Then ∑
i

eLi Wij =
∑
i

Wij = 1× eLi
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1.2 Time Reversal and Detailed Balance

A key simplification of the steady state occurs for systems which are said to be time-reversal invariant.

Time Reversal: A process is said to be reversible if for any sequence of configurations i =
i0, i1, i2, i3, ..., in, the transition rates are such that

W (in|in−1) ·W (in−1|in−2) · · ·W (i1|i0) · psteady(i0) = W (i0|i1) · · ·W (in−1|in) · psteady(in) (1.11)

where psteady(i0) and psteady(i1) are both the steady-state distributions achieved after long times.
Note that there are alternative, equivalent definitions, for instance that the probability of any circular
trajectory in configuration space be independent of the direction the circle is traversed in.

Specifically, for two configurations i, j one has

W (j|i)psteady(i) = W (i|j)psteady(j) . (1.12)

This equation has a simple interpretation in terms of the probability flows. In the steady state, the
probability of finding the system in configuration i at a given, and making a transition to configuration
j, equals the probability of the reverse process. Visualizing the probability density as a particle density,
one speaks of a probability flow (in the space of configurations of the system). Equation (1.12) is
called detailed balance, because probability flows between pairs of configurations are equal and
opposite.

A steady state obeying detailed balance is called an equilibrium state. In a non-equilibrium
steady state the are non-zero probability currents between pairs of configurations, which cancel each
other at each configuration i (like non-compressible fluid float having zero divergence everywhere
but a finite circulation).

Detailed balance allows us to construct the equilibrium solution directly from the stochastic matrix.
Let peq(1) = r be some number. Then, the pairwise conditions of detailed balance mean that we
can determine every

peq(k) =
W (k|1)

W (1|k)
· r

and r is determined by the normalization condition
∑

k peq(k) = 1. For a dynamics obeying time
reversal invariance (1.11) ensures that this solution is the same regardless of which configuration we
start with.

1.3 Stochastic Processes

We are now prepared for a broader development, leading to the equation of for a general stochastic
process.

1.3.1 Definitions

A stochastic variable X is defined by a set of possible values and a probability distribution over
this set. A particular realisation of X is denoted X = x. Depending on the system, X may comprise
many positions, momenta, spins configurations, etc. of all the components of our system.

Formally, a stochastic process Y is defined as some function of a stochastic variable X

YX(t) = f(X, t) .

In many applications, the parameter t the function f(X, t) depends on will be time.
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Statistically, a stochastic process is described completely by a probability or probability density

P (...;x3, t3;x2, t2;x1, t1) . (1.13)

If t denotes time, then this function specifies the probability of an entire trajectory, with the
system in configuration s1 at time t1, in configuration x2 at t2, and so on. It turns out that many
stochastic processes allow an important simplification, which allows to work with P (xi+1, ti+1|xi, ti)
(see (1.1.3)) instead of the full (1.13).

1.3.2 Markov process

Think of a time t1 and configuration x1 as ”now”, times t < t1 as “past” and t > t1 as “future”. If
the condition

P (...;x3, t3;x2, t2;x1, t1;x0, t0, x−1, t−1; ...) = P (...;x3, t3;x2, t2;x1, t1) (1.14)

holds for all times and configuration, the corresponding stochastic process is called a Markov Pro-
cess. Physically, this condition can be interpreted as a rapid memory decay: The present configu-
ration x1 at t1 is fully sufficient to determine the statistics of the future trajectory. The Ehrenfest
model specifies a Markov process, and many physical systems can be modeled at least approximated
by Markov processes.

Mathematically, the Markov property is an extremely powerful restriction as

P (x2, t2;x1, t1|x0, t0) = P (x2, t2|x1, t1;x0, t0)P (x1, t1|x0, t0)

Markov
= P (x2, t2|x1, t1)P (x1, t1|x0, t0) .

The joint probability of x2 and x1 can thus be written as the product of two conditional probabilities.
Integration over x1 gives:

P (x2, t2|x0, t0) =

∫
dx1P (x2, t2|x1, t1)P (x1, t1|x0, t0) (1.15)

This consistency equation for two-timepoint conditional probabilities P (x, t|x′, t′) is called the
Chapman-Kolmogorov-equation. These conditional probabilities, specifying the probability of
finding the system in state x at time t, given that at time t′ the system was in state x′, spec-
ify the transition rates from x′ to x (through the derivative wrt to t). This conditional probability is
also termed the propagator in analogy with quantum field theory. For a Markov process, they turn
out to be sufficient to determine the equation of motion for the probability function.

1.4 The master equation in continuous time

Consider a Markov process with

P (x1, t+ τ |x0, t) = [1− τa(x0, t)] δ(x1 − x0) + τW (x1, x0, t) +O(τ2) . (1.16)

We consider the variable x as continuous, so (1.16) describes a particle either jumping from x0 to
x1 during the interval t1 − t0, or remaining at x0.

From ∫
dx1P (x1, t+ τ |x0, t) = 1

(the system has to take some state at time t+ τ), it follows that

a(x0, t) =

∫
dx1W (x1, x0, t).

6



Thus, a(x0, t) is the probability of jumping from x0 anywhere.
We plug this into the Chapman-Kolmogorov-equation and demand consistency at least in first

order of τ .

p(x, t+ τ) =

∫
dx′P (x, t+ τ |x′, t)p(x′, t)

= [1− τa(x, t)] p(x, t) + τ

∫
dx′W (x, x′, t)p(x′, t) +O(τ2)

Comparison with the Taylor Expansion p(x, t+ τ) = p(x, t) + τ∂tp(x, t) +O(τ2) yields:

∂tp(x, t) =

∫
dx′W (x, x′, t)p(x′, t)−

∫
dx′W (x′, x, t)p(x, t) (1.17)

This is the master equation. Consider the first integral: P (x′, t) is the probability for being in
configuration x′. w(x, x′, t) gives the transition rate from x′ to x. Integration over x′ gives the
probability flow into configuration x. Similarly, the second integral gives probability flow moving
out of x and into some configuration x′. The rate of change of p(x, t) is thus the balance between
probability flows into and out of x. The master equation can be considered as the equation of
continuity for an incompressible fluid. In general, only an integral form exists, since transitions are
not restricted to states x′ close in some sense to x. For the particular case of transition rates
restricting transition to small jumps, one can derive a diffusion equation for p(x, t) called the Fokker-
Planck equation.

Conservation of probability yields

d

dt

∫
dx p(x, t) =

∫
dx

∂

∂t
p(x, t) = 0 (1.18)

For a discrete configuration space, the master equation can be derived analogously, giving

∂tpi(t) =
∑
i′

wii′pi′(t)−
∑
i′

wi′ipi(t) =
∑
i

Wii′pi′ (1.19)

with

Wii′ =

{
wii′ for i 6= i′

−
∑

i′ 6=iwi′i for i = i′
(1.20)

and the same interpretation in terms of probability flows. Detailed balance (1.12) ensures that in
equilibrium the probabilities p no longer change. The formal solution is of the discrete-states master
equation is

p(t) = exp(Wt)p(0) , (1.21)

corresponding to (1.9) for the Ehrenfest model.

1.5 Physical systems, free energy and the approach to equilibrium

Now we are prepared to address the question of if and how a physical system, described by a Markov
process and obeying time-reversal invariance, approaches its equlibrium. Consider the following
scenario:

A system is characterized by a configuration denoted i (discrete configuration space, continuous
systems would be discretised by making a very fine mesh imposed on the continuous coordinates).
The configuration i comprises the entire microscopic information of the system, e.g. positions and
momenta of all molecules of a gas.
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Each configuration i is characterized by an energy Ei, e.g. total kinetic and potential energy of
the molecules. Furthermore, the system is connected to a heat bath (not further specified) and
exchanges energy with the heat bath.

Stochastic transitions between different configurations of the system depend only on the change
in energy Ej − Ei (j → i)

W (i|j) = f(Ei − Ej) .

Strictly speaking, this is a property of the heat bath, not the system.
We now define a function g as follows

w(i|j)
w(j|i)

=
f(Ei − Ej)
f(Ej − Ei)

= g(Ei − Ej) ,

and we further make the assumption that the system obeys time reversal invariance

w(i|j)
w(j|i)

=
peq(i)

peq(j)
= g(Ei − Ej) (1.22)

This condition can only be fulfilled if peq is the exponential function:

peq(i) =
1

Zβ
e−βEi (1.23)

with Zβ =
∑

i e
−βEi . If we identify β = 1/kBT , we have derived the Boltzmann measure as the

equilibrium measure of our system. (In the following we will always use units such that kB = 1.
The big question now is: Starting in starting condition p(i, t = 0) = pi(t = 0) = p0

i . Does pi(t)
evolve towards the equilibrium probability distribution peq

i ?
We define a function

F (t) =
∑
i

pi(t)Ei + T
∑
i

pi(t) ln pi(t) , (1.24)

which depends on time through the probability function p(t). T = 1/β.
∑

i pi(t)Ei is the expected
energy of the distribution,

∑
i pi(t) ln pi(t) is the corresponding entropy. We call F (t) the time

dependent free energy.
The equilibrium free energy for the Boltzmann distribution pi = 1/Z exp(−βEi) is given by:

Feq =
1

Z

∑
i

e−βEiEi + T
1

Z

∑
i

e−βEi (−βEi − lnZ) = −T lnZ (1.25)

We will now show that F (t) decreases monotonically and tends to Feq at long times. We calculate
rate of change of F (t)

d

dt
F (t) = Ḟ =

∑
i

ṗiEi + T
∑
i

ṗi ln pi + T
∑
i

pi
ṗi
pi

=
∑
i

ṗi [Ei + T ln pi]

using
∑

i ṗi = ∂t
∑

i pi = 0. The rate of change of the probability distribution is specified by the
master equation ṗi =

∑
j wijpj −

∑
j wjipi, giving for the rate of change of F (t)∑

ij

(wijpj − wjipi) [Ei + T ln pi] (1.26)

i↔j
=
∑
ij

(wjipi − wijpj) [Ej + T ln pj ] (1.27)
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Now take [(1.26)+(1.27)]/2 and obtain

=
1

2

∑
ij

(wijpj − wjipi) {[Ei + T ln pi]− [Ej + T ln pj ]}

For a system invariant under time reversal, detailed balance gives for the rates wij = wji exp(−(Ei−
Ej)/T ), so

=
1

2

∑
ij

wjie
−Ei/T

(
eEj/T pj − eEi/T pi

)
{[Ei + T ln pi]− [Ej + T ln pj ]}

The last two terms in this expression can be written in the form

(){} = (ex − ey)(Ty − Tx) = −T (ex − ey)(x− y) ≤ 0 (1.28)

which is always less than zero.

Thus the time-dependent free energy decreases with time. However, both terms in the definition
of this free energy (1.24 ) are bounded from below (by the ground state energy, and the maximum of
the entropy realized by a uniform distribution, respectively). F (t) cannot decrease indefinitely, and
must reach a fixed point. The Boltzmann measure is exactly such a fixed point because at pi = peq

i

we have wjipi−wijpj = 0, so Ḟ = 0. However, the fact that the Boltzmann measure is a fixed point
does not mean that there cannot be other fixed points, or even limit cycles. Proving for a specific
system p(t) will converge to the Boltzmann measure from any starting configuration is challenging
in most cases.

1.6 Properties of the Boltzmann measure

The Boltzmann measure

pi =
1

Z
e−βEi (1.29)

underlies the entire statistical physics of the equilibrium state. It specifies the probability pi that a
system characterized by configurations {i} with energies {Ei} obeying detailed balance in equilib-
rium with heat bath at temperature 1/β = T is found in configuration i. The partition function
Z(β) =

∑
i exp(−βEi) is fixed by the normalization condition

∑
i pi = 1. Z(β) is the central tool

of equilibrium statistical mechanics for it connects the microscopic description {Ei} with the macro-
scopic expectation values〈E〉. We briefly recapitulate some of the key properties of the Boltzmann
measure and the partition function, and briefly discuss the connection with thermodynamics.

The expectation value of the energy in equilibrium can easily be calculated from the partition
function Z(β)

〈E〉eq =
∑
i

piEi =
1

Z

∑
i

e−βEiEi =
∂

∂β
lnZ(β) (1.30)

Consider now the spectrum of energies. Denote by ρ(E) the number of times an energy E
occurs in the set {Ei}. Then

Z =
∑
i

e−βEi =
∑
E

ρ(E)e−βE . (1.31)

For continuous energy levels, a corresponding density of levels can be defined. This spectrum is
sufficient to calculate the partition function since Z(β) =

∑
E ρ(E)e−βE .
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We are (often) interested in physical systems consisting of a large number N degrees of freedom,
labeled k = 1, 2, ..., N . Frequently, energies Ei scales linearly (extensively) with N , so we define
the (intensive) ei = Ei/N = O(1). Also, the number of configurations with energy Ei = eiN is
frequently exponential in the system size, so the number of configurations with energies between e
and e+ ∆e is exp(Ns(e))∆e. s(e) is the canonical entropy per degree of freedom3.

We now focus on the partition function, and using ρ(E) = exp(Ns(E/N)) to obtain

Z(β) =
∑
E

ρ(E)e−βE =

∫
de eNs(e)−βNe =

∫
de exp

N (s(e)− βe)︸ ︷︷ ︸
−g(e)

 (1.32)

We will solve this integral with the so called saddle point approximation, which is asymptotically
exact for N →∞.

Consider an integral of the form

I =

∫
de e−Ng(e) =

∫
de e−(Ng(e0)+N

2
(e−e0)2g′′(e0)+...)

For large N and a well-behaved function g(e) , the integral is dominated by the global minimum of
g(e) at e0, where the integrand has a sharply-peaked maximum. We expand g(e) as a Taylor series
around the minimum of g(e) at e0. Since g′(e0) = 0, the first order term is zero. The necessary
condition g′(e0) = 0 is called the saddle-point equation or saddle-point condition. The zeroth-order
term exp(−Ng(e0)) is independent of e, the first-order term is zero from the saddle point condition.
The second-order term exp

(
N
2 (e− e0)2g′′(e0)

)
leads to a Gaussian integral

I ≈ e−Ng(e0)

√
2π

g′′N
(1.33)

1

N
ln I ≈ −g(e0)− 1

2

lnN

N
− ... (1.34)

where we have assumed that g has only one global minimum. For contour integrals in the complex
plane, we are dealing with a saddle-point rather than a minimum, which gave this method its name.
Another name used in the mathematics literature is Laplace’s method. In cases where there are
several global minima of g(e), a sum over all minima needs to be taken. Saddle-point integrals are
used all over physics to derive asymptotic expression in limiting cases, including the thermodynamic
limit (N is large), the classical limit (~−1 is large), and others.

For large N , the integral in the partition function (1.32) can be evaluated by saddle-point inte-
gration

Z =

∫
de eN(s(e)−βNe) N→∞= ce−Nβf(β) (1.35)

where −βf(β) = maxe(s(e) − βe). Comparison with (1.25) allows to identify f(β) is the the
intensive equilibrium free energy4.

The maximum over e is specified by d
de(s(e)− βe) = 0 giving

ds

de
= β (1.36)

3This entropy actually coincides with the information entropy −
∑
i pi log pi if pi is the Boltzmann measure at inverse

temperature β(e) determined by Ne = 〈H〉β .
4Note that we have dropped logarithmic prefactors from the saddle-point integral (compare with (1.6)), as in the

thermodynamic limit their contribution to any extensive quantity scales sublinearly with N .

10



This relationship is of limited use in practice, since the problem of finding s(e) is just as hard as
evaluating Z(β). Conceptually, however, this equation recovers the definition of the inverse temper-
ature from thermodynamics, and −βf(β) = maxe(s(e) − βe) is just the Legendre transformation
linking energy and free energy. For large N , the Boltzmann factor e−βNe is a rapidly decreasing
function of e, the density of configuration e−βNs(e) is rapidly increasing with e. For large N , only
configurations with energies maximizing (s(e) − βe) contribute to the partition function. The ex-
pected energy is then e(β) = e0 and all other energies either have too small a Boltzmann factor or
too small an entropy. Thus we expect that results obtained from the canonical ensemble defined by
the Boltzmann distribution, and the microcanonical ensemble will generally agree.
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2 Mean Field Theory

In some cases of interacting systems, the interaction can be approximated by some constant effective
field acting on each degree of freedom. This effective field arises from the interaction with other
degrees of freedom.

We first study a model for with this so-called mean-field theory turns out to be exact. It is also
the simplest model of the ferromagnetic phase transition.

2.1 The Weiss Ferromagnet

Consider a set of degrees of freedom si ∈ {±1} with i = 1, ..., N (spins) and the Hamiltonian

H[s] = − J

2N

∑
i,j

sisj − h
∑
i

si . (2.1)

Each degree of freedom defines an elementary spin, which can either be up or down in some preferred
direction. In this model, every spin interacts with every other spin in the same way. The interaction
J/N of each pair scales as 1/N to keep the total energy extensive. The partition function is obtained
by summing over all possible spin configurations:

Z = Tr se
−βH[s] =

N∏
i=1

( ∑
si=±1

)
e+ βJ

2N

∑
i,j sisj+βh

∑
i si (2.2)

We will now calculate the partition function using the Gaussian integral

e
x2

2a =

√
a

2π

∫ ∞
−∞

dme−
1
2
am2+mx (2.3)

and

a = NβJ

x = βJ
∑
i

si

giving

e
βJ
2N

∑
i,j sisj =

√
NβJ

2π

∫ ∞
−∞

dme−
1
2
NβJm2+βJm

∑
i si . (2.4)

This integral representation of the exponential of a square is called the Hubbard-Stratonovich-
transformation and allows to evaluate the partition function. Plugging equation 2.4 in equation
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2.2, we obtain

Z =
N∏
i=1

( ∑
si=±1

)√
NβJ

2π

∫ ∞
−∞

dme−
1
2
NβJm2+βJm

∑
i si+βh

∑
i si

=

√
NβJ

2π

∫ ∞
−∞

dme−
1
2
NβJm2

∏
i

(∑
si

eβJmsi+βhsi

)

=

√
NβJ

2π

∫ ∞
−∞

dme−
1
2
NβJm2

[2 cosh(βJm+ βh)]N

=

√
NβJ

2π

∫ ∞
−∞

dme−
1
2
NβJm2+N ln(2 cosh(βJm+βh))

=

√
NβJ

2π

∫ ∞
−∞

dme−βNf(β,m)

where the so-called free energy function

−βf(β, h,m) ≡ −1

2
βJm2 + ln (2 cosh(βJm+ βh)) (2.5)

has been defined. This function depends on the integration variable m, apart from the parameters
β and h.

In the thermodynamic limit N →∞, the integrand becomes a sharply peaked function of m, and
the integral can be performed by saddle-point integration. Neglecting sub-leading prefactors gives
Z ≈ exp(−βNf(β)) with

βf(β, h) = min
m

f(β, h,m)

The necessary condition for a minimum ∂mf(β,m) = 0 gives the equation

m = tanh(βJm+ βh) . (2.6)

To visualize where the minimum over m lie (2.5) is plotted in figure 2.1 for a temperature below
and above J . We see that solutions of the self-consistent equation 2.6 are:

m = 0
global minimum for T > Tc
local maximum for T < Tc

(2.7)

m = ±m(β) global minimum for T < Tc (2.8)

As shown in figure 2.2, for T < Tc, m shows a discontinuity as a function of h. Note that although
−βf(β,m) is perfectly analytic in all variables, the min[]-operation results in the global minimum
m̄(h) jumping discontinuously as h is changed. All effects linked to this behaviour thus only occur
in the limit of large N .

2.1.1 The expected magnetisation

Calculate the probability that a given spin (say i = 1) points up

〈δs1,1〉 =

∫
dm exp

{
−1

2βNJm
2 + (N − 1) ln 2 cosh(βJm+ βh) + (Jβm+ hβ)

}∫
dm exp{−βNf(m,β)}

→N→∞
exp {βJm+ βh}

(exp(Jβm+ βh) + exp(−Jβm− βh))
=

1 +m

2
,

13



m

βf

T<Tc

T>Tc

m
-

m
-

0

Figure 2.1: The function βf(β, h,m) as a function of m for h = 0 at temperatures T below and
above the critical temperature Tc.

Figure 2.2: The function m̄(h) shows a discontinuity as a function of h for T > Tc..
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where all spins except i = 1 where summed over, and we used the saddle point equation m =
tanh(βJm + βh). Similarly, the probability for a given spin to point in the down direction is
(1−m̄)/2 and the expected magnetisation is m̄ = m̄(β, h). Hence, although the integration variable
m has no physical interpretation, the value of m where the global minimum of the free energy
function occurs is the expectation value of the magnetisation m̄(β, h)〈s1〈= 1

N

∑N
i 〉si〈 under the

Boltzmann measure.
Analogously, we can calculate the probability that a pair of spins s1, s2 are up, giving (1 + m̄)/2 ·

(1 + m̄)/2, so
〈s1s2〉0± = 〈s1〉0± 〈s2〉0±

This means that the spins are not coupled for the Weiss ferromagnet and the connected expectation
value is zero:

〈s1s2〉c ≡ 〈s1s2〉 − 〈s1〉 〈s2〉 = 0

In fact, in the thermodynamic limit the Boltzmann measure factorizes for the Weiss ferromagnet, as
can be seen from

Z ∝
∫ ∞
−∞

dme−
1
2
NβJm2

Πi

[∑
si

e−βJmsi+βhsi

]
N→∞→ e−

1
2
NβJm2

Πi

[∑
si

e−βJmsi+βhsi

]
We will explore this point further in section 2.2.

2.1.2 Behaviour near the critical temperature

Hoping to describe the system near a phase transition, where m is small, we expand the free energy
function (2.5) as a Taylor-series in m

βf(β,m) =
1

2
βJm2 − ln 2− (βJm+ βh)2

2
+

(βJm+ βh)4

12
+ ... (2.9)

=
1

2
βJ(1− βJ)m2 − β2Jmh+

β4J4m4

12
+O(h2,m3h,m2h2, ...) + const (2.10)

(2.11)

using ln(2 coshx) = ln 2 + x2

2 −
x4

12 +O(x6). At low values of m, the quadratic term is dominating,
at larger values the m4-term. The phase transition occurs when the quadratic term switches sign
at 1 − βcJ = 0 resp. Tc = J . Below this temperature, the free energy function has two local
minima, rather than one. Either local minimum can be a global minimum, depending on the external
magnetic field h.

Such an expansion can also be performed for other models. Near a second-order phase transition,
we expect that

βf(β,m) =
1

2
tm2 + um4 − cmh+ const (2.12)

The coefficients t, u, c particular to the the Weiss ferromagnet are

t = βJ(1− βJ) = βJβ(T − Tc) ≈ β2
cJ(T − Tc) =

1

J
(T − Tc) ≡ a(T − Tc)

u =
β4J4

12
c = β2J

From the expansion (2.12), the behaviour of the system near the phase transition follows.
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Magnetization The saddle-point of f(β,m) for h = 0+ and t < 0 is given by

tm+ 4um3 = 0⇒ m2 =
|t|
4u

(2.13)

The solution is m ∝ |t|1/2 ≡ |t|β which is a power-law behaviour with exponent β = 1/2.

Critical susceptibility At t = 0 and for finite h

4um3 − ch = 0⇒ m =
( c

4u
h
)1/3

∝ h1/3 ≡ h1/δ (2.14)

i.e. h ∝ mδ with δ = 3.

Zero-field susceptibility At t > 0 and for small h

tm+ 4um3 − ch = 0⇒ m ≈ ch

t
∝ h ≡ hγ (2.15)

the exponent is γ = 1.

Specific heat For t > 0, βf = const. For t < 0, we use equation 2.13 giving

βf = const +
1

2
t

(
|t|
4u

)
+ n

(
|t|
4u

)2

= const− 1

2

t2

4u
+

t2

16u

= const− 1

16

t2

u

The resulting specific heat is then

cV =
1

N

d 〈H〉
dT

= −β2∂2
β(βf) =

1

8u
.

A power-law-ansatz cV ∝ t−α yields an exponent of α = 0.

These values for the exponents are called the mean-field exponents:

α β γ δ

MF exponent 0 1/2 1 3

It turns out that second-order phase transitions indeed show power-laws for various physical quan-
tities near the phase transition. However, the exponents usually differ from the result we obtained
here for the Weiss ferromagnet. Specifically, the exponents are found to depend on the dimension-
ality of the system1. To account for these power-laws in detail, we will have to wait until we can
introduce the concept of renormalisation.

1For the Weiss ferromagnet, with every spin interacting equally with every other spin, this dimensionality is effectively
infinite.
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2.2 General mean field theory

We will now turn mean-field theory as a tool to systematically derive approximations for systems,
whose partition function cannot be calculated as easily as that of the Weiss ferromagnet. In this
context, mean-field theory, or rather, the mean-field approximation, can be framed as the search for
a simple probability function (for which the expectation value of the energy, etc. can be calculated
easily), which is in some sense “close” to the Boltzmann measure of the system under consideration.

We denote the Boltzmann measure as

P (s) =
1

Z
e−βH[s] , (2.16)

where s is a vector denoting the configuration of the system s = (s1, s2, . . . , sN ). A particular
measure of “closeness” of two functions is the Kullback-Leibler-divergence between two functions
Q(s) and P (s), defined as

D(Q||P ) =
∑
s

Q(s) ln
Q(s)

P (s
(2.17)

The logarithm in this expression is positive if Q(s) > P (s), zero if Q(s) = P (s), and negative if
Q(s) < P (s) for a given s. One can show that

• D(Q||P ) is zero iff Q(s) = P (s) for all s

• D(Q||P ) is positive iff Q(s) 6= P (s)

We can now choose some family of functions Q(s) and minimize D(Q||P ) across this family
in order to make Q(s) as similar to the Boltzmann measure as possible. Mean field theory con-
sists of restricting choosing the family of functions Q(s) which factorize in the degrees of freedom
s1, s2, ..., sN . The Weiss model of ferromagnetism (2.1) is called a mean-field model, because in this
case mean field theory is exact since the Boltzmann measure factorizes in the thermodynamic limit,
see section 2.1.1.

For a system with binary degrees of freedom si ∈ ±1 any measure factorizing in i can be written
as

Q(s) =
N∏
i=1

1 + simi

2
for si ∈ {−1, 1} (2.18)

This choice of parameterization is convenient because

〈si〉Q =
1 +mi

2
(+1) +

1−mi

2
(−1) = mi

For the Boltzmann measure (2.16) the Kullback-Leibler divergence is

D(Q||P ) =
∑
s

Q(s) ln
Q(s)

P (s)

=
∑
s

Q(s) lnQ(s)−
∑
s

Q(s) lnP (s)

= 〈lnQ〉Q + β 〈H[s]〉Q + lnZ

The first term gives the information entropy of the distribution Q(s), SQ = −
∑

sQ(s) lnQ(s),
the second term the expected energy EQ =

∑
sQ(s)H[s] under the distribution Q. Taking these

together, the part of the Kullback-Leibler distance which depends on Q(s) can be considered a free
energy of Q(s).
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To see how that these terms can be evaluated easily since Q(s) factorizes, we consider a particular
Hamiltonian H[s] = −

∑
i,j Jijsisj −

∑
i hisi for some coupling matrix J and local fields h. We

obtain

〈lnQ〉Q =
∑
i

1 +mi

2
ln

1 +mi

2
+

1−mi

2
ln

1−mi

2
(2.19)

〈H〉Q =
∑
s

Q(s)H[s] (2.20)

=
∑
{si}

∏
i

(
1 +misi

2

)−∑
ij

Jijsisj −
∑
i

hisi

 (2.21)

= −1

2

∑
ij

Jijmimj −
∑
i

himi (2.22)

where we used ∑
si,sj

1 +misi
2

1 +mjsj
2

Jijsisj = 2 · 2mi

2

mj

2

as only even powers of si contribute to the sum of si.
The minimum of D(Q||P ) within the space of factorizing function QQ(s) by minimizing the free

energy with respect to m

min
m

D(Qm||P ) = min
m

(
〈lnQ〉Q + β 〈H〉Q

)
.

Setting ∂miD(Q||P ) = 0 gives with

∂mi

(
1±mi

2
ln

1±mi

2

)
= ±1

2
ln

1±mi

2
± 1

2

the following condition

1

2
ln

1 +mi

2
− 1

2
ln

1−mi

2
− β

∑
j

Jijmj − βhi = 0∀i . (2.23)

Using arctanhx = (1/2) log 1+x
1−x this can be written as

mi = tanh

β∑
j

Jijmj + βhi

 (2.24)

whose solution gives the magnetisations m for the mean-field approximation to H[s]. Given these
magnetisations, the mean-field approximation to the entropy and energy (2.19) can be evaluated.

For a translationally invariant model, such as the Weiss ferromagnet, mi = m∀i, and (2.24)
reduces to the saddle-point equation of the Weiss ferromagnet (2.6).
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3 Statistical Field Theory and Landau-Ginzburg
Models

3.1 Statistical Fields

In principle, it is possible to extract all thermodynamical properties of a system from the partition
function

Z(T ) = Tr
[
e−βHmic

]
(3.1)

obtained by summing over all microscopic degrees of freedom. In many cases, the partition function
cannot be evaluated exactly.

For many purposes, progress can be made by changing the focus from microscopic to mesoscopic
scales much larger than the lattice spacing but much smaller than the system size. The resulting
effective statistical field theories, are more amenable to analytic treatment.

We introduce coarse grained variables and define a magnetization field m(x) which represents the
average of the elemental spins in the vicinity of a point x. The scale ` of the coarse graining is
chosen such that

• m(x1),m(x2), ... contain enough microscopic variables such that the law of large numbers
applies

• and m(x) can still be described by a smoothly varying function.

The transformation from the original degrees of freedom to the field m(x) is a a non-invertible
mapping, since microscopic details are washed out due to averaging. It is possible to obtain the
probabilities for field configurations m(x) by adding all the Boltzmann weights e−βHmic of spin
configurations corresponding to a particular field m(x). The partition function is then preserved

Z = Tr
[
e−βHmic

]
≡
∫
Dm(x) e−S[m(x)] (3.2)

where
∫
Dm(x) denotes the integral over all field configurations m(x).

Obtaining the precise form of e−S[m(x)] can be even harder than solving the full problem. Instead,
we hope to guess S[m(x)] on the basis of very general principles

Locality and uniformity For a system consisting of disconnected parts, the overall probability is
obtained as a product of independent probabilities. S[m] then decomposes into a sum going
over to an integral in the continuum representation:

S[m(x)] =

∫
ddx f(m(x),x)

For a material that is uniform, all places are equivalent and there should be no explicit x
dependence. However, if there are couplings between different parts of the system, we have to
consider gradients of the field, leading to

S[m(x)] =

∫
ddxf(m(x),∇m,∇2m, ...) (3.3)
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Figure 3.1: Displacements {un} of a one-dimensional chain of particles and the coarse-grained field
u(x) of the continuous string in analogy to the coarse-grained magnetization m(x).

Analyticity We expect that, as in the case of the free energy function, S[m] is analytic. Then, we
can write S[m] as a series expansion in powers of m and its gradients.

Symmetries As any symmetries will survive the averaging process, only terms compatible with the
symmetries of Hmic are considered.

Stability Since the coarse grained Boltzmann weights are supposed to describe a real problem, we
will not tolerate unphysical solutions as divergence for infinite values of m. E.g. this leads to
the condition that the coefficient of the highest order power of m has to be positive.

3.2 Landau-Ginzburg theory for the ferromagnetic phase transition

As an example, we will now consider the component m(x) in the direction of a magnetic field h.
The simplest functional S[m(x)] in agreement with the above requirements is

S[m(x)] =

∫
ddx

[
−hm(x) +

t

2
m2(x) + um4(x) +

k

2
(∇m)2

]
(3.4)

• m3,∇m-terms etc. are missing for reasons of symmetry (S[m] = S[−m] for h = 0)

• We could add a term (∇m)2m2 but this does not lead to new results

• (∇m)2 penalizes fluctuations of m(x) in x (adjacent regions of different m(x))

• The parameters h, t, k, u are effective parameters whose relationship to the microscopic J, T
is not known (to us). Calculating these relationships would be has hard as calculating the full
partition function of the model

• Nevertheless, we make the assumption that h, k, u are approximately constant near the phase
transition, t depends linearly on T .

The functional (3.4) is called the Landau-Ginzburg functional. One can view this functional as
the Hamiltonian of some field m(x). It is important to note that the Landau-Ginzburg functional
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contains also entropic contributions from microscopic degrees of freedom which were averaged out
(in the same way the quartic term in the small-m expansion of the Weiss ferromagnet free energy
function (2.9) arose from expanding the log cosh originating from the sum over spins).

Indeed, we begin our analysis of the Landau-Ginzburg model with the ansatz of a constant mag-
netization m(x) = m. Integration over x yields the volume V and

S[m] = V (−hm+
t

2
m2 + um4) (3.5)

giving the small-m expansion of the Weiss ferromagnet free energy functional.

3.3 Stability analysis and upper critical dimension

In the following section, we will investigate the role of (small) fluctuations φ(x) around m(x) = m.
Thus, we write m as m(x) = m+ φ(x). This gives us:

m2(x) = m2 + 2mφ(x) + φ2(x)

m4(x) = m4 + 4m3φ(x) + 6m2φ2(x) +O(φ3)

(∇m)2 = (∇φ)2

Inserting these formulae gives the Landau-Ginzburg functional with small fluctuations:

S[m] = V (−hm+
t

2
m2 + um4) +

∫
ddx

[
k

2
(∇φ)2 +

(
t

2
+ 6um2

)
φ2(x)

]
+O(φ3) (3.6)

The terms coupling linearly to φ (
t+ 4um2

)
mφ

vanish since at the saddle point m2 = |t|/4u for t < 0 and m = 0 for t > 0.
The first part of this expression gives us the contribution of the saddle point in m, the second the

contribution to S[m] from small fluctuations around the saddle point.
Defining

ξ−2k

2
=
t

2
+ 6um (3.7)

the partition function can be written as

Z =

∫
Dme−S[m] ∝

∫
Dφ exp

{
−k

2

∫
ddx

(
(∇φ)2 + ξ−2φ2(x)

)}
(3.8)

Since the functional (3.6) is translation invariant, Fourier transformations are key to its analysis.
In particular, derivatives of fields are then transformed into simple multiples of the Fourier modes;
∇φ(x)→ ikφk and ∇2φ(x)→ −k2φ2

k.
We use the following conventions for discrete Fourier expansion/transform:

φ(x) =
∑
q

φqe
iq·x (3.9)

φq =
1

Ld

∫
ddxφ(x)e−iq·x (3.10)

For L→∞ we get (for simplicity in 1D)

∑
q

φq(...) =
∑
n

φ2πn/L(...)

∫ 2π(n+1/2)/L

2π(n−1/2)/L

ddq

(2π/L)d
=

1

(2π)d

∫
ddq φ(q)(...) ,
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where we defined φ(q) = Lq. This leads us to the continuous form:

φ(x) =
1

(2π)d

∫
ddqφ(q)eiq·x (3.11)

φ(q) =

∫
ddxφ(x)e−iq·x (3.12)

Using the Fourier transform we obtain:∫
ddxφ2(x) =

∑
q,q′

φqφq′

∫
ddx ei(q+q′)·x︸ ︷︷ ︸
=δ(q−q′)Ld

= Ld
∑
q

φqφ−q = Ld
∑
q

|φq|2

i.e. the integral transforms into a sum of Fourier modes. Analogously, the integral over the gradient
transforms as ∫

ddx(∇φ)2 = Ld
∑
q

q2|φq|2

Thus, we can write S[m] as

S[φ] =
k

2
Ld
∑
q

(q2 + ξ−2)|φq|2. (3.13)

We see that there are no couplings between the φq with different q anymore (apart from couplings
between modes with equal and opposite momenta, as |φq|2 = φqφ

∗
q = φqφ−q. This expression

(3.13) we have obtained can be seen as the Hamiltonian of a kinetic theory in q-space. The partition
function is

Z =

∫
Dφ e

k
2
Ld

∑
q(q2+ξ−2)|φq|2 (3.14)

The integration over fields can be carried out noting that each pair of momenta appears twice in
(3.13), once as φqφ−q and once as φ−qφq, giving

∫
Dφe−S[φ] =

′∏
q

(∫
d(φq, φ

∗
q)e
−kLd(q2+ξ−2)|φq |2

)
∏′

means that every element q,−q appears once, and φq determines φ−q = φ∗q . This leads us to a
Gaussian integration:∫

d(z, z∗)e−z
∗wz =

∫
d(x, y)e−(x2+y2)w =

√
π

w

√
π

w
=
π

w

Choosing w = k
2L

d(q2 + ξ−2), we obtain

Z ∝
∏′

q
1

kLd(q2+ξ−2)
= exp

{
1
2

∑
q ln(k(q2 + ξ−2))−1

}
(3.15)

= exp
{
−1

2
Ld

(2π)d

∫
ddq ln(k(q2 + ξ−2))

}
(3.16)

≡ e−βLdffluc(β) (3.17)

with −βffluc(β) = −1
2

1
(2π)d

∫
ddq ln(k(q2 + ξ−2)).
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What is the contribution of these fluctuations to observables near the phase transition? Consider
the contribution of fluctuations to the heat capacity.

∂t∂β(βffluc(β)) ∝ 1

β2
∂2
t (βffluc)

The most singular term near the phase transition in this derivation is proportional to

1

(2π)d

∫
ddq

1

(q2 + ξ−2)2

This integral changes its behaviour drastically at d = 4.

• for d > 4 the integral is divergent at short distances or q →∞. Introducing a cutoff in q-space
corresponding to the inverse lattice spacing a−1

∫
ddq

1

(q2 + ξ−2)2
∝
∫

dq
qd−1

(q2 + ξ−2)2
≈
(

1

a

)d( 1(
1
a

)2
+ ξ−2

)2

≈ a4−d

• for d < 4 the integral is convergent for both q → 0 and q →∞ (provided ξ−2 is finite)∫
ddq

1

(q2 + ξ−2)2
∝ ξ−dξ4

∫
ddq′

1

(q′2 + 1)2
≈ ξ4−d

This is finite for finite ξ but diverges (d < 4) if ξ →∞. Since ξ ∝ 1/
√
t this divergence occurs

at the critical point!

d = dc = 4 is called the upper critical dimension. Below dc mean-field predictions are (singularly)
wrong and fluctuations around m(x) = m dominate the partition function.

The parameter ξ defined in (3.7), whose divergence signals the phase transition, has an important
physical interpretation – it is the length over which fluctuations φ(x) are correlated. To show this,
we consider the connected correlation function between field variables φ a distance x apart

G(x) = 〈φ(x)φ(0)〉 − 〈φ(x)〉 〈φ(0)〉

Again, Fourier transform:

Gq =
1

Ld

∫
ddxG(x)e−iqx

=
1

Ld

∫
ddx 〈φ(x)φ(0)〉 e−iqx

=
1

Ld

∫
ddx

∑
q1,q2

〈φ(q1)φ(q2)〉 eiq10+iq2x−iqx

=
∑
q1

〈φ(q1)φ(q)〉

For S[φq] = k
2L

d
∑

q(q2 + ξ−2)|φq|2:

〈φqφq′〉 =

{
1

kLd(q2+ξ−2)
for q′ = −q

0 for q′ 6= −q
(3.18)
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In d = 1, G(x) =
∑

q Gqe
iqx can easily be calculated, and we restrict our discussion to this case.

We get similar results in d > 1 apart from prefactors

G(x) =
∑
q

Gq e
iqx =

∑
q,q′

〈φqφq′〉 eiqx

=
1

kL

∑
q

eiqx

q2 + ξ−2
→L→∞

1

2πk

∫ ∞
−∞

dq eiqx

(q + iξ−1)(q − iξ−1)

We solve this integral by contour integration (poles at ±iξ−1). According to the residual theorem,
this integral gives us for x > 0

I1 = 2πi
e−xξ

−1

2iξ−1

and for x < 0

I2 = −2πi
e−xξ

−1

−2iξ−1

Putting this together gives us:

G(x) =
ξ

2k
e−|x|/ξ (3.19)

We see that ξ is the correlation length of the fluctuations. This length diverges as t→ 0.

24



4 Lattice Models

4.1 Some examples

We assume a microscopic Hamiltonian (which may or may not be a good description of a specific
system). The degrees of freedom (”spins”) are located on lattice points. Some models can be solved
exactly, i.e. Z(β, h) can be calculated in the thermodynamic limit.

Some famous examples are

The Ising model l. At each site i of some lattice, there is a spin (degree of freedom) which takes
the two values of +1 and -1. The Hamiltonian modeling a ferromagnet is given by

H = −
∑
<i,j>

Jijsisj −
∑
i

hisi , (4.1)

where the sum is over all pairs of spins whose lattice sites are adjacent to each other. In
particular, H = −J

∑
<i,j> sisj − h

∑
i si with a coupling constant J > 1 and a magnetic

field h is a good description for a ferromagnet.

The O(n) model: Each lattice site is occupied by a vector si = (s1
i , s

2
i , ..., s

d
i )
T which is a unit

vector (i.e.
∑

m(smi )2 = 1).

Then the Hamiltonian is given by

H = −J
∑
<i,j>

si · sj − h ·
∑
i

·si (4.2)

It is called O(n)-model because the Hamiltonian is invariant under rotation.

The Potts model: Each site of the lattice is occupied by a q-valued spin si ∈ {1, 2, 3, ..., q}. The
interactions between the spins are described by a Hamiltonian

H = −J
∑
<i,j>

δsisj − h
∑
i

δsi1 (4.3)

Figure 4.1: 2d lattice
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where neighbouring spins give a non-zero contribution only if they are in the same configuration.

Spin s-models: The spins at every site of the lattice take the 2s− 1 values si ∈ −s,−s+ 1, ...,+s.
A general nearest-neighbour Hamiltonian is

H = −
∑
<i,j>

J1sisj + J2(sisj)
2 + ...+ J2s(sisj)

2s − h
∑
i

si (4.4)

For s = 1/2 we get back the Ising model.

Models which are mathematically equivalent to the Ising model or others also appear in contexts
different from ferromagnetism. An example is a lattice gas where si = −1 means that particles are
absent and si = 1 that particles are present).

4.2 Monte-Carlo simulation

In physics, the term Monte Carlo refers to the use of randomness to approximate deterministic
quantities. The basic idea can be explained with the following example: Suppose a lake whose
average depth is to be determined. The exact solution is∫

lake dx dy depth(x, y)∫
lake dxdy

ChoosingM points randomly and uniformly we can approximate the exact result byM−1
∑M

n=1 depth(xn, yn).

Compare now the formula for the average depth
∫

dxdyd(x, y)/
∫

dxdy with

〈H〉 =
1

Z
Tr He−βH =

Tr He−βH

Tr e−βH

In the ”lake-formula”, the trace is replaced by the integral and the statistical weight of each point
is equal to one. This leads to the idea of using Monte Carlo methods in statistical physics. We aim
to calculate 〈f(s)〉 = Z−1

∑
s f(s) exp(−βH(s)). In order to do this, we draw M configurations

independently from the Boltzmann measure and approximate:

〈f(s)〉 ≈ 1

M

M∑
µ=1

f(sµ)

4.2.1 Markov chain Monte Carlo (MCMC)

The first step is thus to generate a (large) set of states s independently drawn from the Boltzmann
distribution. Suppose a Markov process on the configurations s, i.e. a set of transition rates from
configuration s to s′, Ws′s. Our goal is to choose these rates such that the equilibrium distribution
peq(s) is the Boltzmann distribution.

An outline of a typical MCMC algorithm is:

1. pick an initial configuration s (in any way)

2. choose a new configuration s′ with probability Ws′s

3. repeat ”many times” until equilibrium has been reached.
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The rates Ws′s specify an artificial dynamics of the system with no relation to the actual dynamics
of the system we model. The only requirement on the rates Ws′s is that the steady state (invariant
measure) is the Boltzmann measure.

Different such rate matrices can be chosen according to speed of convergence and computational
efficiency.

As the steady state of MCMC should be the Boltzmann measure, the rates Ws′s have to obey
detailed balance.

Ws′s

Wss′
=
e−βH[s′]

e−βH[s]
= e−β(H[s′]−H[s])

In detailed balance Ws′se
−βH[s]/Z = Wss′e

−βH[s′]/Z holds, so probability fluxes between s and s′

balance if the probability of finding the system in a configuration s is e−βH[s]/Z

One set of rates which obey detailed balance is Metropolis dynamics defined as follows:

1. Given the system is in a configuration s, pick a new configuration s′ from some neighbour set
of s. In practice, s′ is picked such that s′ and s differ by one spin flip.

2. ”Accept“ the transition from s to s′ with probability pacc

pacc = 1 if H[s′] < H[s]

pacc = e−β(H[s′]−H[s]) if H[s′] ≥ H[s]

else ”reject” and remain at s.

These rates obey detailed balance

Ws′s

Wss′
=

{
1 ∆H < 0

e−β∆H ∆H ≥ 0{
e+β∆H ∆H < 0

1 ∆H ≥ 0

= e−β∆H

Another way is the Glauber dynamics:

1. Pick a spin at random, compute ∆H resulting from a potential flip of this spin.

2. Flip the spin with probability

pflip =
1

1 + eβ∆H .

4.3 The lower critical dimension

In LG-theory, the effects of fluctuations are more pronounced in low dimensions. In low dimensions,
fluctuations can become so strong that the ordered phase no longer exists.

Discrete systems Consider a system of Ising spins (or other degrees of freedom with a discrete
symmetry). d = 1 with L spins:

↑↑↑↑↓↓↓↑↑↑↑↑↑↑↑↑

We are interested in the energy difference of introducing a domain somewhere. The energy cost
is 2J and the entropy cost is lnL. ⇒ −∆(βF ) = + lnL− 2βJ .

⇒ ∆F = −kBT lnL+ 2J
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−kBT lnL→∞ as L→∞ if T > 0. The free energy of a system with an additional domain wall is
thus lower than a system without it. The so called Peierls-argument shows that the ordered phase
is unstable against the introduction of domains provided T > 0 (no finite T phase transition).

Consider now a domain of down-spins with domain length l in d = 2. The energy difference is
≈ 2Jl. As at each point you can go in three directions, the entropy difference is ≈ ln[number of
random walks of length l], therefore ≈ ln[µ]l = l lnµ with µ ≈ 3.

∆F = −kBT l lnµ+ Jl = l(−kBT lnµ+ J)

This goes to 0 at a critical temperature of Tc = J/kB lnµ. For T < Tc, ∆F is increased by the
introduction of domains, for T > Tc, ∆F is decreased in that case. We thus expect, that unlike in
1d, 2d-systems can sustain a low-temperature phase with long-range order.

Continuous systems The situation in continuous systems (degrees of freedom with continuous
symmetry) is quite different. Here, domain walls acquire a spatial extent ldomain. The energy
contribution of a domain wall is 〈∆H〉 /N ∝ 〈(∆θ)2〉 ≈ (1/ldomain)2 where ∆θ is the angle between
neighboring spins. Taking the domain wall size to be comparable to the size of the domain itself
(minimum domain size), we find

∆H = lddomainl
−2
domain = ld−2

domain

This is different from the scaling ld−1
domain in discrete systems. This means in continuous systems,

domains are easier to introduce because they cost less energy.
Already in d = 2, the ordered state is destroyed by fluctuations due to the introduction of domains.

(Mermin-Wagner-theorem). The lower critical dimension for discrete systems is dlc = 1 and for
continuous systems dlc = 2. For d ≤ dlc there is no ordered state at a finite T .

4.4 The Ising Model in d = 1

Following these general arguments, we will attempt to solve some models exactly, starting with the
Ising model in one dimension.

Writing βJ = k and βh̃ = h, we have the Hamiltonian

−βH[s] = k
∑
<i,j>

sisj + h
∑
i

si (4.5)

With periodic boundary conditions (sN+1 ≡ s1) we obtain the following partition function

Z =
∑
s1=±1

∑
s2=±1

...
∑

sN=±1

N∏
i=1

exp{ksisi+1 +
h

2
(si + si+1)}

= Tr [〈s1|T|s2〉 〈s2|T|s3〉 ... 〈sN |T|s1〉]

=
∑
s1

〈s1|TN |s1〉 = Tr TN

where we introduced the ”transfer matrix“ T with elements

〈σ|T |σ′〉 = exp

(
kσσ′ +

h

2
(σ + σ′)

)
, i.e. T =

(
ek+h e−k

e−k ek−h

)
(4.6)

The trace of TN can be calculated by diagonalizing T

Z = Tr TN = Tr

(
λN1 0
0 λN2

)
= λN1 + λN2
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with the eigenvalues of denoted T λ1, λ2.

Calculating the partition function thus reduces to computing eigenvalues of T.

det(T− λ1) = 0(
ek+h − λ

)(
ek−h − λ

)
− e−2k = 0

λ2 − 2λek coshh+
(
e2k − e−2k

)
= 0

⇒ λ+,− = ek cosh(h)±
√
e2k cosh2(h)− e2k + e−2k

= ek cosh(h)±
√
e2k sinh2(h) + e−2k

For N →∞, if λ+ > λ− then λN+ � λN− :

−βf =
1

N
lnZ =

1

N
ln(λN+ + λN− )→ lnλ+

For T → 0 (β →∞)

λ+,− →T→0 e
k(coshh± sinhh) = ek±h

This means the free energy is analytic in β, h, J if T > 0.

The magnetization can be computed from ∂h(−βh). An alternative is based on the transfer matrix.
We focus on the spontaneous magnetisation (h = 0).

〈sj〉 =
1

Z

∑
s1s2...sN

sj

N∏
i=1

eksisi+1

=
1

Z
Tr (〈s1|T |s2〉 〈s2|T |s3〉 ... 〈sj−1|T |sj〉 sj 〈sj |T |sj+1〉 ... 〈sN |T |s1〉)

=
1

Z
Tr

(
Tj−1

(
1 0
0 −1

)
TN−j+1

)
=

1

Z
Tr

(
TN

(
1 0
0 −1

))

The eigenvectors of T are (1,−1)T /
√

2 and (1, 1)T /
√

2. Transforming to an eigenvector-system
yields

1

2

(
1 −1
1 1

)(
1 0
0 −1

)(
1 1
−1 1

)
=

(
0 1
1 0

)
and we get

〈sj〉 =
1

Z
Tr

((
λN1 0
0 λN2

)(
0 1
1 0

))
=

1

Z
Tr

(
0 λN1
λN2 0

)
= 0

This result follows already from symmetry at h = 0. The same method, however, can be used to
calculate the correlation function 〈sisj〉 (equals the connected correlation function 〈sisj〉 − 〈si〉 〈sj〉
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because 〈si〉 = 〈sj〉 = 0).

〈sisj〉 =
1

Z

∑
s1,s2,...,sN

sisj

N∏
l=1

ekslsl+1

=
1

Z
Tr

(
Ti−1

(
1 0
0 −1

)
Tj−i

(
1 0
0 −1

)
TN−j+1

)
=

1

Z
Tr
(
Tj−iσ

z
TN−(j−i)σ

z

)
=

1

Z
Tr

((
λj−i+ 0

0 λj−i−

)(
0 1
1 0

)(
λ
N−(j−i)
+ 0

0 λ
N−(j−i)
−

)(
0 1
1 0

))

=
1

Z
Tr

((
0 λj−i+

λj−i− 0

)(
0 λ

N−(j−i)
+

λ
N−(j−i)
− 0

))

=
1

Z
Tr

(
λj−i+ λ

N−(j−i)
− 0

0 λj−i− λ
N−(j−i)
+

)
=
λr+λ

N−r
− + λr−λ

N−r
+

λN+ + λN−

with r = j − i. Suppose r � N and λ− < λ+

〈sisj〉 ≈
λ−
λ+

r

= e−r/ξ

where ξ is the correlation length:

ξ−1 h=0
= − ln

(
λ+

λ−

)
= − ln

(
ek + e−k

ek − e−k

)
= − ln tanh k (4.7)

Physical insight: Phase transition, signalled by the diverging correlation length is at T = 0. At finite
temperature no ordered state is possible because it is destroyed by fluctuations.

4.5 Approximation at high and at low temperature

4.5.1 The low temperature expansion

At low temperature, the Boltzmann measure is dominated by the low-energy configurations.

ground configuration 1st excited configuration 2nd excited configuration

energy H0 H1 H2

degeneracy m0 m1 m2

contribution to Z m0e
−βH0 m1e

−βH1 m2e
−βH2

At low temperature, β(H1 −H0)� 1:

e−βH1

e−βH0
= e−β(H1−H0) � 1

Then, the partition function

Z = m0e
−βH0 +m1e

−βH1 +m2e
−βH2 + ...

involves successively smaller terms, provided m0,m1,m2, ... does not grow too quickly.
As an example, let us consider the Ising model in d dimensions.

Z = 2eNdk
[
1 +Ne−4dk + dNe−4k(2d−1) + ...

]
(4.8)

Pushing the series to higher orders allows to extract aspects of critical behaviour.
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ground configuration all spins point up (or down) βH0 = −kdN m0 = 2
1st excited configuration one spin up, all others down (or v.v.) β(H0 −H1) = 2k · 2d m1 = 2N
2nd excited configuration two adjacent spins up, all others down (or v.v.) β(H2 −H0) = 2k · 2(2d− 1) m2 = 2Nd

4.5.2 High-temperature approximation (general)

For βH[s]� 1∀s (high temperatures), the Taylor expansion exp(−βH(s)) ≈ 1−βH[s]+β2/2H2[s]+
... is dominated by the first few terms. We exploit this expansion to approximate Z:

lnZ = ln Tr
(
e−βH

)
= ln Tr

(
1− βH[s] + β2/2H2[s] + ...

)
= ln

[
(Tr (1))

(
1− βTr H

Tr 1
+
β2

2

Tr H2

Tr 1
+ ...

)]
= ln (Tr (1)) + ln

(
1− βTr H

Tr 1
+
β2

2

Tr H2

Tr 1
+ ...

)
= ln 2N + ln

(
1− β 〈H〉0 +

β2

2
〈H2〉0 + ...

)
For small β we can make another approximation ln(1− x) = −x− x2/2 + ... and get

= lnZ0 − β 〈H〉0 −
1

2
β2 〈H〉20 +

β2

2
〈H2〉0

= lnZ0 − β 〈H〉0 +
1

2
β2
(
〈H2〉0 − 〈H〉

2
0

)
+ ... ,

with Z0 = log(2).

4.6 The Ising Model and graphs on the lattice

The following identity valid for binary spins is useful to derive another high-T expansion (and much
more)

ekσσ
′

=

{
ek if σσ′ = 1
e−k if σσ′ = −1

=
1

2

(
ek + e−k

)
+

1

2

(
ek − e−k

)
σσ′

= cosh k + σσ′ sinh k

= cosh k(1 + σσ′t)

with t = tanh k.
The Boltzmann weight for Ising spins can be written as

exp

k ∑
<i,j>

σiσj

 =
∏
<i,j>

ekσiσj =
∏
<i,j>

cosh k(1 + σσ′t) = coshn k
∏
<i,j>

(1 + σσ′t)

what is a polynomial of t. Expanding in powers of t gives a new type of high-T expansion.
More importantly, any odd power-term of σi in

∏
<i,j>(1 + σσ′t) gives zero when the sum over

the possible values σ = ±1 is performed.
This is the basis for a representation of Z in terms of graphs:
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Figure 4.2: 1d ising model with closed boundaries

∏
<i,j>

(1 + σiσjt) = sum over terms where each bond contributes 1 or σσ′t

In each term of this sum, each bond (i,j) either contributes a term t (then we call it occupied), or
a term 1 (unoccupied). The occupied bonds form a graph on the lattice.

Summing over
∑
{σi} only terms represented by closed graphs contribute to Z.

Z = 2N coshnumber of bonds k
∑

all closed graphs

tnumber of occupied bonds in graph

Example: 1d-Ising model (periodic boundary conditions), there is only one closed graph on this
lattice (and the trivial case: no bonds)

Z = 2N coshN k(1 + tanhN k) = 2N (coshN k + sinhN k) (4.9)

Compare this with the result obtained above: Z = λN1 + λN2
h=0
= (2 cosh k)N + (2 sinh k)N .

Correlations can also be calculated

〈σmσn〉 =
1

Z

∑
σi

σmσn
∏
<i,j>

(1 + σmσnt)

only graphs with an even number of occupied bonds at all nodes except m and n contribute. m and
n must have an odd number of occupied bonds.

〈σmσn〉 =
t|n−m| + tN−|n−m|

1 + tN

4.7 The Ising model in 2 dimensions

This section closely follows the exposition in Kardar, which is based on an approach pioneered by M.
Kac.
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4.7.1 Graphs and walks

A graph consists of bonds which are either absent or present. Walks where each bond can be
traversed more than once are easier to deal with. After each step you have exactly three possibilities
(in 2d) to go on, independently of where the walk has gone before. Claim:

Z = 2N coshnumber of bonds k
∑

all closed graphs

tnumber of occupied bonds in graph

= 2N coshnumber of bonds k
∑

all loops of walks without u-turns

tnumber of walks(−1)number of crossings

Consider a single site with 4 occupied bonds (0,2 are trivial). We have three walks, one of these has
a crossing. This leads to a sum of 1 walk.

For a single bond we have the walk between these to points. Additionally, there is an infinite
number of walks that contain the bond, but for every of these walk, another one can be generated
by cutting the bond and exchanging the lines which gives us a sign of −1.

4.7.2 Multiple Loops

∑
all (weighted) walks = 1 + 1 loop walks + 2 loop walks + 3 loop walks + ...

= 1 + Ξ +
1

2
(Ξ)2 +

1

3!
(Ξ)3 + ...

= exp {Ξ}

⇒ lnZ/N = ln(2 cosh2 k) +
1

N

(∑
all weighted walks with one loop

)
Notation: denote the sum over all (weighted) walks of a single loop with length l, starting at

(x′, y′) and ending at (x, y) by

〈x, y|W ∗(l)|x′, y′〉

* stands for weighted walks, i.e. (−1)nc .

1

N

(∑
1
)

=
1

N

∑
x,y

∞∑
l=1

1

l
tl 〈x, y|W ∗(l)|x, y〉 (4.10)

is the key contribution to the partition function (4.10)
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4.7.3 Walks on the lattice and transfer matrices

We show how walks on the lattice can be enumerated using transfer matrices. For now we study un-
weighted walks, 〈x, y|W |x′, y′〉. The appropriate phase factor depending on the number of crossings
will be introduced in the next section.

Define the adjacency matrix of a lattice

Tij =

{
1 if nodes i,j are neighbours
0 otherwise

Walks on the lattice of length l can be generated by raising the adjacency matrix to the l-th power.

Example: 1d

T =


0 1 0 · · ·
1 0 1 · · ·

0 1 0
. . .

...
...

. . .
. . .


〈x|W (l = 1)|x′〉 = Txx′

〈x|W (l = 2)|x′〉 =
∑
x′′

〈x|W (l = 1)|x′′〉 〈x′′|W (l = 1)|x′〉 =
∑
x′′

Txx′Tx′′x′ =
(
T2
)
xx′

Notation |x〉 was chosen in analogy to QM, so use 1 =
∑

x |x〉 〈x|, in real space, with |x〉
corresponding to (0, ..., 0, 1, 0, ...0)t. Since T is translation-invariant, Bloch-states are eigenstates of
T.

|q〉 = (..., e−2iq, e−iq, 1, eiq, e2iq, ...)t/
√
N

We get 〈x|q〉 = eiqx/
√
N , 〈q|x〉 = e−iqx/

√
N ,

〈x|x′〉 =
∑
q

〈x|q〉 〈q|x′〉 =
1

N

∑
q

eiq(x−x
′) = δx,x′

Proof that |q〉 is an eigenstate of T:

〈x|T |q〉 =
∑
x′

〈x|T |x′〉 〈x′|q〉

=
∑
x′

(
δx′,x+1 + δx′,x−1

)
eiqx

′
/
√
N

=
(
eiq(x+1) + eiq(x−1)

)
/
√
N =

(
eiq + e−iq

)
eiqx/

√
N

= (2 cosh q) 〈x|q〉 ≡ T (q) 〈x|q〉

Now we can compute

〈0|W (l)|0〉 = 〈0|T l|0〉 =
∑
q

〈0|T l|q〉 〈q|0〉

=
∑
q

T l(q) 〈0|q〉 〈q|0〉 =
1

N

∑
q

T l(q)

This step uses that the Bloch states are also eigenstates of the product Tl.
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Example: 2d

〈x, y|T |x′, y′〉 = δx,x′(δy,y′+1 + δy,y′−1) + δy,y′(δx,x′+1 + δx,x′−1)

Again, |qx, qy〉 form eigenstates of T:

〈x, y|T |qx, qy〉 =
∑
x′,y′

〈x, y|T |x′, y′〉 〈x′, y′|qx, qy〉

=
1√
N

[
eiqxx

(
eiqy(y+1) + eiqy(y−1)

)
+ eiqyy

(
eiqx(x+1) + eiqx(x−1)

)]
= ei(qxx+qyy)(cos qy + cos qx)

1√
N
ei(qxx+qyy) ≡ T (qx, qy) 〈x, y|qx, qy〉

Number of loops starting and ending at 0, 0 of length l:

〈0, 0|W (l)|0, 0〉 =
∑
qx,qy

〈0, 0|T l|qx, qy〉 〈qx, qy|0, 0〉

=
∑
qx,qy

T l(qx, qy) 〈0, 0|qx, qy〉 〈qx, qy|0, 0〉

=
1

N

∑
qx,qy

T l(qx, qy)

We are still missing (−1)Nc , i.e. we have not (yet) excluded U-turns.

4.7.4 The phase term (−1)nc

We need to compute the number of walks 〈0|W ∗|0〉 weighting each loop with (−1)nc . If (−1)nc can
be calculated using local information from each step, we have a chance!

Theorem (Whitney) The number nc of self-crossings of a planar loop is related to the total angle
Θ its tangent turns through by

(nc) mod 2 =

(
1 +

Θ

2π

)
mod 2

Thus, we can compute (−1)nc as

(−1)nc = exp

{
iπ

(
1 +

Θ

2π

)}
= −e

i
2

∑l
i=1 θi

with θi being the angle the walk turns through at step i.

〈0|W ∗(l)|0〉 = −1

2

∑
directed loops of l steps, with no u-turns, from 0 to 0× e

i
2

∑l
i=1 θi

To introduce changes of direction into the transfer matrix, we define 〈x, y, µ|W ∗(l)|x′, y′, µ′〉 which
gives us the sum over all directed paths from x′, y′ departing along direction µ′ ending at x, y and

leaving x, y in direction µ weighted with e
i
2

∑l
i=1 θi .

Each lattice point x, y and direction µ specifies a particular state vector. Now also the weighted
walks allow a transfer-matrix approach

〈x, y, µ|W ∗(l)|x′, y′, µ′〉 =
∑
〈x, y, µ|W ∗(l − 1)|x′′, y′′, µ′′〉 〈x′′, y′′, µ′′|W ∗(l = 1)|x′, y′, µ′〉
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Let us define with |µ〉 ∈ {|ket→, |↑〉 , |←〉 , |↓〉} and calculate

〈x, y, µ|W ∗(l = 1)|x′, y′, µ′〉 ≡ 〈x, y, µ|T ∗|x′, y′, µ′〉 (4.11)

= T ∗ =


〈x, y|x′ + 1, y′〉 〈x, y|x′, y′ + 1〉 e−iπ/4 0 〈x, y|x′, y′ − 1〉 eiπ/4

〈x, y|x′ + 1, y′〉 eiπ/4 〈x, y|x′, y′ + 1〉 〈x, y|x′ − 1, y′〉 e−iπ/4 0

0 〈x, y|x′, y′ + 1〉 eiπ/4 〈x, y|x′ − 1, y′〉 〈x, y|x′, y′ − 1〉 e−iπ/4
〈x, y|x′ + 1, y′〉 e−iπ/4 0 〈x, y|x′ − 1, y′〉 eiπ/4 〈x, y|x′, y′ − 1〉

 ,(4.12)

where 〈x, y|x′, y′〉 = δxx′δyy′ . 〈x, y, µ|T ∗|x′, y′, µ′〉 is a 4N × 4N matrix, it is ”block-diagonal“ in
Fourier basis (diagonal up to the µµ′-blocks).∑

x′,y′

〈x, y, µ|T ∗|x′, y′, µ′〉 〈x′, y′|qx, qy〉 = 〈µ|T ∗(qx, qy)|µ′〉 〈x, y|qx, qy〉

with

T ∗(qx, qy) =


eiqx e−i(qx+π/4) 0 eiqx+π/4)

e−i(qx−π/4) e−iqx ei(qx−π/4) 0

0 e−i(qx−π/4) eiqx ei(qx−π/4)

e−i(qx+π/4) 0 ei(qx+π/4) eiqx


The quantity we are after

〈0, 0|W ∗(l)|0, 0〉 = −1

2

4∑
µ=1

〈0, 0, µ|T ∗l|0, 0, µ〉

= −1

2

∑
µ,qx,qy

〈0, 0, µ|T ∗l|qx, qy, µ〉 〈qx, qy, µ|0, 0, µ〉

= −1

2

1

N

∑
µ,qx,qy

[
T ∗l(qx, qy)

]
µµ

= −1

2

1

N

∑
qx,qy

trT∗l

1

2

∑
l=1

tl

l
〈0, 0|W ∗(l)|0, 0〉 =

1

2N

∑
l,q

1

l
T r (T∗(q)t)l

=
1

2N

∑
q

Tr log
(

1− tT ∗(qx, qy)
)

because ln(1− x) = −
∑
l = 1∞ 1

l x
l. Thus

1

N
lnZ = ln(2 cosh2 k) +

1

2N

∑
q

log det
(

1− tT ∗(qx, qy)
)

using tr(logM) =
∑

α lnλα = log
∏
α λα = log detM .

Working out the determinant and replacing the sum by an integral gives

1

N
lnZ = ln(2 cosh2 k) +

1

2

∫
d2q

(2π)2
log
[
(1 + t2)2 − 2t(1− t2)(cos qx + cos qy)

]
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4.7.5 Critical behaviour

We expect singularities in the derivations of lnZ to arise from long lengthscales i.e. small qx, qy.
Let us therefore consider qx, qy → 0. The integrand becomes

log
[
(1 + t2)2 − 2t(1− t2)(cos qx + cos qy)

]
→ log

[
(1 + t)2 − 2t(1− t2)

]
= ln

[
1 + 2t2 + t4 − 4t+ 4t3

]
= ln(1− t2 − 2t)2 ≥ 0

The minimum of (1−t2−2t)2 is reached at the critical temperature (upper root of) t = tc = −1±
√

2
which leads us to a critical β of

βc =
log(1 +

√
2)

2J

Expansion t = tc + ∆t and cos qx + cos qy = 1− 1
2(q2

x + q2
y) + ... gives

lnZ

N
≈ − 1

π

(
∆t

tc

)2

log

(
∆t

tc

)
The second derivative (heat capacity) diverges logarithmically C ∝ ln ∆t⇒ α = 0.
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5 Renormalization

Suppose a system whose behaviour is fully determined by some (microscopic) Hamiltonian. Can
the behaviour of this system on large scales be described in terms of a new (effective, large-scale)
Hamiltonian? What are the couplings of this new Hamiltonian?

• Renormalization Group (RG) first arose in quantum field theory

• Kadanoff developed the idea to apply RG in statistical physics, Wilson performed first calcula-
tions in the 70s (Nobel prize to Wilson in 1982).

• tremendous impact on statistical physics and condensed matter physics; allows a deep under-
standing of critical phenomena.

5.1 The idea

Consider an ensemble of configurations specified by 1
Z e
−H[s], where H contains all (microscopic)

couplings, fields, ... between spins.
All these configurations (1d for simplicity) have statistical weight e−H[s] relative to each other.

↑↓↑↓↑↑↓↑↓↑↑↑
↓↑↑↑↓↓↑↓↓↓↑↑
↓↑↑↓↑↓↓↓↑↑↓↑
↑↑↓↑↑↓↓↑↓↑↑↓

We can label these 2N configurations s1, s2, s3, . . . with relative weights in equilibrium e−H[s1], e−H[s2], e−H[s3], . . ..
Consider disregarding a subset of the spins, e.g. every second spin:

↑ · ↑ · ↑ · ↓ · ↓ · ↑ ·
↓ · ↑ · ↓ · ↑ · ↓ · ↑ ·
↓ · ↑ · ↑ · ↓ · ↑ · ↓ ·
↑ · ↓ · ↑ · ↓ · ↓ · ↑ ·

This list contains only 2N/2 configurations. The relative weights of one of these configurations follows
from combining the weights of all the configurations in the first list which correspond to the given
configuration in the second (these differ only in the spins which were disregarded in going from the
first list to the second).

However, the second list, and the corresponding statistical weights, can also be regarded as a
statistical ensemble in its own right, that is, a new ensemble of spins s′, whose statistical weights
are described by a new Hamiltonian H′[s′], with new couplings, fields etc.

The big question is: Is there a physical system corresponding to the new configuration that is a
Hamiltonian H′[s′] such that the new relative weights are e−H

′[s′]? H′ describes the original system
on a length scale twice the original lattice spacing.
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We can, at least in principle, construct H′[s′] exploiting that ”disregarding” degrees of freedom is
equivalent to summing over them in the Boltzmann measure:

e−H
′[s′] :=

∑
subset of spins

e−H[s] ⇒ Z ′ = Z

This procedure can be repeated, yielding successive descriptions of the original system on increasing
length scales. It is convenient to rescale the system at each step, resulting in a new system with
half the number of degrees of freedom and new couplings between them. The behaviour of the new
system on length scales l′ is the same as the behaviour of the old system on length scales l.

The behaviour of couplings J under iteration of these steps gives information about the large-scale
behaviour of the original system. If J, J ′, J ′′, ... → ∞, we are in the low-T phase. If J, J ′, J ′′ → 0
in a high-T phase.

5.2 Three examples

5.2.1 1d Ising model

This is a pedagogical example since we already have an exact solution. However, here RG-analysis
by decimation can be applied directly.

The original Hamiltonian is H[s] = −J
∑

i sisi+1 with periodic boundary conditions. The Boltz-
mann factor can be written as e−H[s] =

∏
i e
Jsisi+1 = eJs1s2eJs2s3 ...

To construct e−H
′[s′], take s′1 = s1, s

′
2 = s3, ... and sum over s2, s4, ....

Writing eJs1s2 = cosh J(1 + s1s2 tanh J) for s1s2 = ±1 with x = tanh J results in

e−H[s] = cosh J(1 + s1s2x) cosh J(1 + s2s3x) cosh J(1 + s3s4x)... (5.1)

⇒ e−H
′[s′] =

∑
s2,s4,...=±1

e−H[s] = 2 cosh2 J(1 + s1s3x
2)2 cosh2 J(1 + s3s5x

2)... (5.2)

=
∏
i

2 cosh2 J

cosh J ′
cosh J ′(1 + s′is

′
i+1x

′) =
2 cosh2 J

cosh J ′
e−J

′∑
i s
′
is
′
i+1 (5.3)

for the sum over s2 stems only from even powers of s2 here. We see that the couplings in H′[s′] are
given by

x′ = x2 (5.4)

or tanh J ′ = tanh2 J

⇒ J ′ = artanh(tanh2 J) (5.5)

The new Hamiltonian is

H′[s′] = −N ′ ln
(

2 cosh2 J

cosh J ′

)
− J ′

∑
i

s′is
′
i+1 (5.6)

The coupling behaves as

x = tanh J ≡ tanhβJphys =

{
→ 0 T →∞⇔ βJphys → 0
→ 1 T → 0⇔ βJphys →∞

(5.7)

Thus, after many such decimation steps we arrive at

x(∞) =

{
0 0 ≤ x < 1
1 x = 1

(5.8)
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Figure 5.1: RG-flow of the Ising model in 1d (left) and 2d (right). You can easily see that the 1d
model has only one stable fixed point. The 2d model has to stable and one unstable fixed
point. This implies the existence of a phase transition.

If we start at exactly x = 1, we will stay there, otherwise, we will go to x = 0. This RG-flow of the
coupling constant implies that at increasing length scales, the system looks increasingly disordered.
There are two fixed points which map couplings J onto themselves. x = 0 is a stable fixed point,
x = 1 is an unstable fixed point.

At any temperature T > 0, the system is on long scales described by x(∞) = 0. Neighbouring
spins (in the original model those can be far apart) are uncorrelated. Thus, we can conclude from
RG alone that the 1d Ising model has no finite temperature phase transition.

The correlation length can also be calculated by RG arguments. The correlation length is un-
changed under decimation alone since the statistics of remaining spins is unchanged. Under rescaling
of the system the correlation length ξ is halved so ξ(J ′) = ξ(J)/2. Rewritten in terms of x:

ξ(x2) =
1

2
ξ(x)

This functional equation is solved by the function

ξ ∝ 1

lnx
=

1

ln tanhJ
(5.9)

recovering the result of the exact calculation.

5.2.2 2d Ising model

The Ising model in two dimensions is of course much harder and also less suited for decimation.

The key difference to the 1d case is that the RG flow keeps generating new types of couplings, RG
flow equations (like x′ = x2) do not close.

In 1d, we have at low temperature J ′ ≈ J 〈s2〉s1,s3=1 ≈ J , in 2d, we have J ≈ 2J 〈s2〉s1,s3=1 ≈ 2J .

Hence, the J = ∞, x = 1, T = 0-fixed point is locally stable in 2d. That means there must be
a third, unstable fixed point. At a fixed point, the correlation length is either 0 or ∞ (the only
solutions of ξ(J) = ξ(J)/2).

This new, unstable fixed point describes the critical behaviour of the 2d Ising model. Temperatures
above Tc flow into the T =∞ fixed point, temperatures below Tc into the T = 0 fixed point.

5.2.3 The Gaussian model

Consider the Landau-Ginzburg model, keeping only the quadratic terms (m-component in direction
of the field):

Z =

∫
Dm(x) exp

{
−
∫

ddx

(
1

2
tm2(x) +

k

2
(∇m)2 − hm(x)

)}
(5.10)
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Fourier transform:

mq =
∫

ddxm(x)e−iq·x

m(x) = 1
Ld

∑
qmqe

iq·x

The thermodynamic limit m(q) = L−dmq gives us:

m(q) =
∫

ddxm(x)e−iq·x

m(x) =
∫ ddq

(2π)d
m(q)eiq·x

Terms in the action:∫
ddxm2(x) =

∫
ddx

∫
ddqddq′

(2π)2d
ei(q+q′)·xm(q)m(q′ =

∫
ddqddq′

(2π)d
δ(q+q′)m(q)m(q′) =

∫
ddq

(2π)d
|m(q)|2

∫
ddx(∇m)2 =

∫
ddqddq′

(2π)d
δ(q + q′)(iq)(iq′)m(q)m(q′) = −

∫
ddq

(2π)d
q2|m(q)|2∫

ddxm(x) = m(q = 0)

Plugging this into equation 5.10 yields the Fourier transform of the partition function:

Z =
∏

q

(
V −1/2

∫
dmq

)
exp

{
−V

∑
q

(
t+kq2

2

)
|mq|2 + V hmq=0

}
(5.11)

cont.lim.→
∫ Λ

0 Dm(q) exp
{
−
∫ ddq

(2π)d

(
t+kq2

2

)
|m(q)|2 + hm(0)

}
(5.12)

where we went into the continuum limit and defined Λ = 1/a as an ultra-violet cutoff, originating
from the microscopic lattice spacing (Brillouin zone). The different q-modes do not couple to each
other, i.e. there are no m(q)×m(q′) terms in the action (except q = −vectq′).

Now we carry out one RG step in three separate developments

1. ”coarse-graining”: integrate out short-wavelength degrees of freedom (e.g. every second spin
in the 1d Ising model)

2. ”rescaling”: rescale the system to restore the microscopic cutoff (corresponds to ↑ · ↑ · ↑→↑↑↑,
restoring the lattice spacing)

3. ”renormalization”: renormalize the fields, keeping a particular term in the Hamiltonian con-
stant

step 1 Short-length interaction corresponds to high frequencies. So, we integrate out all frequencies
between Λ/b and Λ. In d dimensions, this is a momentum-shell. We write:

Z =

∫
Dm<(q) exp

{
−
∫ Λ/b

0

ddq

(2π)d

(
t+ kq2

2

)
|m<(q)|2 + hm<(0)

}

×
∫
Dm>(q) exp

{
−
∫ Λ

Λ/b

ddq

(2π)d

(
t+ kq2

2

)
|m>(q)|2

}

The integral over ”fast” or ”short-range” degrees of freedom m> is

=
∏

Λ/b<q<Λ

√
2πV

t+ kq2
× exp

{
−1

2

∫ Λ

Λ/b

ddq

(2π)d
ln(t+ kq2)

}
=: e−V βfb(t,k) (5.13)
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Thus, after the first step of renormalization, the partition function is:

Z =

∫
Dm(q) exp

{
−
∫ Λ

0

ddq

(2π)d

(
t+ kq2

2

)
|m(q)|2 + hm(0)

}
(5.14)

=

∫
Dm<(q) exp

{
−
∫ Λ/b

0

ddq

(2π)d

(
t+ kq2

2

)
|m<(q)|2 + hm<(0)

}
× e−V βfb(t,k)(5.15)

step 2 Rescaling the system x′ = x/b in real space is equivalent to a change of variable q′ = bq in
momentum space. Additionally, we introduce the new fields m̃(q′) = m<(q):

Z ∝
∫
Dm̃(q′) exp

{
−
∫

ddq′

(2π)d
b−d

(
t+ kb−2q′2

2

)
|m̃(q′)|2 + hm̃(q′ = 0)

}
× e−V βfb

(5.16)

step 3 Renormalize the fields m′ = m̃/z:

Z ∝
∫
Dm′(q′) exp

{
−
∫ Λ

0

ddq′

(2π)d
b−dz2

(
t+ kb−2q′2

2

)
|m′(q)|2 + zhm′(q′ = 0)

}
×e−V βfb

(5.17)
This partition function can be considered the partition function of a new system with new
couplings.

t′ = b−dz2t

k′ = b−d−2z2k

h′ = zh

With this definition of t′, k′, h′, the partition function of the new system takes on the same
form as the partition function of the old system. In technical language, the Gaussian model is
renormalizable.

It is convenient to choose z such that k′ = k, so spatial fluctuations do not change their
variance under steps 1-3: z2 = bd+2 ⇒ z = b1+d/2. Then, the couplings are:

t′ = b2t (5.18)

k′ = k (5.19)

h′ = b1+d/2h (5.20)

The system has a fixed point at t∗ = 0, h∗ = 0. Since b > 1, the fixed point is unstable: small
deviations in t, h from t∗, h∗ grow under successive RG-steps.

Remarkably, the behaviour of the model near the critical point is entirely determined by the flow
of the coupling constants. We begin with the correlation length, obeying

ξ(t, h) = bξ(t′, h′) = bξ(b2t, b1+d/2h)

Choose b such that b2t = 1. Then b = t−1/2 and

ξ(t, h) = t−1/2ξ(1, t−1/2−d/4h)
h=0∝ t−1/2 ≡ t−ν (5.21)

with the critical exponent ν = 1/2.
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• Let us have a look at the magnetization

m(t, h) =
1

V

∂ lnZ(t, h)

∂h

=
1

bdV ′
∂h′

∂h

∂ lnZ ′

∂h′

=
1

bdV ′
1

b−1(+d/2)

∂ lnZ ′

∂h′
= b1+d/2−d

(
1

V ′
∂ lnZ ′

∂h′

)
= b1−d/2m(t′, h′) = b1−d/2m(b2t, b1+d/2h)

b2t=1
= t−

1−d/2
2 m(1, t−1/2−d/4h)

h=0∝ t−1/2+d/4 = tβ

The critical exponent is β = −1/2 + d/4
d=3
= (−2 + 3)/4 = 1/4.

• For the susceptibility, we yield

χ(t, h) =
∂m

∂h
=

1

V

∂2 lnZ

∂h2

= b−d(b1+d/2)2

(
1

V ′
∂2 lnZ ′

∂h′2

)
= b2χ(t′, h′) ∝ t−1 = t−γ

The critical exponent is γ = 1.

• The heat capacity is given by

c(t, h) =
1

V

∂2 lnZ

∂t2
= b−d(b2)2

(
1

V ′
∂2 lnZ ′

∂t′2

)
= b4−dc(t′, h′) ∝ t−

4−d
2 = t−α

with the critical exponent α = 4−d
2

d=3
= 1/2.

• Finally, we want to determine the field dependence of the magnetization at t = 0. Recapitulate

m(t, h) = b1−d/2m(b2t, b1+d/2h)

Choosing b now such that b1+d/2h = 1, we get b = h
1

1+d/2 and

m(t, h) = h
− 1−d/2

1+d/2m
(
h
− 2

1+d/2 t, 1
)

t=0∝ h
− 1−d/2

1+d/2 = h1/δ

with a critical exponent δ = d/2+1
d/2−1

d=3
= 5.

Table 5.1 sums up these exponents and compares them with experiment and other methods.

Compared to the Landau-Ginzburg functional (3.4) the Gaussian model of course lacks a key
term, the quartic m4(x). The behaviour of the couplings of the LG-hamiltonian can be worked out
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experiment MF Gaussian ε1 ε5

α 0 - 0.14 0 1/2 1/3 0.109
β 0.32 - 0.39 1/2 1/4 1/3 0.327
γ 1.3 - 1.4 1 1 1/4 1.238
δ 4 - 5 3 5 4 4.786
ν 0.6 - 0.7 - 1/2 1 0.631

Table 5.1: The table sums up the values of the critical exponents for different methods. ε corresponds
to the expansion parameter of ε-expansion, a method of pertubative renormalization group.

in detail, see for instance Kardar. Here we restrict ourselves to considering some power of m as a
small perturbation to Gaussian model

un

∫
ddxmn(x) (5.22)

We ask how this term behaves under rescaling x′ = x/b and renormalization m′ = zm

unb
dz−n

∫
ddx′m′n(x′) (5.23)

Choosing z again so that bd−2z−2 = 1 (to keep the coupling constant of (∇m)2 unchanged), leads
to

u′n = bd
(
bd/2−1

)−n
un (5.24)

u′4 = bd
(
b4−2d

)
u4 = b4−du4 (5.25)

For d > 4, the coefficient of the m4-term decreases under renormalization, for d < 4 it increases.
In the latter case, the treatment of the m4-term as a pertubation is inherently unstable. One speaks
of the m4-term as a relevant (irrelevant) term in the Hamiltonian for d < 4 (d > 4).

5.3 General Framework of GR

In the last chapter, we saw that all critical properties of a system can be described by the recursion
relations t′ = t′(t, k, h) etc. We will outline a more formal procedure and emphasize this.

Assume a set of parameters {k} that describe the same system.

• Of course we will choose b > 1.

• The renormalized parameters {k′} are functions of the original ones {k}. I.e. They define a
mapping {k′} = Rb({k}) in parameter space.

• The mapping {k∗} = Rb({k∗})defines a fixed point.

We can now investigate the stability of a fixed point by linearizing the recursion relation in his
vicinity:

k′a − k∗a =
∑
b

Tab(kb − k∗b ) (5.26)

with Tab = ∂k′a
∂kb

∣∣∣
k=k∗

(Taylor expansion).
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Now, we diagonalize the Matrix Tab to get the eigenvalues:∑
a

φiaTab = λiφib = byiφib

Scaling variables ui ≡
∑

a φ
i
a(ka − k∗a) and transformation them yields:

u′i =
∑
a

φia(k
′
a − k∗a) =

∑
a

φia
∑
b

Tab(kb − k∗b ) =
∑
c

byiφic(kc − k∗c ) = byiui (5.27)

The eigenvalues are used to classify the parameters:

• yi > 0, ui relevant

• yi < 0, ui irrelevant

• yi = 0, ui marginal

Universality is the prediction of RG that the thermodynamical properties of a system near a fixed
point depend only on a small number of features and are not sensitive to the microscopic properties of
this system. All systems that flow onto the same fixed points are called to be in the same universality
class.

We will now define the reduced free energy (per spin): f = − 1
N lnZ. Then

Z = e−Nf({k})

The partition function Z of a system is invariant under RG

Z = Tr {s}e
−H[s] = Tr {s′}e

−H′[s′] = Z ′

Thus,
Z ′ = const× e−N ′f ′({k})

with N ′ = b−dN with
f({k}) = g({k}) + b−df({k′})

g({k}) represent the ”analytic first modes“ and

f({k}) = b−df({k′})

defines the singular behavior around fixed point.
For the universality class of the Ising model ut, uh are relevant (yt, yh > 0) and

f(ut, uh) = b−df( u′t︸︷︷︸
=bytut

, u′h) = ... = b−ndf(bnytut, b
−nyhuh) (5.28)

We choose the parameters such that bnytut = 1 = ut0. Self-consistency requires that ut, uh do not
grow out of the linear approximation.

⇒ f(ut, uh) = |ut|
d
yt f(1, |ut|

− yh
yt uh)

and f is a function of one variable only.
Assume that we are close to the fixed point and linearize ut, uh according to previous analysis:

ut =
t

t0
+O(t2, h2) (5.29)

uh = +O(th) (5.30)
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⇒ f(t, h) =

∣∣∣∣ tt0
∣∣∣∣d/yt Φ

(
h/h0

|t/t0|yh/yt

)
(5.31)

which is a funtion in one variable x = h/t∆ with ∆ = yh/yt.
From this equation, we can calculate the critical exponents: We know that the correlation length

will change under renormalization as

ξ(k) = bξ(k′) = ... = bnξ(k(n)) ∝ |ut|−1/yt ∝ |t|−1/yt ⇒ ν =
1

yt
(5.32)

specific heat
∂2f

∂t2
|h=0 ∝ |t|

d
yt
−2 ⇒ α = 2− d

yt
(5.33)

magnetization
∂f

∂h
|h=0 ∝ |t|

d−yh
yt ⇒ β =

d− yh
yt

(5.34)

susceptibility
∂2f

∂h2
|h=0 ∝ |t|

d−2yn
yt ⇒ γ =

2yn − d
yt

(5.35)

magnetization at Tc as a function of h

M =
∂f

∂h
=

∣∣∣∣ tt0
∣∣∣∣
d−yh
yt

Φ′
(

h/h0

|t/t0|yh/yt

)

Look at Φ′(x). M is finite for t→ 0. Thus, x
d
yh
−1

=
(
|t|−yh/yt

) d
yh
−1

= |t|−
d−yh
yt

⇒M ∝ h
d
yh
−1 ⇒ δ =

yh
d− yh

(5.36)

You can proof the following scaling relations:

α+ 2β + γ = 2

α+ β(1 + δ) = 2

that are valid for all system with a single relevant thermal eigenvalue and a single relevant symmetry
breaking field.
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6 Disordered Systems

Much of physics concerns homogeneous systems:

• homogeneous and isotropic space in classical mechanics and electrodynamics

• regular lattices (crystals) in solid state physics

• ferromagnets (all interactions between neighboring spins are of the same kind) in statistical
mechanics

Common tools and concepts to treat homogeneous systems are:

• inverse space methods: Fourier transform

• statistical mechanics: transfer matrix

• mean field: each degree of freedom is in the same ”environment“ as all the others

Frequently, ”homogeneity“ and ”order“ are valid idealizations. A real crystal may have defects,
impurities etc. but it may still be possible to use the perfect lattice as starting point for a pertubation
analysis. However, there are systems with strong disorder where this approach is not possible:

• folding of a heteropolymer

• disordered magnetic system: ”spin glasses“.

– magnetic impurities are placed in random positions on lattice sites

– different distances between magnetic impurities lead to both ferromagnetic and antifer-
romagnetic bonds

– ground state, excited states, thermodynamics depends on the disordered interactions

• amorphous solids: glasses, e.g. SiO2 do not form a lattice many thermal and optical properties
depend on the (disordered) long-range structure

• granular matter (sand): packings depend on the (disordered) particle shapes

• neural networks (brain): behaviour depends on (disordered) interaction between neurons

• economics

• theoretical computer science

It turns out that these systems share some aspects of their behaviour. This has given rise to a
”statistical mechanics of disordered systems“. The common themes of disordered systems are

• ”frozen“ low-temperature regime: each variable is constrained by configurations of all other
variables ⇒ What is the order parameter?

47



• frustration leading to many metastable states: for a ferromagnet, si = 1∀i (or −1) satisfies all
interactions in a plaquette. In a system where all couplings are positive, only one negative, at
least one bond must be unsatisfied (frustrated). This situation arises wherever

∏
plaquette Jij

is negative. In low-energy configuration, some bond will be unsatisfied. There is often a large
number of ways of placing the unsatisfied bonds which leads to an unstable state. A rough
energy landscape can lead to complex low-T behaviour.

– slow equilibration as the system spends long time in metastable states

– non-trivial equilibrium state with contributions from many different valleys

6.1 A mean-field model of spin glasses

In spin glasses not all bounds have the same couplings. This leads to interesting properties. Mezard
et al. give an easy example: Consider three characters (A,B,C). In a tragedy there is a fight between
two groups and the characters have to choose sides. If all characters like each other, the decision is
easy: all will choose the same side. If A and B are friends and both do not like C, A and B will form
one group and C the other. But if A,B,C all hate each other, frustation follows because enemies
have to fight on the same side. If we assign a number JAB to each couple, JAB = +1 denoting that
A and B are friends, JAB = −1 that they are enemies, the condition for frustration is

JAB · JBC · JCA = −1

In our spin glass model, we choose Ising spin si = ±1 instead and have a Hamiltonian

H = − 1√
N

∑
(i,j)

Jijsisj −
∑
i

hisi (6.1)

where the first sum is over all pairs i < j and Jij are drawn randomly, independently from a Gaussian
distribution with mean 0 and variance 1.

This spin-glass model was proposed by D. Sherrington and S. Kirkpatrick in 1975 and solved by
Giorgio Parisi in 1979. The proof of the correctness of this solution was done by Tallagrand in 2005!

For the Weiss ferromagnet, we use the magnetization m as order parameter and have a symmetry
breaking through a magnetic field h: If there is a freezing transition, what would be the order
parameter? The symmetry breaking for ferromagnet

lim
h+→0+

lim
N→∞

1

N

∑
i

〈si〉h+ = m+

For spin glasses, the approach is quite similar:

lim
ε→0

lim
N→∞

1

N

∑
i

〈si〉2εσ = qEA

with hi = εσi and σi ∈ ±1.
As in the ferromagnet, we expect 〈si〉 to be zero in the absence of a magnetic field and at high

temperatures and to be different from zero for low temperatures. Nevertheless, as the couplings Jij
are all different, 〈si〉 will be sometimes positive, sometimes negative. We therefore decide to square
it. The parameter is named after its inventors S. Edwards and P. Andersen.

There are several possibilities to investigate the SK-model:

• numerical simulation (exercise)

• set up self-consistent equations for mi, given Jij .

• model the disorder by random variables and average over the Jij .
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6.1.1 Modeling the disorder by random variables

So far, we considered a specific choice of Jij . It turns out, different realizations of Jij have the same
thermodynamics.

If an intensive quantity is self-averaging, 1
N 〈H〉β,Jij = 〈〈〈H〉β,Jij 〉〉Jij .

Look at the different averages:

〈〈〈H〉β,Jij 〉〉Jij = 〈〈Tr se
−βH[s,J ]H

Tr se−βH[s,J ]
〉〉
Jij

= 〈〈−∂β lnZ(β, J)〉〉Jij
= −∂β 〈〈lnZ(β, J)〉〉Jij
= −∂β 〈〈ln Tr se

−βH〉〉

There is a distinction between si and Jij variables: Jij in numerator and denominator are the same,
Jij average after lnZ is taken. si are averaged in both numerator and denominator independently,
si average is taken inside the ln-function.

6.1.2 The ”annealed“ average

We will first reverse the order of averaging and compute ln 〈〈Z〉〉J (instead of 〈〈lnZ〉〉J). As Jij is
a Gaussian random variable, we can use the following disorder average, as well as the know phase
space average and Boltzmann factor:

Disorder average
∏
i<j

∫ dJij√
2π
e−

1
2

∑
i<j J

2
ij (6.2)

Phase space average
∏N
i=1

∑
si=±1 (6.3)

Boltzmann factor e
− β√

N

∑
i<j Jijsisj (6.4)

Thus, we get

〈〈Z〉〉J = 〈〈Tr e−βH〉〉 (6.5)

=

N∏
i=1

∑
si=±1

∏
i<j

[∫
dJij√

2π
e
− 1

2
J2
ij−

β√
N
Jijsisj

]
(6.6)

=
N∏
i=1

∑
si=±1

∏
i<j

[
e

1
2
β2

N
s2i s

2
j

]
(6.7)

=

N∏
i=1

∑
si=±1

e
1
2
β2

N
N(N−1)

2
×1 (6.8)

= 2Ne
1
4
β2(N−1) (6.9)

As ln 〈Z〉 ≥ 〈lnZ〉 due to the concavity of the logarithm, the annealed average gives a upper
bound on the quenched average.

6.1.3 The ”quenched“ average

We will now discuss the ”quenched average“, where we assume that the couplings Jij are constant
on time scales over which the si fluctuate.
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We expand the logarithm

lnZ = lim
n→0

Zn − 1

n
= lim

n→0
∂nZn (6.10)

The idea is to calculate 〈〈Zn〉〉 for integer n and hope to take n→ 0 successfully at the end. This
is called ”Replica-Trick“.

〈〈Zn〉〉J = 〈〈 Z︸︷︷︸
a=1

× Z︸︷︷︸
a=2

×Z × ...〉〉 (6.11)

= 〈〈Tr s1e
−βH(J,s1) × Tr s2e

−βH(J,s2) × ...〉〉J (6.12)

(6.13)

Again, we have:

Disorder average
∏
i<j

∫ dJij√
2π
e−

1
2

∑
i<j J

2
ij (6.14)

Phase space average
∏n,N
a=1,i=1

∑
si=±1 (6.15)

Boltzmann factor e
− β√

N

∑
i<j,a Jijs

a
i s
a
j (6.16)

Then,

〈〈Zn〉〉J =
∏

a=1,i=1

∑
sai =±1

∏
i<j

[∫
dJij√

2π
exp

{
−1

2
J2
ij −

β√
N
Jij
∑
a

sai s
a
j

}]
(6.17)

=
∏
a=1

∑
sai

exp

1

2

β2

N

∑
i<j

∑
a,b

sai s
b
is
a
j s
b
j

 (6.18)

using (
∑

a s
a
i s
b
j)

2 =
∑

a,b s
a
i s
b
is
a
j s
b
j

After taking the disorder average, we arrive at an effective model without disorder but with cou-
plings between the replica.

The i < j summation is awkward∑
i<j

sai s
b
is
a
j s
b
j =

1

2

∑
i,j

sai s
b
is
a
j s
b
j −

1

2

∑
i

sai s
b
is
a
i s
b
i

=
1

2

(∑
i

sai s
b
i

)2

− 1

2

∑
i

1

⇒ exp

 β2

2N

∑
i<j

∑
a,b

sai s
b
is
a
j s
b
j

 = exp

 β2

4N

∑
a,b

(∑
i

sai s
b
i

)2

− β2

4N

∑
i,a,b

1


We will now perform a HS-trafo ∫

dq√
2π
e−

1
2
q2+xq = e

1
2
x2

(6.19)

yielding

exp

 β2

4N

∑
a,b

(∑
i

sai s
b
i

)2
 =

∏
a<b

∫
dqab√

2π/Nβ2
exp

{
−Nβ

2

2

∑
a<b

q2
ab + β2

∑
a<b

qab
∑
i

sai s
b
i +

β2n

4
N

}
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Collecting all terms, we have finally

〈〈Zn〉〉 =
∏
a<b

∫
dqab√

2π/Nβ2
e−

Nβ2

2

∑
a<b q

2
ab+

β2n
4
N
∏
a,i

∑
sai

eβ
2
∑
a<b qab

∑
i s
a
i s
b
i

︸ ︷︷ ︸[∏
a

∑
sa
eβ

2 ∑
a<b qabsasb

]N
(6.20)

=
∏
a<b

∫
dqab√
2π/Nβ

exp{−βNnfeff({qab})} (6.21)

with an effective free energy function

−nβfeff({qab}) = −β
2

2

∑
a<b

q2
ab + β2n/4 + ln(

∏
a

∑
sa=±1

eβ
2
∑
a<b qabsasb) (6.22)

comparable to the Weiss ferromagnet.
To take the limit of n → 0, we need to simplify our approach to the saddle point. We make the

assumption that a saddle point is ”replica symmetric“ meaning

qab = q ∀a < b

This leads to
∑

a<b q
2
ab = n(n−1)

2 q2 → −n
2 q

2 for n→ 0 and

∏
a

∑
sa=±1

eβ
2
∑
a<b qabsasb =

∏
a

∑
sa=±1

exp


1

2
β2q

∑
a,b

sasb︸ ︷︷ ︸
(
∑
a s

a)2

−1

2
β2q

∑
a

(sa)2


HST
=

∫
dz√
2π
e−

1
2
z2
∏
a

∑
sa

enβ
√
qz

∑
a s

a
e−

1
2
β2qn

=

∫
Dz

[∑
s

eβ
√
qzs− 1

2
β2q

]n
=

∫
Dz
[
2 cosh(β

√
qz)e−

1
2
β2q
]n

=

∫
Dz (1 + n ln(2 cosh(β

√
qz)))− e

n
2
β2q +O(n2)

= exp

{
n

2
β2q + n

∫
Dz ln(2 cosh(β

√
qz))

}
+O(n2)

Thus,

−nβfeff(q) = n
β2

4
(1− q)2 + n

∫
Dz ln(2 cosh(β

√
qz))

Evaluating dfeff
dq = 0:

−β
2

2
(1− q) +

∫
Dz tanh(β

√
qz)

βz

2
√
q

= 0

Integration by parts yields:

q =

∫
Dz tanh2(β

√
qz)
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compare this with the Weiss ferromagnet m = tanh(βJm...)!
We find that

qsaddle
ab = 〈sasb〉 =

1

N

∑
i

〈sai sbi〉

This solution looks great but one problem is that we find an entropy < 0 at low temperature. For
that, something has to be wrong with our solution. Maybe, we caught an unstable saddle point.
Perhaps the whole replica symmetry ansatz is unstable and free energy f({qab}) is not a minimum
at qab for n→ 0.

Parisi came up with the idea of replica symmetry breaking by introducing block matrices of size
m.... With every step he gets better results, infinite steps solve the problem correctly.
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7 Diffusion and growth processes

We used the conditional probability

p(x, t+ ∆t|z, t) = [1− a(z, t)∆t] δ(x− z) + ∆tw(x, z) +O(∆t2)

to derive the master equation.

For a continuous state-space, this property leads to jumps (discontinuities) in the trajectory. Con-
sider a(z, t) = a = const. Divide a time interval T in many small intervals ∆t. The probability not
to jump away in a time interval ∆t is (1− a∆t), the probability not to jump away in the intervall T
is then (1− a∆t)T/∆t → e−aT . This means, the probability to make a jump at some time is = 1.

7.1 Fokker-Planck equation

Consider a continuous process

lim
∆t→0

1

∆t
p(x, t+ ∆t|z, t) = 0

for |x− z| > ε > 0 i.e. the probability for the final position x to be finitely different from z goes to
zero faster than ∆t goes to zero. The first moment can be written as

lim
∆t→0

1

∆t

∫
|x−z|<ε

dx (x− z) p(x, t+ ∆t|z, t) = A(z, t) +O(ε) (7.1)

which is called a ”drift“. The second moment is given by:

lim
∆t→0

1

∆t

∫
|x−z|<ε

dx (x− z)2 p(x, t+ ∆t|z, t) = B(z, t) +O(ε) (7.2)

which is called ”diffusion“. We could go on with higher orders but in diffusion processes, higher
moments vanish, e.g.

1

∆t

∣∣∣∣∣
∫
|x−z|<ε

dx(x− z)3p(x, t+ ∆t|z, t)

∣∣∣∣∣ ≤ 1

∆t

∫
|x−z|<ε

dx|x− z|(x− z)2p(x, t+ ∆t|z, t)

<
ε

∆t

∫
|x−z|<ε

dx(x− z)2p(x, t+ ∆t|z, t)

∆t→0→ εB(z, t) = O(ε)

Hence, knowing drift and diffusion are sufficient to characterize the system.

To derive the equation of motion of p(x, t) consider the expectation value∫ ∞
−∞

dx p(x, t|y, t′)f(x)
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of some function f(x) which is twice continuously differentiable.

∂t

∫
dx f(x) p(x, t|y, t′) = lim

∆t→0

1

∆t

{∫
dxf(x)

[
p(x, t+ ∆t|y, t′)− p(x, t|y, t′)

]}
= lim

∆t→0

1

∆t

{∫
dx

∫
dzf(x)p(x, t+ ∆t|z, t)p(z, t|y, t′)

−
∫

dzf(z)p(z, t|y, t′)
}

Let us expand f(x) in a Taylor series around z

f(x) = f(z) +
df

dz
(x− z) +

1

2

d2f

dz2
(x− z)2 + |x− z|2R(x, z)

where we know that R(x, z)→ 0 as |x− z| → 0. Inserting this yields:

= lim∆t→0
1

∆t

{∫
dx
∫

dz
[

df
dz (x− z) + 1

2
d2f
dz2 (x− z)2 + |x− z|2R(x, z) + f(z)

]
× p(x, t+ ∆t|z, t) p(z, t|y, t′)−

∫
dz f(z) p(z, t|y, t′)

}
+O(ε)

Terms 1 and 2 give: ∫
dz

(
A(z)

df

dz
+

1

2
B(z)

d2f

dz2

)
p(z, t|y, t′) +O(ε)

Term 3 goes to zero for ε→ 0:∣∣∣∣ 1

∆t

∫
dx|x− z|2R(x, z)p(x, t+ ∆t|z, t)

∣∣∣∣ ≤ 1
∆t

∫
dx|x− z|2p(x, t+ ∆t|z, t) max|x−z|<εR(x, z)

∆t→0→ [B(z, t) +O(ε)]×max|x−z|<εR(x, z)
ε→0→ 0

Terms 4+5 cancel:

lim
∆t→0

∫
dx p(x, t+ ∆t|z, t) = O(ε)

Thus, we get for ε→ 0:

∂t

∫
dz f(z) p(z, t|y, t′) =

∫
dz

[
A(z)

df

dz
+

1

2
B(z)

d2f

dz2

]
p(z, t|y, t′)

P.I.
= −

∫
dzf(z)

∂

∂z

(
A(z, t) p(z, t|y, t′)

)
+

1

2

∫
dzf(z)

∂2

∂z2

(
B(z, t) p(z, t|y, t′)

)
As f(z) is arbitrary, we get the Chapman-Kolmogorov differential equation

∂tp(x, t|y, t′) = − ∂

∂x

(
A(x)p(x, t|y, t′)

)
+

1

2

∂2

∂x2

(
B(x)p(x, t|y, t′)

)
(7.3)

Since p(x, t) =
∫

dx0p(x, t|x0, t0)p0(x0, t0) and equation 7.3 is linear in p(x, t|y, t′), we get the
Fokker-Planck equation:

∂tp(x, t) = − ∂

∂x
(A(x)p(x, t)) +

1

2

∂2

∂x2
(B(x)p(x, t)) (7.4)

Some properties are:
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• probability is preserved:

∂t

∫ ∞
−∞

dx p(x, t) =

∫
dx

∂

∂x

[
−A(x)p(x, t) +

1

2

∂

∂x
(B(x)p(x, t))

]
= [...]∞−∞ = 0

as p(x, t) = 0 at the boundaries.

• We can define a probability current from ∂tp = ∂xj(x, t):

j(x, t) ≡ A(x)p(x, t)− 1

2
∂x(B(x)p(x, t))

Example: Consider A(x, t) = 0 and B(x, t) = 1 (”Wiener process“). This leads to

∂tp(x, t|x0, t0) =
1

2
∂2
xp(x, t|x0, t0) (7.5)

With the initial condition p(x, t0) = δ(x− x0) we can use the Fokker-Planck equation

∂tp(x, t) =
1

2
∂2
xp(x, t) (7.6)

Fourier transform yields

φ(k, t) =

∫
dxeikxp(x, t)

∂tφ(k, t) =

∫
dxeikx

(
1

2
∂2
x

)
p(x, t) = −1

2
k2φ(k, t)

Integration gives

φ(k, t) = e−
1
2
k2(t−t0)φ(k, t0)

and φ(k, t0) = eikx0 from initial conditions.
Inverse Fourier transform leads us to the result:

p(x, t) =
1

2π

∫
dke−ikxe−

1
2
k2(t−t0)eikx0 (7.7)

=
1√

2π(t− t0)
e
− (x−x0)2

2(t−t0) (7.8)

This is a Gauss shaped distribution. Initially sharp peaked, it spreads in time, as you can see in
figure 7.1.

Trajectories generated by this propagator p(x, t|x0, t0) are continuous for

lim
∆t→0

1

∆t

∫
|x|>ε

dx
1√

2π∆t
e−

1
2
x2

∆t
x′=x/

√
∆t

= lim
∆t→0

1

∆t

∫
|x′|>ε/

√
∆t

dx′√
2π
e−

1
2
x′2 = 0

as ε/
√

∆t→∞.
But with probability one, trajectories are not differentiable:

Pr

(∣∣∣∣x(t+ ∆t)− x(t)

∆t

∣∣∣∣ > k

)
=

∫
|x|>k∆t

dx√
2π∆t

e−
1
2
x2

∆t

= 2

∫ ∞
k∆t

dx√
2π∆t

e−
1
2
x2

∆t

x′=x/∆t
= 2

∫ ∞
k
√

∆t

dx′√
2π
e−

1
2
x′2 ∆t→0→ 1

This means, though the propagator is continuous, the trajectories are not differentiable at any
point. As ∆x ∼

√
∆t, typical velocities scale as ∆x

∆t ∼
1√
∆t

and become infinite large for small ∆t.
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x0

t-t0 = 0.1
t-t0 = 1.

t-t0 = 10.

Figure 7.1: Wiener process: The figure shows the spreading of an initially sharp peaked distribution.

7.2 Stochastic differential equations

For the master equation, we specified w(x, x′). The equation depends on the full w(x, x′) but we
knew how to generate sample paths.

For continuous processes, the first two moments of the propagator were sufficient. But how to
generate trajectories?

Langevin equation:

∂tx = a(x(t)) + b(x(t))ξ(t) (7.9)

where ξ(t) is a random (”stochastic“) function, a(x(t)) denotes the drift, b(x(t)) the diffusion. Two
properties of ξ(t) are:

• 〈ξ(t)〉ξ = 0 ∀t

• 〈ξ(t)ξ(t′)〉ξ = δ(t− t′)

Apparently, 〈ξ2〉ξ → ∞. The infinite variance of ξ(t) is key to diffusion. For the Wiener process
(a(x) = 0, b(x) = 1)

∂tx = ξ(t)⇒ x(t) =

∫ t

0
ds ξ(s)

It follows:

〈x(t)〉ξ =

∫ t

0
ds 〈ξ(s)〉ξ = 0

〈x(t)2〉 = 〈
∫ t

0
ds

∫ t

0
ds′ ξ(s)ξ(s′)〉 =

∫ t

0
ds ds′ 〈ξ(s)ξ(s′)〉 =

∫ t

0
ds ds′ δ(s− s′) =

∫ t

0
ds = t

This shows that the infinite variance of ξ produces the correct variance of x.
Interpret equation 7.9 as difference equation

(xi+1 − xi) = ∆ta(xi) + b(xi)ξi∆t (7.10)

The variance of the second term is ( T∆t)b
2σ(ξ)(∆t)2. Thus, σ(ξ) has to be ∝ 1/∆t (and have an

infinite variance for ∆t→ 0).
ξ(t) with its infinite variance and no correlation remains a strange object. We investigate

W (t) =

∫ t

0
ds ξ(s)
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Assume this integral exists and is continuous. For some t′ > t, we split the integral:

W (t′) =

∫ t

0
ds ξ(s) +

∫ t′

t
ds ξ(s) = lim

ε→0

∫ t−ε

0
ds ξ(s) +

∫ t′

t
ds ξ(s)

Now, the second term is statistically independent of the first term. (W (t) is a Markov process.)

A(w0, t) = lim
∆t→0

〈w(t+ ∆t)− w0〉 = lim
∆t→0

1

∆t
〈
∫ t+∆t

t
ds ξ〉 = 0

B(w0, t) = lim
∆t→0

〈(w(t+ ∆t)− w0)2〉 = 1

This means, W (t) is a Wiener process, yet ξ(t) = dW
dt does not exist (W (t) is nowhere differentiable).

Thus, the Langevin equation must be interpreted in a difference form as equation 7.10 or in an integral
form

x(t)− x(0) =

∫ t

0
ds a(x(s), s) +

∫ t

0
ds ξ(s)b(x(s), s) (7.11)

7.2.1 Scaling of the Wiener process

Let us start with a Wiener process with explicit diffusion constant D/2:

∂tp(x, t) =
D

2
∂2
xp(x, t) (7.12)

Consider a simultaneous rescaling of length and time, x̃ = bx, t̃ = bzt.

x(x̃) =
x̃

b

t(t̃) =
t̃

bz

As well, ∂t = dt̃
dt

d
dt̃

= bz∂t̃, analogously for ∂x. We then yield:

bz∂t̃p̃(x̃, t̃) =
D

2
b2∂2

x̃p̃(x̃, t̃)

⇒ ∂t̃p̃(x̃, t̃) =
D

2
b2−z∂2

x̃p̃(x̃, t̃)

with p̃(x̃, t̃) = p(x(x̃), t(t̃)). D̃ = b2−zD is the new effective diffusion constant. For the choice
z = 2, D = D̃.

7.3 Growth of interfaces

Some examples are

• snow flakes

• ballistic deposition of molecules on a surface

• flame front as a 2d sheet of paper is burnt

• water (coffee?) on a table cloth

• 1d flux lines in a semiconductor
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Figure 7.2: One example for the ballistic deposition model. Particle A is released randomly and
sticks at the first site where it has an occupied nearest neighbor. Particle B can fall to
the ground.

7.3.1 A simple model: Ballistic deposition (BD)

The following growth models work a bit as tetris: We release a particle from a randomly chosen
point above the surface. In the BD-model with the nearest neighbor sticking rule, the particle sticks
to the first site along its trajectory that has an occupied nearest neighbor. This is demonstrated in
figure 7.2.

To describe the growth quantitatively, we introduce two functions:

• hi(t) denotes the height of the interface at time t and lattice site i. The average height is
given by

h(t) =
1

L

L∑
i=1

hi(t) (7.13)

• The standard deviation

w(t) =

√√√√ 1

L

L∑
i=1

(
hi(t)− h(t)

)2
(7.14)

characterizes the ”roughness“ of the surface.

Numerical experiments show that w is a function of the systemsize L and time t and scales

w(L, t) ∝
{

tβ t� tx
Lα t� tx

with tx ∝ Lz. This leads us to

w(L, t) ≈ LαΦ

(
t

Lz

)
with a function Φ that becomes constant for t � Lz and dominates otherwise (see figure 7.3).
This function can be fitted. However, the exponents are not independent: E.g. at t ≈ tx, we have
w ∝ tβx ∝ Lzβ and w ∝ Lα what implies α = zβ.

The existence of power laws and a scaling function strongly reminds us of RG!
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Figure 7.3: Growth of w with time for the BD-model. We can distinguish two regimes: For t � tx
we have a power law behavior, for t� tx we have saturation.

7.3.2 An even simpler model: Random deposition

Modify the BD rule so that a particle moves down until it touches a particle (or surface) below it.
Then, there are no correlations of hi(t) accross the columns. hi grows by 1 when a particle is dropped
above column i. The probability P (h,N) that a given column has height h after N particles have
been dropped follows a binomial distribution

P (h,N) =

(
N
h

)
ph(1− p)N−h

with p = 1/L, the probability that a given particle is released above a certain column.

Now, average height and surface roughness can be derived from the properties of the binomial
distribution as

h =

N∑
h=0

P (h,N)h = Np =
N

L
≡ t (7.15)

w2 = (h− h)2 = Np(1− p) =
N

L

(
1− 1

L

)
∝ t = t2β (7.16)

Such an exact solution is not always possible.

The Langevin equation for hi(t) is

∂thi(t) = Fi(t) + ξi(t) (7.17)

where fi(t) is the deterministic growth and ξi(t) some noise (that will determine the statistical
properties) with properties:

〈ξi(t)〉 = 0

〈ξi(t)ξj(t′)〉 = 2Dδijδ(t− t′)
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For a simple example Fi(t) = F , we get

hi(t) = Ft+

∫ t

0
ds ξ(s)

〈hi(t)〉 = Ft+

∫ t

0
ds 〈ξi(s)〉 = Ft

w2 =
1

L

∑
i

h2
i (t)−

(
1

L

∑
i

hi(t)

)2

︸ ︷︷ ︸
h

2

〈w2〉 =
1

L

∑
i

〈(
Ft+

∫ t

0
ds ξ(s)

)2
〉
− h2

=
1

L

∑
i

〈(∫ t

0
ds ξi(s)

∫ t

0
ds′ ξi(s

′)

)〉
=

1

L

∑
i

(∫ t

0
ds

∫ t

0
ds′ 2Dδ(s− s′)

)
= 2Dt ∝ t2β

what is the exact result from before. However, the Langevin equation is a flexible framework and
can accomodate cases for which no exact solution exists.

7.3.3 Random deposition with surface relaxation

Relaxation of the surface was ignored in the RD model. We try to construct a simple Langevin
equation including surface relaxation, compatible with the fundamental symmetries of the problem.

1. invariance under time translation t→ t+ δt.

2. invariance under translation in the growth direction h→ h+ δh.

3. invariance under translation, rotation, inversion in the plane perpendicular to the growth di-
rection x→ x+ δx, x→ Rx, x→ −x.

4. up/down symmetry of h about the surface mean h→ −h (F = 0).

In general, we would expect a Langevin equation

∂th(x, t) = terms in (x, t, h, h2, h3, ...,∇h, (∇h)2,∇2h, ...) + ξ(x, t)

but terms linear in x are incompatible with 3., t with 1., h-terms violate 2., ∇h violates 3., (∇h)2

violates 4. However, ∇2h-terms are surviving! The resulting growth-equation is (in lowest order) the
”Edwards-Wilkinson equation“

∂th(x, t) = ν∇2h(x, t) + ξ(x, t) (7.18)

The statistics of the ξ are the same as before but in a continuous form

〈ξ(x, t)〉 = 0

〈ξ(x, t)ξ(x′, t′)〉 = 2Dδ(t− t′)δ(x− x′)
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As the equation is linear in h, we will perform a Fourier transformation in space and time. Using

h(k, ω) =

∫
dx

∫
dt eikx−iωth(x, t)

we get

−iωh(k, ω) = −νk2h(k, ω) + ξ(k, ω)

and

h(k, ω) =
ξ(k, ω)

νk2 − iω
(7.19)

We now calculate:

〈ξ(k, ω)〉ξ =

∫
dx

∫
dt eikx−iωt 〈ξ(x, t)〉 = 0

〈ξ(k, ω)ξ(k′, ω′)〉ξ =

∫
dx dx′

∫
dt dt′ eikx+ik′x′−iωt−iω′t′ 〈ξ(x, t)ξ(x′, t′, )〉

= 2D

∫
dx

∫
dt eix(k+k′)−it(ω+ω′)

= 2D(2π)2δ(k + k′)δ(ω + ω′)

〈h(k, ω)h(k′, ω′)〉 =
〈ξ(k, ω)ξ(k′, ω′)〉

(νk2 − iω)(νk′2 − iω′)

=
2D(2π)2δ(k + k′)δ(ω + ω′)

(νk2 − iω)(νk′2 − iω′)

Inverse FT yields:

〈h(x, t)h(x′, t′)〉 =
D

2ν
|x− x′|Φ

(
ν|t− t′|
|x− x′|2

)
with the property that

Φ(u)

{
→ const u→∞
→ u1/2 u→ 0

(7.20)

that means at long times 〈h(x, t)h(x′, t′)〉 ∝ |x−x′| and at small times 〈h(x, t)h(x′, t′)〉 ∝ |t− t′|1/2
(w ∝ tβ with β = 1/4).

Scaling of the EW equation We perform a change of variables

x→ x̃ = bx

h→ h̃ = bαh

t→ t̃ = bzt

How does the EW-equation change?

b2−α∂t̃h̃(x̃, t̃) = νb2−α∂2
x̃h̃(x̃, t̃) + ...

What about the noise term ξ? Look at the autocorrelation

〈ξ(x, t)ξ(x′, t′)〉 = 2Dδ(x− x′)δ(t− t′)
⇒ 〈ξ(b−1x̃, b−z t̃)ξ(b−1x̃′, b−z t̃′)〉ξ = 2Dδ(b−1(x̃− x̃′))δ(b−z(t̃− t̃′))

= 2Db1+zδ(x̃− x̃′)δ(t̃− t̃′)

61



Figure 7.4: Origin of the non-linear term in the KPZ-equation

This motivates the definition

ξ̃(x̃, t̃)b
1+z

2 = ξ(b−1x̃, b−z t̃) (7.21)

and we can complete the EW-equation

bz−α∂t̃h̃(x̃, t̃) = νb2−α∂2
x̃h̃(x̃, t̃) + b

1+z
2 ξ̃(x̃, t̃) (7.22)

∂t̃h̃(x̃, t̃) = νb2−z∂2
x̃h̃+ b

1−z
2

+αξ̃(x̃, t̃) (7.23)

We are free to choose α and z. Choosing z = 2 and α = 1/2,

∂t̃h̃ = ν∂2
x̃h̃+ ξ̃ (7.24)

leaves the EW equation invariant under scaling. Hence, the statistics of the surface on scales h, x, t
is the same as of h̃, x̃, t̃. ⇒ The EW equation shows scale invariance and self-similarity.

Experiments give the exponents

α = 0.47± 0.02

β = 0.33± 0.006

that deviate from our results α = 1/2 and β = 1/4.

The deviations from the predicted critical exponents imply that there is something missing.

7.3.4 Kardar-Parisi-Zhang equation

We need to add a term to the EW-equation to describe the surface growth (see figure 7.4).

tan θ =
aνδt

νδt
= a

tan θ =
∇hδx
δx

= ∇h

δh =
√

(vδt)2 + (∇hvδt)2 = vδt(1 + (∇h)2)1/2 ≈ vδt(1 +
1

2
((∇h)2 + ...)
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This leads to the new equation

∂th(x, t) = v∇2h+
λ

2
(∇h)2 + ξ(x, t)

called KPZ (1986). This equation leads to the right exponents. However, things are not as easy as
in the EW-model, as the equation is not linear anymore. The non-linear term (∇h)2 puts the model
into a universality class different from EW! Simple scaling ansatz fails. Here, we have to consider
the cut-off and therefore have to integrate out degrees of freedom.
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