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Historically, mankind used to view the world as entirely deterministic and described by 

differential equations. Back then it was thought that if one was able to collect enough initial 

data, he would be able to predict the future with certainty.  

A fundamental problem in the field of stochastic dynamics is the problem of Brownian 

motion discovered and systematically investigates by the botanist Robert Brown in 1827. 

The first satisfactory explanation came from Einstein in 1905, nearly 80 years after the 

discovery. Einstein’s solution was very elegant but rather complicated. A much more 

straightforward solution was given some time after that by Langevin. His derivation goes like 

this: 

From statistical mechanics it was known that the mean kinetic energy of the Brownian 

particle should in equilibrium reach a value: 
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Acting on a particle of mass   there should be two forces: 

i) Viscous drag – assuming that this is given by the same formula as the macroscopic 

hydrodynamics, this is      
  

  
. Here   is the viscosity and   is the diameter of the 

particle, assumed spherical. 

ii) A fluctuating force   which represents the incessant impacts of the molecules of the 

liquid of the Brownian particle. All that is known about that force is that it should be positive 

and negative with equal probability.  

Applying these two forces to Newton’s law one obtains: 



 
   

   
      

  

  
   

By multiplying by   this can be written as: 

 

 

      

   
          

     

  
    

Now we average over a large number of different particles to obtain: 

 

 

      

   
     

     

  
     

Where the term      has been set to zero due to “the irregularity of the quantity  ”. One 

can obtain the general solution: 

     

  
 

   

    
    

     
  

Langevin estimated that the decaying exponential approaches zero with a time constant of 

the order of        which was essentially immediately for any practical observation. Thus 

for practical purposes one can neglect this term and integrate once more. 

        
   

   

    
  

Langevin’s equation was the first example of the stochastic differential equation.  

Nowadays, with the rise of quantum mechanics and the concept of chaos we have certain 

evidence that the world around us is not as deterministic as we used to think. This became 

the motivation to develop a systematic development of tools that would help us examine 

how systems that contain certain statistical or random elements evolve with time.  

A stochastic system is in general a system where a random time-dependent variable      

exists. We can measure the values           of      at times           and we assume 

that a set of probability densities exist that describes the system completely (separable 

stochastic process): 

                       

We can then define the conditional probability densities: 

                               
                              

                
 

This is valid independently of ordering of times, but it is considered that the times are 

ordered to increase from right to left, that is: 



                      

The simplest kind of stochastic process is that of complete independence: 
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An even simpler case is that of Bernoulli trials, where the probability is independent of the 

time, so that the same probability law governs the process at all times.  

A process that is simple as well, but we keep some degree of generality is the Markov 

process. In the case of a Markov process, knowledge of only the present determines the 

future. Mathematically we express that as: 

                                                      

In that case the time ordering is important. Using the Markov assumption one can describe 

an arbitrary joint probability as a product of simple conditional probabilities: 

                                                                                

Since we are mostly interested in Markovian processes it is a good idea to examine the 

continuity of such a process. There’s a difference between the range of possible values of a 

variable      being continuous and the sample path of the same variable being continuous. 

For example, when modeling collisions of molecules in a gas, we often approximate the 

molecules as hard spheres. In a case of a collision the velocity of the sphere changes 

instantaneously and thus the sample path is clearly not continuous even though the range 

of possible values for the velocity. We can of course consider a different model, where the 

collisions don’t happen instantaneously but then we should consider a very fine time scale 

where the process is probably still not going to be Markovian. Equations that are derived 

are rarely Markovian, rather there’s a certain memory time during which the previous 

history is important. In reality there’s no such thing as a Markov process, there’s only 

systems whose characteristic memory time is so small compared to the time scale on which 

we carry our observations that we can characterize the process as Markovian. We can check 

if the Markov assumption can be applied. It can be shown that the sample paths are 

continuous functions of   if for any     we have: 
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This means that the probability for the final position   to be different from   goes to zero 

faster than    as    goes to zero.  

 



Probability sidenote 

 

Suppose we have a collection of sets    such that: 

        

       

Then one can see that                         and more importantly, 

combining this with the axiom         ∑        one gets: 
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And thus: 
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This means that summing over all mutually exclusive events of one kind in a joint probability 

eliminates that variable.  
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Applying this to stochastic events yields: 

                                                       

This equation is an identity valid for all stochastic processes and is first in a hierarchy of 

equations, the second of which is: 



                                                                               

We can now introduce the Markov assumption given that          and obtain: 

                                                                         

This equation is known as the Chapman-Kolmogorov equation. For discrete variables we 

replace the integration by summation: 
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Under appropriate assumptions, the Chapman-Kolmogorov equation can be reduced to a 

differential equation. These assumptions are closely related to the continuity of the process 

under consideration. We require the following conditions for all    : 

i)        
 

  
                       , uniformly in     and   for         

ii)        
 

  
                                    
       

 

iii)        
 

  
                                            
       

 

with the last two being uniform in     and  . 

One can show that any higher order terms in the form of ii) and iii) vanish. Under these 

assumptions one can derive the differential form of the Chapman-Kolmogorov equation 

which takes the form of: 
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 ∫  [                                       ] 

As one can see, each of the conditions i), ii) and iii) gave rise to a distinctive part of the 

equation. We can identify three processes taking place, which are known as jumps, drift and 

diffusion.  

If we consider a case in which                    we are now dealing with a so called 

Master equation.  
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In the case where the state space consists of integers only the Master equation takes the 

form: 
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To first order of    we solve approximately with                  : 

                    [                ]             

We see that for any     there is finite probability, given by the coefficient of the        

for the particle to stay at the original position     The distribution of those particles which do 

not remain at   is given by          after appropriate normalization. Thus, a typical path 

     will consist of sections of straight lines, interspersed with discontinuous jumps whose 

distribution is given by         . For this reason the process is known as a jump process. 

The paths are discontinuous at discrete points.  

If we assume the quantities          to be zero, the differential Chapman-Kolmogorov 

equation reduces to the Fokker-Planck equation.  
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This type of equation is known in mathematics as a diffusion equation. The vector  ⃗      is 

the drift vector and the matrix  ̂      is the diffusion matrix. We can consider computing 

              given that                  . For a small    will still be sharply peaked 

so we can neglect the derivatives of  ⃗ and  ̂ because they would be small compared to the 

derivatives of    Thus we reduce the equation to: 
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This can now be solved and yields: 
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}  

That is a Gaussian distribution with variance matrix  ̂ and mean    ⃗       . This is a 

picture of the system moving with a systematic drift, whose velocity  ⃗      on which is 

superimposed a Gaussian fluctuation with covariance matrix  ̂         We can write: 

                               
 
  

Where          and              ̂     . One can see that this picture leads to: 

i) paths that are always continuous (as                  ) 

ii) sample paths which are nowhere differentiable, because of the   
 

  dependency. 

 

In general none of the quantities               and          in the differential Chapman-

Kolmogorov equation need vanish. 
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We have now seen two conceptually different ways of describing a stochastic system, that 

is, a stochastic differential equation in the case of the Langevin equation and of course an 

equation for the probability density in the face of the Fokker-Planck equation. One can show 

that the two descriptions are equivalent. Suppose we have a Langevin equation in the form: 

 ̇            

                     

One can show that the corresponding Fokker-Planck equation is simply: 
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