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MOTIVATION

• There are at least three levels of description of classical
dynamics: thermodynamic, stochastic and microscopic

• Thermodynamics and microscopic Hamiltonian dynamics
are connected by Boltzmann formalism. Similarly, how do
we relate thermodynamics to stochastic dynamics?

• More specifically, can the laws of thermodynamics be
applied to stochastic, non equilibrium systems?
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LANGEVIN EQUATION

• We begin from Langevin and Fokker-Planck equation
• Langevin equation:

ẋ = µF (x , λ) + ζ (1)

where the force F (x , λ) = −∂xV (x , λ) + f (x , λ)

• λ is an external control parameter of the force
• The noise characterized by 〈ζ(τ)〉 = 0 and
〈ζ(τ)ζ(τ ′)〉 = 2Dδ(τ − τ ′) with D = µT (Einstein relation)
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FOKKER-PLANCK EQUATION

• Fokker Planck equation:

∂τp(x , τ) = −∂x j(x , τ)

= −∂x (µF (x , λ)p(x , τ)− D∂xp(x , τ))
(2)

• The Langevin equation describes the evolution of an
individual trajectory, while the Fokker-Planck describes the
evolution of the ensemble.
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LANGEVIN AND FOKKER-PLANCK EQUATION

• Path integral representation to Langevin dynamics:

p[x(τ)|x0] ≡ exp
[
−
∫ t

0
dτ
(

(ẋ − µF )2

4D
+
µ∂xF

2

)]
≡ exp[−A[x(τ)]]

(3)

• Here the action A = 1
D

∫
Ldτ with the Lagrangian

L = (ẋ−µF )2

4 + µD∂x F
2
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LANGEVIN DYNAMICS

PATH INTEGRAL FORMALISM

• We have the Langevin equation ẋ = µF (x , λ) + ζ

• We discretize time (t ≡ iε, i = 0, · · · ,N) and rewrite
discrete Langevin equation (Stratonovich discretization).

xi − xi−1

ε
=
µ

2
[Fi(xi) + Fi−1(xi−1)] + ζi (4)

• The probability distribution of the xi is related to the
Gaussian noise distribution with a transformation Jacobian.

p({xi}|x0) = det(
∂ζj

∂xi
)p({ζj}) (5)
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LANGEVIN DYNAMICS

PATH INTEGRAL FORMALISM

• The noise distribution is Gaussian p(ζj) ∼ exp(− ε
4D ζ

2
j ) and

the first two moments are characterized by 〈ζj〉 = 0 and
〈ζiζj〉 = 2D

ε δij
• The Gaussian noise translates into the Gaussian part of

the action, the determinant yields the non-Gaussian force
derivative contribution.

• In discrete form the equation becomes:

p({xi}|x0) ≡ exp
[
− 1

4Dε

[ N∑
i=1

(xi − xi−1 − εµFi(xi))2
]

− εµ

2

N∑
i=1

∂xi Fi(xi)
] (6)

• ε→ 0 yields the continuous limit.
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FIRST LAW

• Here we identify heat dissipated by the system as q
(contrary to our usual thermodynamic convention). So
dq = −dQ

• Potential has two contributions: dV = ∂V
∂λ dλ+ ∂V

∂x dx

• external work done: dw = ∂V
∂λ dλ+ fdx

• From energy conservation then, heat dissipated is

dq = dw − dV
= Fdx

(7)

• For an individual trajectory then,
w [x(τ)]−q[x(τ)] =

∫ t
0 dτ [∂V

∂λ λ̇+ ∂V
∂x ẋ ] = V (xt , λt )−V (x0, λ0)
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SECOND LAW

STOCHASTIC ENTROPY

• Total entropy of the given system:

S(τ) = −
∫

dxp(x , τ) ln p(x , τ) (8)

• This can be rewritten as S(τ) = 〈− ln p(x , τ)〉neq

• We identify the stochastic entropy as s(τ) = − ln p(x , τ)
so that system entropy S(τ) = 〈s(τ)〉neq.

• Stochastic entropy change is then ∆s = − ln p(xt ,λt )
p(x0,λ0)
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SECOND LAW

INTEGRAL FLUCTUATION THEOREM

• Total entropy change along a trajectory ∆Stot ≡ ∆Sm + ∆s

• Our claim is that using p[x(τ)|x0] ≡ exp[−A[x(τ)]] and the
concept of time reversed paths, we will present a stronger
form of the second law of Thermodynamics.

• This is the Integral Fluctuation Theorem (IFT) that states
that ∆Stot follows the equality 〈exp(−∆Stot )〉 = 1
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SECOND LAW

TIME FORWARD AND TIME REVERSED

Figure: Time forward(blue) and time reversed(red) trajectories of
position and external parameter λ [4]. Mathematically,
λ̃(τ) ≡ λ(t − τ), x̃(τ) ≡ x(t − τ). So, x̃t = x0 and x̃0 = xt .
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SECOND LAW

PROOF OF IFT

• We begin with p[x(τ)|x0] ≡ exp[−A[x(τ)]]

• For time reversed path: p[x̃(τ)|x̃0] ≡ exp[−Ã[x̃(τ)]]

• Since A[x(τ)] =
∫ t

0 dτ
(

(ẋ−µF )2

4D + µ∂x F
2

)
, Ã[x̃(τ)] is given

by
∫ t

0 dτ
(

( ˙̃x−µF )2

4D + µ∂x̃ F
2

)
• Because only ẋ is odd under time reversal, in the ratio of

probabilities only the cross term remains

p[x(τ)|x0]

p[x̃(τ)|x̃0]
= exp

[ µ
D

∫ t

0
dτ ẋ(τ)F (x(τ), λ(τ))

]
= exp[q[x(τ)]/T ]

= exp[∆Sm]

(9)
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PROOF OF IFT
NORMALIZATION

• If we sum over all possible paths originating in x0, then it
will sum up to one. 1 =

∫
x0

d [x(τ)]p[x(τ)|x0]

1 =

∫
p0(x0)dx0

∫
x0

d [x(τ)]p[x(τ)|x0]

=

∫
d [x(τ)]p[x(τ)|x0]p0(x0)

(10)

• Similarly for the time reversed path:

1 =

∫
d [x̃(τ)]p[x̃(τ)|x̃0]p1(x̃0) (11)

13 / 20

Shashwata Ganguly
University of Cologne



PROOF OF IFT

• We rewrite eq. 11 as:

1 =

∫
d [x̃(τ)]p[x(τ)|x0]p0(x0)

p[x̃(τ)|x̃0]p1(x̃0)

p[x(τ)|x0]p0(x0)
(12)

• Sum over backward paths is equivalent to sum over
forward paths.

1 =

∫
d [x(τ)]p[x(τ)|x0]p0(x0)exp[−∆Sm]

p1(xt )

p0(x0)
(13)

• So 〈exp[−∆Sm] p1(xt )
p0(x0)

〉 = 1
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SECOND LAW

PROOF OF IFT

• By definition of Stochastic entropy, ∆s = − ln p(xt ,λt )
p(x0,λ0)

• p1(xt ) was the initial distribution of the time reversed path,
or in other words the final distribution of the time forward
path.

• So we gain 〈exp(−∆Sm −∆s)〉 = 〈exp(−∆Stot )〉 = 1

• This is the formulation of Integral Fluctuation Theorem
(IFT). Using Jensen’s inequality ( 〈ex〉 > e〈x〉) one gets
back 〈∆Stot〉 > 0.

15 / 20

Shashwata Ganguly
University of Cologne



JARZYNSKI RELATION

• In our expression 〈exp[−∆Sm] p1(xt )
p0(x0)

〉 = 1, if we consider
initial and final states to be equilibrium states, then:

p0(x) =
1
Z

e−
V (x,λ0)

T = e−
V (x,λ0)−F(λ0)

T

• Similarly p1(x) = e−
V (x,λt )−F(λt )

T

• Putting in the values:〈
exp

[
− q

T

]
exp

[
− ∆V −∆F

T

]〉
= 1

• Using q = w −∆V , we find that:

〈exp[−w/T ]〉 = exp[−∆F/T ] (14)

• This is the Jarzynski relation which relates equilibrium
free energy difference with non equilibrium work.
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CONCLUSION

• Our aim was to demonstrate how one can relate laws of
Thermodynamics to stochastic non equilibrium systems.

• We find that the first law can be applied on the level of
individual trajectories.

• Using the concept of time forward and time reversed paths,
we derived a stronger statement of the second law of
thermodynamics valid for an ensemble.

• From IFT, one can derive the Jarzynski relation that relates
the free energy difference of states with non equilibrium
work.
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THANK YOU
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JENSEN’S INEQUALITY

• A convex function is a continuous function whose value at
the midpoint of every interval in its domain does not exceed
the arithmetic mean of its values at the ends of the interval.

λf (x1) + (1− λ)f (x2) > f (λx1 + (1− λ)x2)

• This generalizes to:
N∑

i=1

ai f (xi) > f (
N∑

i=1

aixi)

with
∑N

i=1 ai = 1
• We take ai = 1/N and identify f (x) = ex as a convex

function.
• We get 〈ex〉 > e〈x〉
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