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MOTIVATION

e There are at least three levels of description of classical
dynamics: thermodynamic, stochastic and microscopic

e Thermodynamics and microscopic Hamiltonian dynamics
are connected by Boltzmann formalism. Similarly, how do
we relate thermodynamics to stochastic dynamics?

e More specifically, can the laws of thermodynamics be
applied to stochastic, non equilibrium systems?
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LANGEVIN EQUATION

e We begin from Langevin and Fokker-Planck equation
e Langevin equation:

X = pF(x,A)+¢ (1)

where the force F(x,\) = —0x V(x, A) + f(x, A)
¢ )\ is an external control parameter of the force

e The noise characterized by (¢(7)) = 0 and
(C(7)¢(7")) =2D6(r — 7") with D = u T (Einstein relation)
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FOKKER-PLANCK EQUATION

o Fokker Planck equation:

Orp(x,7) = —0xj(X, 7)

- (2)
= —0Ox(uF(x,\)p(x,7) — Doxp(x,T))

e The Langevin equation describes the evolution of an
individual trajectory, while the Fokker-Planck describes the
evolution of the ensemble.
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LANGEVIN AND FOKKER-PLANCK EQUATION

e Path integral representation to Langevin dynamics:

p[x(T)xo]Eexp[_/otd7<(X;gF)2 _~_M62)(F>} .

= exp[-Alx(7)]]

o Here the action A = § [ Ldr with the Lagrangian
[ — (=uF)? | uDoxF
=7 2
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LANGEVIN DYNAMICS
PATH INTEGRAL FORMALISM

e We have the Langevin equation x = pF(x,A) + ¢
e We discretize time (t = ije, i = 0,--- , N) and rewrite
discrete Langevin equation (Stratonovich discretization).
Xj — Xj_
41 g[Fi(Xi) + Fica(Xi—1)] + G (4)
e The probability distribution of the x; is related to the
Gaussian noise distribution with a transformation Jacobian.

p({xi}|x0) = C1'61‘( )({C/}) ()
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LANGEVIN DYNAMICS
PATH INTEGRAL FORMALISM

 The noise distribution is Gaussian p({;) ~ exp(— %C/ ) and
the first two moments are characterized by (¢;) = 0 and
(GiG) = 2P0

e The Gaussian noise translates into the Gaussian part of
the action, the determinant yields the non-Gaussian force
derivative contribution.

¢ In discrete form the equation becomes:

N

p({xi}|1x0) = exp[ 41D [Z(Xi — Xj1 — GMFI(XI))Z}
1

e ¢ — 0 yields the continuous limit.
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FIRST LAW

¢ Here we identify heat dissipated by the system as q
(contrary to our usual thermodynamic convention). So
dg =—-dQ

Potential has two contributions: dV = m Y\ + d‘/dx

external work done: dw = %¥dX + fdx

From energy conservation then, heat dissipated is

dg = dw — dV

= Fdx )

For an individual trajectory then,
wIx(m)]=alx(7)] = [y T[S A+ G = V(xe M) =V (X0, Mo)
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SECOND LAW

STOCHASTIC ENTROPY

Total entropy of the given system:

S(r) = - [ dxplx,7)inp(x,7) ®)
e This can be rewritten as S(7) = (= Inp(X, 7)) neq
o We identify the stochastic entropy as s(7) = —Inp(x, 1)
so that system entropy S(7) = (S(7))neq-
e Stochastic entropy change is then As = —In %
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SECOND LAw
INTEGRAL FLUCTUATION THEOREM

e Total entropy change along a trajectory ASy; = AS, + As

e Our claim is that using p[x(7)|X] = exp[—A[x(7)]] and the
concept of time reversed paths, we will present a stronger
form of the second law of Thermodynamics.

e This is the Integral Fluctuation Theorem (IFT) that states
that A Sy follows the equality (exp(—ASir)) = 1
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SECOND LAw
TIME FORWARD AND TIME REVERSED

Figure: Time forward(blue) and time reversed(red) trajectories of
position and external parameter A [4]. Mathematically,

)\(T)E)\(t—T),)N((T)EX(t—T). So,)?t:xoand)?o:x,.

I T 11/20
Shashwata Ganguly
University of Cologne




SECOND LAW
PROOF OF IFT
o We begin with p[x(7)|xp] = exp[—A[x(7)]]
e For time reversed path: p[x(7)|X] = exp[—ft[)"((f)]]

e Since A[x(T ]—fo (X uh? 10k > Al%(7)] is given
byf(fdr<x WP | uisF F)

e Because only x is odd under time reversal, in the ratio of
probabilities only the cross term remains

PXNG] _ o0 /de )

PIR(r) %]
— explqlx(n)]/T] ®)
= exp[ASn]
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PROOF OF IFT
NORMALIZATION

e If we sum over all possible paths originating in xp, then it
will sum up to one. 1 = fXO d[x(7)]p[x(7)|xo]

1= [ Poa)abo | dix(rlpix()x]

(10)
:/d[x(r)]p[X(T)IXo]Po(Xo)
e Similarly for the time reversed path:
1= [ APl () Solpr (o) (1)
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PROOF OF IFT

e We rewrite eq. 11 as:

pIE() o1 ()
P olpo(xo) 2

1= /d[)"((r)]p[X(T)IXo]Po(Xo)

e Sum over backward paths is equivalent to sum over
forward paths.

1= [ dxlplx(r)xleota)expl-a8 B (13

e So (exp[-ASn g;(j((é)> =1
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SECOND LAW
PROOF OF IFT

e By definition of Stochastic entropy, As = —In p&;ié))

e pi(x;) was the initial distribution of the time reversed path,
or in other words the final distribution of the time forward
path.

e So we gain (exp(—ASy — As)) = (exp(—ASi)) = 1
e This is the formulation of Integral Fluctuation Theorem

(IFT). Using Jensen’s inequality ( (e¥) > e!X) one gets
back <AStot> > 0.
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JARZYNSKI RELATION

In our expression (exp[—ASp)] g;g)’(‘é ) = 1, if we consider

initial and final states to be equilibrium states, then:

Virag) V(g -F(g)
T

1
po(x) = Eefir =e

VD) =F (M)
T

Similarly py(x) =
Putting in the values:
q AV —AF\
(o] - 7|ow| - =)=
Using g = w — AV, we find that:
(exp[-w/T]) = exp[-AF/T] (14)

This is the Jarzynski relation which relates equilibrium
free energy difference with non equilibrium work.
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CONCLUSION

e Our aim was to demonstrate how one can relate laws of
Thermodynamics to stochastic non equilibrium systems.

e We find that the first law can be applied on the level of
individual trajectories.

¢ Using the concept of time forward and time reversed paths,
we derived a stronger statement of the second law of
thermodynamics valid for an ensemble.

e From IFT, one can derive the Jarzynski relation that relates
the free energy difference of states with non equilibrium
work.
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THANK YOU
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JENSEN’S INEQUALITY

e A convex function is a continuous function whose value at
the midpoint of every interval in its domain does not exceed
the arithmetic mean of its values at the ends of the interval.

)\f(X1) + (1 — )\)f(Xg) = f()\X1 + (1 — )\)Xg)

e This generalizes to:

N N
Z a,-f(x,-) > f(z a,-x,-)
i=1 i=1
with SN 2, = 1
o We take a; = 1/N and identify f(x) = e* as a convex
function.

o We get () > e
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