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Exercise 1: continued fraction representation of Green functions

(10 points + 4 bonus points)

The continued fraction representation of a Green function G(z) is given by

G(z) =
1

z − a0 − b2
0

z−a1−
b2
1

z−a2−...

, (1)

with a set of continued fraction coefficients {an} and {bn}. If these coefficients
take constant values an = a, bn = b for all n ≥ N , the continued fraction can be
terminated via the terminator

Ta,b(z) =
1

2b2

(

z − a−
√

(z − a)2 − 4b2
)

.

The follwing exercise is about calculating G(z) (and the corresponding spectral
function A(ω)) for different sets of {an} and {bn}.

a) Calculate real and imaginary part of the terminator T0,1(z = ω + iδ) for δ =
0.05. (2 points)

b) Write a general program for the calculation of G(z) as in eq. (1) with an = 0
and bn = 1 for all n ≥ N and arbitrary an, bn for n < N (use the terminator
from part a)). Check the program by setting an = 0 and bn = 1 for all n.

(5 points)

c) Now set an = α(−1)n and bn = 1 for n < N and calculate the spectral function
for various values of α. (3 points)

d) With bn again fixed to 1 for all n, the values of the an (for n < N) are now set to
random numbers in the range [−W,W ]. Investigate the structures appearing
in the spectral function for various values of W and N . (4 bonus points)
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Exercise 2: logarithmic discretization; broadening

(9 points + 3 bonus points)

Here we consider the semi-elliptic spectral function

A(ω) =

{

2

π

√
1− ω2 : |ω| ≤ 1 ,
0 : |ω| > 1 .

The idea of this exercise is to perform a logarithmic discretization on A(ω) and then
apply different broadening schemes to see how well the original spectral function is
recovered.

a) Calculate the weights a±n and frequencies ω±

n of the discretized spectral function
Ad(ω) for a discretization parameter Λ = 2 (for the notation, see Sec. 2.2.5 in
the script). (2 points)

b) For the broadening function, use Lorentzians with fixed width b to obtain the
broadenend spectral function Ad,b(ω). (3 points)

c) Now set the b of the Lorentzians to bn = α|ω±

n |, with α of the order of 0.5.
What happens in the limit ω → 0 and N → ∞? (4 points)

d) Finally, investigate the structures of the broadened spectral function Ad,b(ω)
using logarithmic Gaussians as broadening functions with b = 0.3, 0.4, 0.5, 0.6
(as above, see Sec. 2.2.5 in the script for the notation). (3 bonus points)

Exercise 3: Lanczos algorithm

(9 points + 4 bonus points)

We consider a symmetric (N×N)-matrix H with matrix elements Hij =
√
1 + i+ j.

The starting vector of the Lanczos algorithm is given by |Φ0〉 = (1, 1, . . . , 1).

a) Calculate the sequence of vectors {|Φ0〉, |Φ1〉, . . . , |ΦM−1〉} (M ≤ N) with the
Lanczos algorithm as defined in the lecture (N can be set to 10). (5 points)

b) Show numerically that the vectors |Φi〉 obtained in this way are orthogonal.
To this end, calculate the matrix Dij = 〈Φi|Φj〉. (2 points)

c) Calculate (numerically) the matrix HΦ in the basis {|Φi〉}: (HΦ)ij =
〈Φi|H|Φj〉. (2 points)

d) Calculate the matrix elements an = 〈ψ0|Φ̃n〉, with the normalized vectors
|Φ̃n〉 = |Φn〉/〈Φn|Φn〉 and |ψ0〉 the actual ground state of H (the eigenvec-
tor with the lowest eigenvalue). Can one tell, from the n-dependence of an,
whether the Lanczos algorithm converges quickly to the ground state?

(4 bonus points)
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Exercise 4: reduced density matrix and entanglement entropy

(11 points + 4 bonus points)

With the definition of the reduced density matrix given in exercise 4 on sheet 4, we
can now proceed with calculating the entanglement entropy Se:

Se = −Tr [ρ̂ ln ρ̂] = −
∑

α

wα lnwα ,

with wα the eigenvalues of the reduced density matrix. The entanglement entropy is
a measure of the entanglement between subsystems A and B of a quantum system;
this can now be tested on the three states |ψ〉i, i = 1, 2, 3, given in exercise 4 on
sheet 4.

a) Calculate the entanglement entropy Se for the states |ψ〉i. (3 points)

We now extend the analysis to larger systems, in particular one-dimensional spin
systems with a bi-partitioning into parts A and B as shown in the figure:

31 2 M −1 M M +1 M
... ...

AAA

A B

The number of sites in parts A (B) is MA (MB), with MA +MB = M . The state
of the total system in expressed in the standard basis {|l〉}, l = 1, . . . , 2M , with
{|l〉} = {| ↑↑ . . . ↑〉, | ↓↑ . . . ↑〉, . . .}:

|ψ〉 =
2M
∑

l=1

al|l〉 .

b) Consider a random state |ψ〉r with āl random numbers in the range [−1, 1],
and al = āl/

√
∑

l ā
2

l . Calculate Se for different values of MA and M = 10.
(5 points)

c) The following state has a much simpler structure:

|ψ〉afm =
1√
2
(| ↑↓↑↓ . . .〉 − | ↓↑↓↑ . . .〉) .

Calculate Se for different values of MA and M = 10. (3 points)

d) In the following state, site 1 is entangled with site 5:

|ψ〉1−5 =
1√
2
(| ↑〉1| ↓〉5 − | ↓〉1| ↑〉5)

4
∏

i=2

(| ↑〉i + | ↓〉i)
M
∏

i=6

(| ↑〉i + | ↓〉i) .

How does this entanglement show up in the entanglement entropy Se as a
function of MA (M = 10)? (4 bonus points)
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