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Exercise 1: entanglement entropy for one-dimensional spin models
(8 points + 4 bonus points)

The entanglement entropy S. has been introduced in exercise 4 on sheet 5 and
applied to various states |¢) for a system of M spins, with a bi-partitioning into
parts A (with M, sites) and B. In this exercise, the state [¢) is taken as the ground
state of the spin models defined in exercise 3 on sheet 4, i.e.

M—-1

H==3" 3" Jesese,

=1 o
and different choices for the J;.

Calculate S, as a function of My (My =1,2,..., M — 1) for fixed M and the state
|1} given as the ground state of the following three models:

a) J& = Jbaz, (4 points)

b) J& =J, (4 points)

c) J& =

7

(4 bonus points)

J0nr 11 even,
JOq, i odd.

The total number of sites can be fixed to M = 8; consider both J = 4+1 and J = —1.
If the ground state happens to be degenerate, the calculations should be performed
for one of the ground states.

Exercise 2: integral representation of the single-impurity Anderson model
(8 points)

The Hamiltonian of the single-impurity Anderson model in the ‘integral representa-
tion’” has the following form:

H = Hjmp + Hbath + Himp—bath )



with
Hip = Y efifo + USRI (1)

1
i = 3 [ deglepadan, )
o —1
1
Himp—bath = Z/ dsh(s) (f;aaf—'—aiafo)' (3)
o —1

a) Use the equation of motion method to show that the impurity Green function
Gy (2) = ({f5, f1)). for the case U = 0 is given by

1 - b h(e)?
Goz:—,withAz:/da—. 4
G =T —3m (@) =] 5 (4)
(The derivation is analogous to the one shown in Sec. 2.2.4 in the lecture.)

(5 points)
b) Starting from the expression for A(z) in eq. (4), show that the hybridization
function A(w) = —lims_,o ImA(z = w + i9) is given by
d
A(w) = Th(g Hw))*—g H(w) .
(@) = 7h(g™ (@) g ()

(One can assume here that the function f(e) = w — g(e) is zero for a single
value of ¢ only.) (3 points)

Exercise 3: logarithmic discretization of the single-impurity Anderson
model

(4 points)

The conduction electron part of the Hamiltionian, Hp., (see eq. (2) in exercise 2),
can be written in the form

Hyarn = Z (é-TTCLILpo'aTLpU + gr: bILpoanU>

npo

+ Z (Oé:zr (p’ p/)ajzpaanplo' - Oé; (p7 p/)blpabnplo') )

n,p#p’,o
(5)

with the definitions of the operators a,,, and b,,, given in the lecture. For a constant
hybridization function A(w) = A we can simply set the dispersion as g(¢) = . Show
that in this case the quantities £& and o are given by:

1
&= iﬁA‘”(l + A7,

, I1—A"1 AT 2mi(p’ —
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Exercise 4: flow diagrams for the tight-binding model

(5 points + 3 bonus points)

Consider the following quantum impurity model defined on a chain with N + 1 sites:

N-1
H:ngf—i—V(chl—FcIf) —i—Ztn (chnHJrcLch) . (6)
n=1

This model corresponds to a tight-binding model of spinless fermions with a special
choice of parameters, in particular, the hoppings ¢, are assumed to fall off exponen-
tially: t, = A% with A = 2. As the Hamiltonian eq. (6) is non-interacting, it
can be diagonalized via an orthogonal transformation (see Sec. 2.1 in the lecture).
This gives the single-particle spectrum from which the many-particle energies can
be constructed.

The lowest-lying many-particle energies En(r) (r = 1,...,rm.x and we assume
En(r) < Enx(r + 1)) for a chain with N bath sites can now be used to plot the
energy-level flow diagram, i.e. AN/2Ex(r) as a function of N.

a) Plot the five (rp.x = 5) lowest-lying many-particle energies in this way for
=0,V =0.1, and N in the range N = 3,...,20. (5 points).

b) Investigate the effect of the value of € on the flow diagram by varying ¢ in the
range [-2,2]. (3 bonus points).

Exercise 5: flow diagrams for the one-dimensional Heisenberg model

(5 points + 3 bonus points)

Now consider a somewhat artificial model, the one-dimensional Heisenberg model
with nearest-neighbour interactions decaying exponentially:

N-1
H==3 > IS5,
n=1 «
with J& = JA™/2.
a) Calculate the energy-level flow diagram, i.e. plot AY2Ey(r) for the lowest-
lying energies En(r) as a function of N for 2 < N <10, A =2, J = +1 via

the full diagonalization of the Hamilton matrix for each N separately (not via
an iterative diagonalization scheme as in the NRG). (5 points)

b) Investigate the effect of a local perturbation of the form
H/ - —’}/Si: ; )

on the flow diagram for various values of ~. (3 bonus points)



