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Exercise 1: spectral function of the one-dimensional Hubbard model

The Hamiltonian of the one-dimensional Hubbard model with N sites and open
boundary conditions is given by

H =
N
∑

i=1

∑

σ

εc
†
iσciσ +

N−1
∑

i=1

∑

σ

t
(

c
†
iσci+1,σ + c

†
i+1,σciσ

)

+
N
∑

i=1

Uc
†
i↑ci↑c

†
i↓ci↓ . (1)

The aim of this exercise is to calculate (numerically) the spectral functions Ai(ω) of
the Green functions 〈〈ciσ, c†iσ〉〉z for temperature T = 0 and particle-hole symmetry
(ε = −U

2
).

a) As an analytical exercise, calculate the spectral function A1(ω) for a single-site
Hubbard model.

b) Now set up the Hamilton matrix for the model eq. (1), either as a single matrix
(4N × 4N), or by taking into account the conservation of total particle number
and z-component of the total spin. Calculate the many-particle spectrum for
U = 1, t = 1, and N = 3.

We now set T = 0, t = 1, and N even (this, together with ε = −U
2
, guarantees a

non-degenerate ground state).

c) Show that in the limit T → 0, and for a non-degenerate ground state |ψg〉, the
spectral function A(ω) takes the form

A(ω) =
∑

j

(

|〈ψg|c|j〉|2 δ(ω + (Eg − Ej)) + |〈j|c|ψg〉|2 δ(ω + (Ej − Eg))
)

.

d) Calculate the spectral function A1(ω) for N = 6 and the following U -values:
U = 0.5, 1, 2, 4.
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Exercise 2: single-impurity Anderson model: impurity Green function,

hybridization function, and self energy

The impurity Green function of the single-impurity Anderson model can be written
in the following general form:

Gσ(z) =
1

z − εf −∆(z)− ΣU
σ (z)

. (2)

The idea of this exercise is to explore the possible structures of the impurity Green
function using a specific form of the hybridization function and the self energy.

a) Show that any correlation function defined in the upper complex plane can be
represented through its spectral function as

X(z) =

∫ ∞

−∞

dω′ A(ω
′)

z − ω′
.

b) The spectral function of the hybridization function, A∆(ω), is supposed to be
of the following form:

A∆(ω) = e−(ω/10)2 .

Calculate (numerically) both real and imaginary part of ∆(z = ω + iδ) with
δ = 0.01.

c) Use the result of b) to calculate the impurity spectral function, Aimp(ω), for
various values of εf and U = 0.

d) The spectral function of the self energy should take the form

AΣ(ω) = γω2e−ω2

.

Investigate the resulting structures in the impurity Green function for εf = 0
and various values of γ.

Exercise 3: spin correlations of one-dimensional spin models

Here we focus on one-dimensional spin models of the form

H = −
N−1
∑

i=1

∑

α

Jα
i S

α
i S

α
i+1 ,

which is just a special case of the spin models for which the Hamiltonian matrix
has been set up in exercise 5 on sheet 3. We are interested in the spin correlations
between sites l and m in the ground state |ψg〉 of the system:

Clm = 〈ψg|~Sl · ~Sm|ψg〉 .

(For a degenerate ground state, the Clm is defined as the average over the different
ground states.)

Calculate the distance dependence of the spin correlations, i.e. the correlation be-
tween site 1 and site m: C1m (m = 2, . . . , N), for the following three models:
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a) Jα
i = Jδαz,

b) Jα
i = J ,

c) Jα
i =

{

Jδαx : i even,
Jδαz : i odd.

The number of sites can be chosen as N = 6, 8, and 10; consider both J = +1 and
J = −1.

Exercise 4: the reduced density matrix

Consider a two-site system (with sites A and B) with a two-dimensional basis for
each site: {|i〉} = {| ↑〉A, | ↓〉A} for site A and {|j〉} for site B accordingly. A given
state |ψ〉 can be expressed in this basis as

|ψ〉 =
2

∑

i=1

2
∑

j=1

ψij|i〉|j〉 . (3)

Here we want to calculate the reduced density matrices ρ for the following three
states:

|ψ〉1 = | ↑〉A| ↓〉B ,

|ψ〉2 =
1√
2
(| ↑〉A| ↓〉B − | ↓〉A| ↑〉B) ,

|ψ〉3 =
1

2
(| ↑〉A + | ↓〉A) (| ↑〉B + | ↓〉B) .

a) Write the states |ψ〉i (i = 1, 2, 3) in the form given by eq. (3), i.e. determine
the matrix ψ̄ with matrix elements (ψ̄)ij = ψij.

The reduced density matrix ρ̂ is defined as

ρ̂ = TrB (|ψ〉〈ψ|) =
2

∑

j=1

〈j|ψ〉〈ψ|j〉 ,

with the matrix elements ρii′ = 〈i|ρ̂|i′〉 =
∑

j ψijψi′j.

b) Calculate the reduced density matrices (i.e. the matrix elements ρii′) for the
states |ψ〉i (i = 1, 2, 3).

The entanglement between sites A and B can be directly calculated from these
reduced density matrices – this will be discussed in one of the following exercises,
together with the extension to spin models on small clusters/chains.
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