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Exercise 1: continued fraction representation of Green functions

The continued fraction representation of a Green function G(z) is given by

1
£=0) — — 2

Z7a17 Z*Ll217...

with a set of continued fraction coefficients {a,} and {b,}. If these coefficients
take constant values a,, = a, b, = b for all n > N, the continued fraction can be
terminated via the terminator

Tup(z) = % <z —a—+/(z—a)— 4b2> :

The follwing exercise is about calculating G(z) (and the corresponding spectral
function A(w)) for different sets of {a,} and {b,}.

a) Calculate real and imaginary part of the terminator T (2 = w + id) for 0 =
0.05.

b) Write a general program for the calculation of G(z) as in eq. (1) with a,, =0
and b, = 1 for all n > N and arbitrary a,,b, for n < N (use the terminator
from part a)). Check the program by setting a,, = 0 and b, = 1 for all n.

¢) Now set a, = a(—1)" and b, = 1 for n < N and calculate the spectral function
for various values of a.

d) With b, again fixed to 1 for all n, the values of the a,, (for n < N) are now set to
random numbers in the range [—-W, W]. Investigate the structures appearing
in the spectral function for various values of W and N.



Exercise 2: logarithmic discretization; broadening

Here we consider the semi-elliptic spectral function

A(w):{ IVI=o? ¢ Jw| <1,

0 Do jw| > 1.

The idea of this exercise is to perform a logarithmic discretization on A(w) and then
apply different broadening schemes to see how well the original spectral function is
recovered.

a) Calculate the weights a and frequencies w of the discretized spectral function
Aq(w) for a discretization parameter A = 2 (for the notation, see Sec. 2.2.5 in
the script).

b) For the broadening function, use Lorentzians with fixed width b to obtain the
broadenend spectral function Agp(w).

c¢) Now set the b of the Lorentzians to b, = a|wF|, with a of the order of 0.5.
What happens in the limit w — 0 and N — oo?

d) Finally, investigate the structures of the broadened spectral function A4y, (w)
using logarithmic Gaussians as broadening functions with b = 0.3,0.4,0.5,0.6
(as above, see Sec. 2.2.5 in the script for the notation).

Exercise 3: Lanczos algorithm

We consider a symmetric (N x N)-matrix H with matrix elements H;; = /141 + .
The starting vector of the Lanczos algorithm is given by |®g) = (1,1,...,1).

a) Calculate the sequence of vectors {|®g), [®1),...,|Pap—1)} (M < N) with the
Lanczos algorithm as defined in the lecture (N can be set to 10).

b) Show numerically that the vectors |®;) obtained in this way are orthogonal.
To this end, calculate the matrix D;; = (0;|®;).

c) Calculate (numerically) the matrix Hg in the basis {|®;)}: (He)iy =
(Pi| H|D;).

d) Calculate the matrix elements a, = (1|®,), with the normalized vectors
1®,) = [®,)/(®,|®,) and |ihy) the actual ground state of H (the eigenvec-
tor with the lowest eigenvalue). Can one tell, from the n-dependence of a,,
whether the Lanczos algorithm converges quickly to the ground state?



Exercise 4: reduced density matrix and entanglement entropy

With the definition of the reduced density matrix given in exercise 4 on sheet 4, we
can now proceed with calculating the entanglement entropy S.:

Se=—Tr[plnp| = Zwalnwa ,

with w, the eigenvalues of the reduced density matrix. The entanglement entropy is
a measure of the entanglement between subsystems A and B of a quantum system,;
this can now be tested on the three states [¢);, i = 1,2,3, given in exercise 4 on
sheet 4.

a) Calculate the entanglement entropy S, for the states [¢);.

We now extend the analysis to larger systems, in particular one-dimensional spin
systems with a bi-partitioning into parts A and B as shown in the figure:
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The number of sites in parts A (B) is My (M), with My + Mg = M. The state
of the total system in expressed in the standard basis {|I)}, | = 1,...,2" with
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b) Consider a random state [¢), with @, random numbers in the range [—1,1],
and a; = @;/+/>_, al. Calculate S, for different values of M, and M = 10.

c¢) The following state has a much simpler structure:

Wj>afm - <| T\LT\L - > - ’ \l/N/T . >) :
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Calculate S, for different values of M, and M = 10.

d) In the following state, site 1 is entangled with site 5:
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How does this entanglement show up in the entanglement entropy S, as a
function of My (M = 10)?
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