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Exercise 1: entanglement entropy for one-dimensional spin models

The entanglement entropy S. has been introduced in exercise 4 on sheet 5 and
applied to various states |¢) for a system of M spins, with a bi-partitioning into
parts A (with M, sites) and B. In this exercise, the state [¢) is taken as the ground
state of the spin models defined in exercise 3 on sheet 4, i.e.
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and different choices for the J;*.

Calculate S, as a function of My (My =1,2,..., M — 1) for fixed M and the state
|t} given as the ground state of the following three models:

a) J* = Jbas,
b) J&=J,

o | JOax :1even,
<) Ji —{ Jbe i 0dd,

The total number of sites can be fixed to M = 8; consider both J = 41 and J = —1.
If the ground state happens to be degenerate, the calculations should be performed
for one of the ground states.

Exercise 2: integral representation of the single-impurity Anderson model

The Hamiltonian of the single-impurity Anderson model in the ‘integral representa-
tion” has the following form:

H= Himp + Hbath + Himp—bath )
with
Himp - Z‘Eff;fa + Ufgf?flfi ) (1)
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a) Use the equation of motion method to show that the impurity Green function

Gy (2) = ({f,, f1)). for the case U = 0 is given by

G, (z) = v , with A(z) = /1 de hey

z—er— A(z) o z—g(e)

(4)

(The derivation is analogous to the one shown in Sec. 2.2.4 in the lecture.)
b) Starting from the expression for A(2) in eq. (4), show that the hybridization
function A(w) = —lims_,o ImA(z = w + iJ) is given by
d
dw
(One can assume here that the function f(e) = w — g(e) is zero for a single
value of ¢ only.)

Alw) = mh(g™ (W) ——g (W) -

Exercise 3: logarithmic discretization of the single-impurity Anderson
model

The conduction electron part of the Hamiltionian, Hy., (see eq. (2) in exercise 2),
can be written in the form

Hbath = Z < :ailpganpo + 57; b:rqubnpo)
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with the definitions of the operators a,,, and b,,, given in the lecture. For a constant
hybridization function A(w) = A we can simply set the dispersion as g(¢) = €. Show
that in this case the quantities £&& and o are given by:
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Exercise 4: flow diagrams for the tight-binding model

Consider the following quantum impurity model defined on a chain with N + 1 sites:

N-1
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n=1

This model corresponds to a tight-binding model of spinless fermions with a special
choice of parameters, in particular, the hoppings t,, are assumed to fall off exponen-
tially: ¢, = A™™? with A = 2. As the Hamiltonian eq. (6) is non-interacting, it
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can be diagonalized via an orthogonal transformation (see Sec. 2.1 in the lecture).
This gives the single-particle spectrum from which the many-particle energies can
be constructed.

The lowest-lying many-particle energies En(r) (r = 1,...,rm.x and we assume
En(r) < Enx(r + 1)) for a chain with N bath sites can now be used to plot the
energy-level flow diagram, i.e. AN/2Ey(r) as a function of N.

a) Plot the five (rp.x = 5) lowest-lying many-particle energies in this way for
e=0,V =0.1, and N in the range N = 3,...,20.

b) Investigate the effect of the value of € on the flow diagram by varying ¢ in the
range [-2,2].

Exercise 5: flow diagrams for the one-dimensional Heisenberg model

Now consider a somewhat artificial model, the one-dimensional Heisenberg model
with nearest-neighbour interactions decaying exponentially:

N
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with J& = JA™/2.

a) Calculate the energy-level flow diagram, i.e. plot AY2Ey(r) for the lowest-
lying energies En(7) as a function of N for 2 < N <10, A =2, J = +1 via
the full diagonalization of the Hamilton matrix for each N separately (not via
an iterative diagonalization scheme as in the NRG).

b) Investigate the effect of a local perturbation of the form
H' = —~S755

on the flow diagram for various values of ~.



