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Exercise 1: Reduced density matrix and entanglement entropy

With the definition of the reduced density matrix given in exercise 4 on sheet 2, we
can now proceed with calculating the entanglement entropy Se:

Se = −TrA [ρ̂A ln ρ̂A] = −
∑

α

wα lnwα ,

with wα the eigenvalues of the reduced density matrix. The entanglement entropy is
a measure of the entanglement between subsystems A and B of a quantum system;
this can now be tested on the three states |ψ〉i, i = 1, 2, 3, given in exercise 4 on
sheet 2.

a) Calculate the entanglement entropy Se for the states |ψ〉i.

We now extend the analysis to larger systems, in particular one-dimensional spin
systems with a bi-partitioning into parts A and B as shown in the figure:
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... ...
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The number of sites in parts A (B) is MA (MB), with MA +MB = M . The state
of the total system in expressed in the standard basis {|l〉}, l = 1, . . . , 2M , with
{|l〉} = {| ↓↓ . . . ↓〉, | ↑↓ . . . ↓〉, . . .}:

|ψ〉 =
2M−1
∑

l=0

al|l〉 .

b) Consider a random state |ψ〉r with āl random numbers in the range [−1, 1],
and al = āl/

√
∑

l ā
2
l . Calculate Se for different values of MA and M = 10.

c) The following state has a much simpler structure:

|ψ〉afm =
1√
2
(| ↑↓↑↓ . . .〉 − | ↓↑↓↑ . . .〉) .

Calculate Se for different values of MA and M = 10.
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d) In the following state, site 1 is entangled with site 5:

|ψ〉1−5 =
1

2(M−1)/2
(| ↑〉1| ↓〉5 − | ↓〉1| ↑〉5)

4
∏

i=2

(| ↑〉i + | ↓〉i)
M
∏

i=6

(| ↑〉i + | ↓〉i) .

How does this entanglement show up in the entanglement entropy Se as a
function of MA (M = 10)?

Exercise 2: Entanglement entropy for one-dimensional spin models

The entanglement entropy Se has been introduced in the previous exercise and
applied to various states |ψ〉 for a system of M spins, with a bi-partitioning into
parts A (with MA sites) and B. In this exercise, the state |ψ〉 is taken as the ground
state of the spin models defined via

H = −
M−1
∑

i=1

∑

α

Jα
i S

α
i S

α
i+1 ,

and different choices for the Jα
i .

Calculate Se as a function of MA (MA = 1, 2, . . . ,M − 1) for fixed M and the state
|ψ〉 given as the ground state of the following three models:

a) Jα
i = Jδαz,

b) Jα
i = J ,

c) Jα
i =

{

Jδαx : i even,
Jδαz : i odd.

The total number of sites can be fixed toM = 8; consider both J = +1 and J = −1.
If the ground state happens to be degenerate, the calculations should be performed
for one of the ground states.

Exercise 3: tight-binding chain

The tight-binding model on a finite chain with periodic boundary conditions is
defined as:

Htb =
N
∑

i=1

ǫc†ici +
N−1
∑

i=1

t
(

c†ici+1 + c†i+1ci

)

+ t
(

c†Nc1 + c†1cN

)

. (1)

a) Show that the single-particle spectrum of this Hamiltonian can be obtained
analytically via the following unitary transformation of the operators cl:

cl =
1√
N

N
∑

m=1

ei
2π

N
mldm .

(The resulting single-particle energies are given by εm = ǫ+ 2t cos(2π
N
m)).
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b) Compare the analytical values for the εm obtained in a) with the eigenvalues
obtained from a numerical diagonalization of the matrix T . For the definition
of T , see Sec. 2.1E in the script (summer term 2017).

Exercise 4: Hamilton matrix of the tight-binding chain

The idea of this exercise is to calculate the many-particle spectrum of the tight-
binding chain via diagonalization of the full Hamilton matrix, and to check whether
the result agrees with the many-particle spectrum constructed from the single-
particle levels. The model is the tight-binding chain with open boundary conditions:

Htb =
N−1
∑

i=1

t
(

c†ici+1 + c†i+1ci

)

. (2)

a) Set up a program which calculates the full 2N × 2N -matrix Hlm = 〈l|Htb|m〉.
One option here, which is not required, is to split up the Hilbert space into
subspaces with different particle numbers.

b) Show that the eigenvalues of the Hamilton matrix agree with the many-particle
energies constructed from the single-particle levels. (N = 3, 4 and 5 is suffi-
cient.)

Exercise 5: Symmetries

Consider the following two-site model:

Hts =
∑

σ

εff
†
σfσ + Uf †

↑f↑f
†
↓f↓ + V

∑

σ

(

f †
σcσ + c†σfσ

)

+
∑

σ

εcc
†
σcσ , (3)

which corresponds to a single-impurity Anderson model with only a single bath site.

a) Show that, for the model eq. (1), the total particle number is conserved,
i.e. [Hts, N̂ ]− = 0, with N̂ =

∑

σ

(

f †
σfσ + c†σcσ

)

.

b) Show that, for the model eq. (1), the z-component of the total spin is conserved,
i.e. [Hts, Ŝz]− = 0, with Ŝz = f †

↑f↑ − f †
↓f↓ + c†↑c↑ − c†↓c↓.

Now consider a tight-binding model on a finite chain with periodic boundary con-
ditions:

Htb =
N
∑

i=1

ǫic
†
ici +

N−1
∑

i=1

ti

(

c†ici+1 + c†i+1ci

)

+ tN

(

c†Nc1 + c†1cN

)

. (4)

c) Perform the following two transformations:

H ′
tb = Htb(c

†
i → ci, ci → c†i ) ,

H ′′
tb = H ′

tb(c
†
i → −c†i , ci → −ci, i even) .

Under which conditions do we have H ′′
tb = Htb?
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