Übungsaufgaben zur Vorlesung

Computerphysik

apl. Prof. Dr. R. Bulla

SS 2018

Blatt 10: Abgabetermin: Montag, der 02.07.2018, 12:00

Aufgabe 1: harmonische Kette – Abbildung auf ein Eigenwertproblem (8 Punkte)

Die Bewegungsgleichungen der harmonischen Kette mit offenen Randbedingungen (siehe Aufgabe 1 von Blatt 9) lassen sich folgendermaßen auf ein Eigenwertproblem abbilden. Mit den Komponenten des Vektors $\vec{\xi}(t)$: $(\vec{\xi}(t))_n = \xi_n(t)$, erhält man:

$$m\frac{\mathrm{d}^2}{\mathrm{d}t^2}\vec{\xi}(t) = kM\vec{\xi}(t) \ .$$

Dabei wurden die Massen $m_i = m$ gesetzt.

a) Wie lautet die Matrix M? (1 Punkt)

Mit dem Ansatz $\vec{\xi}(t) = \vec{a}e^{\lambda t}$ ergibt sich ein Eigenwertproblem in der Form

$$M\vec{a} = \gamma \vec{a}$$
, mit $\gamma = \frac{m}{k}\lambda^2$.

Für die Eigenwerte gilt: $\gamma_n < 0$, deshalb wird $\lambda_n = i\omega_n$ gesetzt, mit den reellen Eigenfrequenzen ω_n . Die allgemeine Lösung der gekoppelten Differentialgleichungen lässt sich schreiben als:

$$\vec{\xi}(t) = \sum_{n=1}^{N} \vec{a}_n \left(\alpha_n \cos(\omega_n t) + \beta_n \sin(\omega_n t) \right) .$$

b) Bestimmen Sie für dieselben Anfangsbedingungen wie in Aufgabe 1c) von Blatt 9 die Koeffizienten α_n und β_n . Zeigen Sie damit, dass für die Zeitabhängigkeit der Auslenkungen gilt:

$$\xi_m(t) = \sum_{n=1}^{N} (\vec{a}_n)_m(\vec{a}_n)_1 \cos(\omega_n t) .$$
 (1)

Hinweis für die Herleitung: $\vec{a}_n \cdot \vec{a}_m = \delta_{nm}$. (3 Punkte)

c) Schreiben Sie ein Programm, welches die Matrix M belegt, daraus die Eigenvektoren \vec{a}_n und die dazugehörigen Eigenfrequenzen ω_n bestimmt und mit Hilfe von Gl. (1) die Zeitabhängigkeit der Auslenkungen berechnet (für k=1, m=1). Erstellen Sie (analog zu Aufgabe 1 von Blatt 9) ein Diagramm mit den Auslenkungen $\xi_n(t)$ mit $n=1,\ldots,5$ und $0\leq t\leq 10$ (Zahl der Massenpunkte: N=50). (4 Punkte)

Aufgabe 2: Spin-Konfigurationen

(4 Punkte)

Die Basis des Hilbertraums eines Systems aus N Spin- $\frac{1}{2}$ -Teilchen lässt sich schreiben als $\{|\sigma_1, \sigma_2, \dots, \sigma_N\rangle\}$, mit $\sigma_i = \uparrow, \downarrow$. Für einen gegebenen Zustand $|\psi\rangle = |\sigma_1, \sigma_2, \dots, \sigma_N\rangle$ ist die z-Komponente des Gesamtspins gegeben durch

$$S_{\text{ges}}^z = \sum_{i=1}^N s_i^z$$

mit $s_i^z=\pm\frac{1}{2}$ für $\sigma_i=\uparrow/\downarrow$ (\hbar wird hier = 1 gesetzt). Damit ergibt sich z.B. für den Zustand $|\psi\rangle=|\downarrow\uparrow\downarrow\downarrow\rangle$ der Wert $S_{\rm ges}^z=-1$.

Die 2^N Spin-Konfigurationen $|l\rangle$ lassen sich mit einer ganzen Zahl $l=0,1,\ldots,2^N-1$ durchnummerieren (siehe Vorlesungsskript Seite 34).

Berechnen Sie für alle Zustände $|l\rangle$ eines N-Spin-Systems den Gesamtspin S_{ges}^z und geben Sie die Zustände (nach aufsteigenden Werten von S_{ges}^z geordnet) nach folgendem Schema aus (hier für N=4):

Aufgabe 3: Zufallszahlen

(8 Punkte)

Der lineare Kongruenz-Generator erzeugt eine "pseudo-zufällige" Zahlenfolge $\{u_i\}$ nach der Vorschrift $u_{i+1} = (au_i + c) \mod m$. Im folgenden wird ein solcher Generator mit den Parametern

$$a = 1664525$$
, $c = 1013904223$, $m = 2^{32}$

und dem Startwert $u_1 = 7$ untersucht. Daraus ergibt sich die Folge $\{x_i\}$ mit $x_i = u_i/m$.

Wie in Kap. 4.1 der Vorlesung diskutiert, ist eine der Eigenschaften, die man an eine Sequenz von Zufallszahlen $\{x_i\}$, $i=1,\ldots,N$ stellt, die Gleichverteilung im Intervall [a,b] (hier [0,1]).

- a) Erstellen Sie ein Histogramm der P_n (Anzahl der x_i im Intervall $\left[\frac{n}{M}, \frac{n+1}{M}\right]$, $n = 0, \dots, M-1$) für M = 10 und N = 1000. (5 Punkte)
- b) Berechnen Sie die mittlere Abweichung von der Gleichverteilung

$$\Delta = \sum_{n=0}^{M-1} \left| \frac{P_n}{N} - \frac{1}{M} \right|$$

für M=10 und N zwischen $N=10^2$ und $N=10^4$. Stellen Sie Δ als Funktion von N graphisch dar. (3 Punkte)