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1. introduction to basic rg concepts

consider a model on a one-dimensional lattice, with operators a;
(i: lattice site), parameters J, h, . . ., and Hamiltonian H(J, h, .. .).

i=1 2 3 4 5 6
h h h h h h
combine two sites to give (effectively) one site with operators &; and
parameters J', i, . ...

ay a, ay

h h’ h’

we assume that the Hamiltonian H’ of the effective model is of the same
form, with renormalized parameters: H' = H(J', 1, .. .).
then rescale the model to the original lattice spacing:

J J
a, a, ag

h h’ h’



the mapping H — H’ is a renormalization group transformation

H(J H,...)= R{H(J,h,...)}

with K = (J, h,...): R(K) = K’ h
now consider a sequence of transformations: R K.
R - A g E/
this results in a trajectory in parameter space: |

flow diagrams and fixed points ) ,
h h unstable fixed point

A
stable fixed point
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all perturbations are irrelevant at least one relevant perturbation




the central issue:

How does the behaviour of the system change
under a scale transformation?

— the physics of the problem described as a flow between fixed points.

B

A
* S: starting point
C

» identify the fixed points of the model (and their physical meaning)
> identify the relevant/irrelevant perturbations
» if possible: describe the full flow from S to C

and finally: calculate physical properties



some technical issues:

» how to perform the mapping H — H’ for a given model?

» Ising model:(1d) in the partition function Z, sum over every
second spin

» but: the whole strategy depends on the details of the model
> spins/fermions/bosons
» dimension, lattice structure, etc.

— for a given model, it is a priori not clear whether a successful rg
scheme can be developed at all

in the following:

» (numerical) renormalization group for quantum impurity models

» Wilson’s NRG for the single-impurity Anderson model

» interpretation of fixed points and flow diagrams



2. introduction to quantum impurity physics

the Kondo effect: magnetic impurities in metals

T-dependence of resistivity

metal
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2. introduction to quantum impurity physics

the Kondo effect: magnetic impurities in metals

T-dependence of resistivity

Tk

metal

scattering processes of conduction
electrons at magnetic impurities
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screening of magnetic moments
due to singlet formation
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modelling of magnetic impurities in metals

here: single-impurity Anderson model
[A.C. Hewson, The Kondo Problem To Heavy Fermions, CUP 1993]

H=e > i, + URIH,
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the model describes:
e formation of local moments: | 1)¢, | {)¢
e scattering of conduction electrons
e screening of local moments below temperature scale Tk



3. the numerical renormalization group
K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975) — Kondo problem
review: R. Bulla, T. Costi, and Th. Pruschke, Rev. Mod. Phys. 80, 395 (2008)
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1. NRG-discretization parameter A > 1
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2. logarithmic discretization
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3. mapping on semi-infinite chain
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4. iterative diagonalization
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5. truncation
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AT E(M E..0 after truncation
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logarithmic discretization

starting point: siAm in the integral representation:

Hmp = > afify + UR K11,
1

Hbath = Z/ dS g(s)alo'aaa 9
- =i

1
Himp—bath = Z/ dsh(a)(fjasa—l—algfg).
— /1

A > 1 defines a set of intervals with discretization points

+x,=AN", n=0,1,2,....

€

‘
|
|
| |
| |
| |
Fp——
-1 AT AN AT AT 1



width of the intervals: dy = A~"(1 — A1)
within each interval: introduce a complete set of orthonormal functions

1 +iwnppe
e for xp11 < e < X,
Yip(e) =4 Y Tl e =
0 outside this interval .

expand the conduction electron operators a.. in this basis
o = 3 [@matiip(e) + brpr ()]
np
assumption:
h(e) = hE | Xpi1 < +e < Xp,
the hybridization term then takes the form:

y
1 _
/;1 de h(s)f;aso' = ﬁf; En: [’Y;ranOJ + Yn bnOa]

the impurity couples only to the
p = 0 components of the conduction band states!



the conduction electron term transforms to:

1
/ dE g(E)aZ(f eo = Z (E;a;pn'anpo + 5; bltp(rbnpa)
—1

np

+ Z ( (p p anpaanp o~ a;(p»pl)blpabnp’a) .
n,p#p’

For a linear dispersion, g(¢) = ¢, one obtains:
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structure of the Hamiltonian
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impurity couples to

Q p=0 only
discretization of the Hamiltonian:

drop the terms with p # 0 in the conduction band



now: relabel the operators an, = ans, etc.,
the discretized Hamiltonian takes the form:

H = Hmp+ Z [grtaimana + f;b}:abno]
no
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mapping on a semi-infinite chain

orthogonal transformation of the operators {an., bns } to a new set of
operators {cn. } such that the discretized Hamiltonian takes the form:

H o = Hp+ VY [fhoos + ), 1]

oo
+ > [snciacm +t (ci,acn+1g + cﬁﬂgcna)]

on=0
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the mapping is equivalent to the tridiagonalization of a matrix
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for a constant density of states
_ (A=A A-1/2
2\/1 _ /\*2”*1\/1 — A—2n-3

In the limit of large n this reduces to

n

ty —s % (1 +/\—1) A2

this means: in moving along the chain we start from high energies (U, V, D)
and go to arbitrary low energies

. . renormalization group .
high energies low energies

—0O—0—0—0—0—0-

in real space: double the system size by adding two sites to the chain
(for A =2)




iterative diagonalization

the chain Hamiltonian can be viewed as a series of Hamiltonians Hy
(N=0,1,2,...) which approaches H in the limit N — co:

H= lim A-N=D72p,

N— oo

with
Hy = AN-D/2| /50 § : T i
N — A |: imp p - (fO'COO' Coo.fo')

N N—1
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on=0 on=0

two successive Hamiltonians are related by

Hyi1 = VAHy + A2 Z ENH1 C,J(,HUCNMG
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starting point:

Hy = A~1/2 [Himp + Zsocgocog + \/%T)Z (fjco(, + cggfg)] )

renormalization group transformation:

Hni1 = R (Hn)
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set up an iterative scheme for the diagonalization of Hy
— construct a basis for Hy..1

riS)net = NN |s(N+1)) .
diagonalization: new eigenenergies En.1(w) and eigenstates |w) w1

truncation:

a) by, ) d)
= (r) ANE (r) Ein (r) after truncation




renormalization group flow and fixed points

plot the rescaled many-particle energies En(r) as a function of N
(odd N only)

NRG flow diagram
4.0 T T T T T T

— Q=0, S=1/2

fixed points of the —-- QeLs=0
single-impurity Anderson model

FO: free orbital
LM: local moment
SC: strong coupling

parameters: s = —0.5-107%, U= 1073, V = 0.004, and A = 2.5



renormalization group flow and fixed points
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4. fixed points in quantum impurity models

quantum impurity models show a variety of different fixed points
here:

» quantum critical point in the soft-gap Anderson model

single-impurity Anderson model 1.0F
with hybridization function
A(w) = Alwl|

— interacting fixed point

0.0

-1.0 0.0 1.0
®

» non-Fermi liquid fixed point in the two-channel Kondo model

~0O—0—0--@+-0—0—0-

— Majorana fermions



0.04

soft-gap Anderson model

phase diagram

flow diagrams

A<A A=A,
quantum critical strong coupling

local moment
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quantum phase transition
between SC and LM phases

non-trivial structure of the qcp

[H.-J. Lee, R. Bulla, M. Vojta
J. Phys.: Condens. Matter 17, 6935 (2005)]



two-channel Kondo model
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— non-Fermi liquid fixed point with residual impurity entropy Simp = 3

25 T T T T T

NRG flow diagram

— characteristic structure of the
non-Fermi liquid fixed point




structure of the fixed point

two sectors of excitations

E A
degeneracies

9/8 —— _— 32 :

11 _— 26 — 26
5/8 —— _— 12
12 —+— —_— 10 —_— 10
18 —

00— 2

sector | sector |l

the many-particle spectra of each sector can be constructed from
single-particle spectra of Majorana fermions

32



single-particle spectra

5/2

3/2

1/2
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[R. Bulla, A.C. Hewson, G.-M. Zhang, Phys. Rev. B 56, 11721 (1997)]



where does this structure come from?

— vector and scalar Majorana fermion chains with different
boundary conditions

conduction electrons

[ O O (@] O vector

impurity

scalar

from the numerical analysis of the two-channel Anderson model we obtain

emergent fractionalized degrees of freedom (Majorana fermions) at the
low-energy fixed point!

a quotation from:
Universality and Scaling in a Charge Two-Channel Kondo Device
A.K. Mitchell, L.A. Landau, L. Fritz, and E. Sela, Phys. Rev. Lett. 116, 157202 (2016)

Finally, we highlight a perspective on these results, connected with the ongoing search for Majorana
fermions. The quantitative agreement between theory and experiment over 9 orders of magnitude in
T/ Tk proves that this device realizes a non-Fermi liquid state involving a free Majorana localized
on the dot, described by the 2CK critical fixed point. These results therefore unambiguously
establish the existence of Majorana fermions in this frustrated strongly interacting system.



5. calculation of physical properties and applications

What can we do with the NRG?

calculation of
physical properties

quantum impurity
model

ofa

- thermodynamics

— dynamic correlation
functions

— non-equilibrium
properties

— one or several impurities

— one or several
fermionic/bosonic baths

— lattice models in
DMFT

to explain/
understand

exp. results/
physical phenomena

- Kondo physics

— non-Fermi liquid physics
and quantum criticality

— transport in quantum
dot systems




calculation of physical properties

A. thermodynamics

use the spectra of many-particle energies En(r) at each iteration to calculate
thermodynamic/static properties at a corresponding temperature

TN X /\7N/2
— specific heat C(T), susceptibility x(T), etc.
B. dynamic properties

example: single-particle Green function

Go(2) = (o, )z =1 | Tat e (1, (1), £11.) (1)

0
spectral function:

Alw) = —%Im G(w +1i5"), 2)



In each iteration, calculate the spectral function for each cluster of size N via:

(|

fl

~

Aon(w) = ZLN > 5w — (BN — EN) (67750 +e77F) ()

nm

T = 0: transitions between ground state

and all excited states

[ T > 0: in addition:

transitions between excited states




effect of the truncation on the spectral functions of each iteration:

N =14
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effect of the truncation on the spectral functions of each iteration:
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effect of the truncation on the spectral functions of each iteration:
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effect of the truncation on the spectral functions of each iteration:

N=14 N=16
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this means:

final spectral function = superposition of the data from all iterations



superposition of §-Peaks: ‘/M upto N
; \‘ ‘\ 1L ‘
0
N+2
I

up to N+2
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finally: broadening of the §-peaks — Gaussian on a logarithmic scale

e‘b2/4 exo | — (Inw—1In wn)2
b(JJn\/E b2

results for the single-impurity Anderson model:

O0(w — wn) —



finally: broadening of the §-peaks — Gaussian on a logarithmic scale
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finally: broadening of the §-peaks — Gaussian on a logarithmic scale

—b%/4 2
e (Inw — Inwp)
0w —wn) = exp|———— 4
( n) bwnﬁ [ b2 ( )
results for the single-impurity Anderson model:
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NRG for multi-channel models

A.K. Mitchell, M.R. Galpin, S. Wilson-Fletcher, D.E. Logan, and R. Bulla
Generalized Wilson chain for solving multichannel quantum impurity problems

Phys. Rev. B 89, 121105(R) (2014)

a) -— —_—

standard approach

\

b)

interleaved NRG
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6. summary

in this talk:

>

a short introduction to
» the renormalization group concept
» quantum impurity physics
» the NRG method
» flow diagrams and fixed points
» calculation of physical properties

| did not discuss:

>

>

>

quantum dots and Kondo physics
non-equilibrium properties
all the recent developments which considerably extended the power of
the NRG method; see the work of

» F. Anders, Th. Costi, J. von Delft, A. Mitchell, A. Weichselbaum, ...
relation to other renormalization group methods

» DMRG
» fRG



