Übungsaufgaben zur Vorlesung

Mathematische Methoden für das Lehramt (Ba of Arts)

apl. Prof. Dr. R. Bulla

WS 2016/17

Blatt 13: Abgabetermin: Mittwoch, der 08.02.2017, 10:00

Aufgabe 1: gedämpfte Schwingung

(7 Punkte)

Gegeben sei die Newtonsche Bewegungsgleichung für ein Teilchen der Masse m an einer Feder (Federkonstante k) mit zusätzlicher Reibungskraft $F_{\rm R}(\dot{x}) = -\bar{\gamma}\dot{x}$:

$$kx(t) + \bar{\gamma}\dot{x}(t) + m\ddot{x}(t) = 0.$$

a) Zeigen Sie, dass im aperiodischen Grenzfall $\gamma=\omega$ (mit $\gamma=\frac{\bar{\gamma}}{2m},\,\omega=\sqrt{k/m}$) die allgemeine Lösung gegeben ist durch

$$x(t) = (a_1 + a_2 t)e^{-\gamma t}$$
, $a_i \in \mathbb{R}$. (2 Punkte)

b) Welche Lösungen $(x_1(t) \text{ oder } x_2(t), \text{ siehe Vorlesungsskript})$ dominieren in den Fällen $\gamma = \omega$ und $\gamma > \omega$ für große Zeiten t? (2 Punkte)

Im Folgenden wird k=1 und m=1 gesetzt. Die Anfangsbedingungen sind gegeben durch x(0)=1 und $\dot{x}(0)=0$.

c) Wie lauten die Lösungen x(t) für diese Anfangsbedingungen jeweils für $\gamma=\frac{1}{2},$ $\gamma=1$ und $\gamma=2.$ (3 Punkte)

Aufgabe 2: komplexe Zahlen – Multiplikation

(6 Punkte)

Die komplexen Zahlen z_1, z_2, z_3 sind gegeben durch

$$z_1 = 1 + i$$
 , $z_2 = -2 + 2i$, $z_3 = -i$.

- a) Berechnen Sie die komplexen Zahlen $p_j = iz_j \ (j = 1, 2, 3) \dots (1 \text{ Punkt})$
- b) ... und $q_j = \frac{1}{\sqrt{2}}(1+i)z_j$ (j=1,2,3) (2 Punkte).
- c) Zeichnen Sie die z_j , p_j und q_j in der komplexen Ebene. Welche anschauliche Bedeutung ergibt sich daraus für die Multiplikation der z_j mit i bzw. $\frac{1}{\sqrt{2}}(1+i)$? (3 Punkte)

1

Aufgabe 3: komplexe Zahlen – Division

(3 Punkte)

Bestimmen Sie Real- und Imaginärteil der komplexen Zahlen

a)

$$\frac{1}{1-i} \ ,$$

b)

$$\frac{1+i}{(2-i)^2} \ ,$$

c)

$$\frac{i-2}{2+e^{i\pi/4}} \ .$$

Aufgabe 4: komplexe Zahlen – $e^{i\varphi}$

(6 Punkte)

Bestimmen Sie Real- und Imaginärteil der komplexen Zahlen

b)
$$ie^{\pi i}$$

a)
$$2e^{-i\pi/4}$$
, b) $ie^{\pi i}$, c) $e^{n\pi i}$ $(n \in \mathbb{Z})$.

Schreiben Sie die folgenden komplexen Zahlen in der Form $z=re^{i\varphi}$:

e)
$$(-1)^n (n \in \mathbb{Z})$$

d)
$$2-2i$$
, e) $(-1)^n (n \in \mathbb{Z})$, f) $(1+i)^n (n \in \mathbb{Z})$.

Aufgabe 5: Additionstheorem

(2 Punkte)

Stellen Sie mit Hilfe der Eulerschen Formel $e^{i\varphi}=\cos\varphi+i\sin\varphi$ ein Additionstheorem für $\sin(3\varphi)$ auf, d.h. stellen Sie $\sin(3\varphi)$ durch Kombinationen aus $\sin\varphi$ und $\cos\varphi$ dar.

2