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Exercise sheet 1

Solution

1. Landau states of 2D electron gas

Consider two-dimensional gas of free fermions in the homogeneous magnetic field Bz. The single
particle states of this problem are described by the Hamiltonian
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ie 2 B
H = —%j:xy (8]‘ — = j) ) (AxaAy) = 5(_3/737)

where the so-called radially symmetric gauge for the vector potential is chosen. To find the
eigenstates and energy levels of this problem it is advantageous to introduce complex coordinates
z=x+iyand Z =z — iy, so that 0, = 1(0, — i0,) and 0z = 3(9, + i0,) (check it!).

a) One needs to show that H = —L{D,, D;}, where {A, B} = AB+ BA is anticommutator,
while ) )
D.=0.— A, D:=0.- A,
c c
with complex vector potentials
A, =3(A, —iA)) = £Bz,  A;=3(A, +i4,) = —{B=.

The Hamiltonian in original variables reads

1
2m

e e e?
H= <a§ +02 - ?{890,1436} - ?{(%,Ax} - g(Ai + Aj)) .

Using 0, = (0, + 0z) and 9, = (0, + 0z), different terms of H can be rewritten as
2, 52 2 2

{8(E7Al‘} - {8z + a%yAz + AE} = {az; Az} + {azyAE} + {857142} + {827 AE}
{83/’ Ay} = iz{az - 825 Az - AE} = _{827AZ} + {8Z’A2} - {327 AZ} + {827 AE}

Hence . . 9 9
e ie ie ie
— —{0s, Az} — —{0y, Ay} = ——{0., Az} — —{05, A} (2)
c c c c
and
e? e2 . 42 2¢2
- AL+ AY) = 5 (As + 42)" +37%(A: = A2)°) = A As = {4, 45 (3)

Adding (1), (2) and (3) we obtain the required result

e

1 ie 1
H = —E{(?Z — ?AZ,BE - ?Ag} = —E{Dz,Dg}.



b)

c)

d)

The transformed gradient operators read (using that |z|?

any function from the right)

= zZz and implicitly acting on

b, = APl g o—lP/a% _ 5 _ LQ Bs = el b g - — 9, 1 2
4l% 4y
from where required expressions for velocity operators
. z -
Dzzaz—@, Dg:ag.
follow.
With the above result we get
~ 1, =~ ~ 2 - 1 . 2 - 1
H = _7(Dz82 + aEDz) = _7Dz82 - 7[aZaDz] = _7Dz82 + o 12
m m m m 2mly
2 z 1
== —E(ﬁz—%)ﬁg—i—iwc, h: 1.

Let’s check the n = 1 case. As it has been used just above, we notice that
- 1 1
— [0 5] = ——.
22057 = g
By denoting 1 (z,y) = Df(z) and omitting a constant term hw,./2 we check that

(H — o)y = — 2 D,0.D.f(2) = — = D.[0s, Do) f(2) = — D f(2) = hwethy.

2
m m mly

It was important here that f(z) is a holomorphic function of z, in other words it doesn’t
depend on z. Hence 11 (x,y) is the eigenfunction of H with the same eigenvalue %ﬁwc.

Let’s further study the case n > 2. We assume that by induction

n—1
21%

[0z, D] = Dr? ()

holds, where the case n = 2 reduces to Eq. (4). Then by using a property of commutators
[A, BC| = B[A,C] + [A, B]C, one derives

o
21%

n—lpna_ 1

0=, D) = [0, D? D, + D '[9z, D.] = — =D :
202, 202,

nn—1 nn—1
Dz - Dz )

and hence (5) is proved with n — n + 1. Therefore if 1, = D f(z), then

(7 = b0} = —— DR0ODIf(2) = —— D205, DS (2) =

DI f(2) = nhweth.
lB

In this way one sees that ¢, (x,y) = e_‘z|2/(4l23)1;n(x, y) is the eigenfunction of H with
the same eigenvalue (n + 3)hw,.



2. The non-Abelian Berry connection

Provided

|10 (A Z n4(A) Gra (X
then the new basis set |n/,(\)) is expressed via the original one with the help of an inverse unitary
transformation,
Z Ins(A) G, (V)
Therefore for the Berry connection in the new basis we have
(e = it (A)or ) =13 (G (10, (Ina(A)GH0)
= Z Gac(X N[0y, na(N) ) +i Z Gac(N)r,GT, (V)
- Z Gac(N)(A)eaGlhy(A) + zZGac )Ox, GL, ()
In the matrix form the above expression reads

At = GAIGT —i(0,,G)GT.

which is a required law of the non-Abelian gauge transformation for the Berry connection, and it
was used that (9y,G)GT + GOy, GT = 0 since GGT = 1.



