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Solution

3. Majorana boundary state in the Kitaev’s chain

Consider a chain consisting of L� 1 sites. Each site can be empty or occupied by an electron
(with the fixed spin direction). The Hamiltonian of such chain reads

H = −w
2

∑
x

(c†xcx+1 + c†x+1cx)− µ
∑
x

c†xcx +
∆

2

∑
x

(cxcx+1 + c†x+1c
†
x). (1)

Here w > 0 is the hopping amplitude, µ is a chemical potential, and ∆ > 0 is the induced
superconducting gap. To start, let us assume periodic boundary conditions and infinitely long
chain with L� 1.

a) By introducing the Fourier transform for electron operators cx = 1√
L

∑
k cke

ikx, one

needs to show that the Hamiltonian up to a constant term can be written in the Nambu
form

H =
∑
k>0

(c†k, c−k)

(
ξk ∆k

∆∗k −ξk

)(
ck
c†−k

)
, (2)

where ξk = −(µ+ w cos k) and ∆k = −i∆ sin k.

We use the identity 1
L

∑
x e

ikx−ik′x = δkk′ . Then the 1st term in Eq. (1) becomes

− w

2L

∑
x,kk′

(
e−ikxeik

′(x+1)c†kck′ + h.c.
)
k=k′
= −w

2

∑
k

(e−ikc†kck + h.c.) = −w
∑
k

cos k c†kck. (3)

In a similar way the term proportional to a chemical potential transforms into

− µ

L

∑
x,kk′

e−ikxeik
′xc†kck′

k=k′
= −µ

∑
k

c†kck. (4)

For the order parameter term one gets

∆

2L

∑
x,kk′

(
eikxeik

′(x+1)ckck′ + h.c.
)
k=−k′

=
∆

2

∑
k

(eikc−kck + h.c.) (5)

=
∆

2

∑
k>0

(eikc−kck + h.c.) +
∆

2

∑
k<0

(eikckc−k + h.c.) = i∆
∑
k>0

sin k(c−kck − c†kc
†
−k). (6)

Here, to get the very last expression, one needs to change k → −k in the 2nd sum. Now, using
c†kck = 1− ckc†k one can rewrite

(3) = −w
∑
k>0

cos k c†kck + w
∑
k>0

cos k c−kc
†
−k, (7)

(4) = −µ
∑
k>0

c†kck + µ
∑
k>0

c−kc
†
−k. (8)
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Introducing a dispersion relation ξk = −(µ + w cos k) and the momentum dependent ’p-wave’
order parameter ∆k = −i∆ sin k, Eqs. (7,8) and (6) give the desired Nambu representation,
Eq. (2).

b) The next task is to diagonalize the Hamiltonian (2) by the Bogolioubov transformation(
αk
α†−k

)
=

(
cos θk i sin θk
i sin θk cos θk

)(
ck
c†−k

)
,

where angle θ−k = −θk is odd function of k and check that anti-commutation relations
{αk, α†k′} = δkk′ and {αk, αk′} = 0 are preserved for any angle θk.

Let’s introduce −→ck =

(
ck
c†−k

)
and −→αk =

(
αk
α†−k

)
. Then the Bogolioubov transformation written

in a matrix form becomes −→αk = eiθkσ1−→ck and −→αk† = −→ck †e−iθkσ1 . It suffices then to discuss the case
k = k′ only, since for different momenta all operators anti-commute anyway. Thus, omitting k,
one can write {(−→c )µ, (

−→c )†ν} = δµν , where Greek indices refer to the Nambu space. The latter
gives

{(−→α )µ, (
−→α )†ν} = {(eiθkσ1−→c )µ, (

−→c †e−iθkσ1)ν} = {(eiθkσ1)µρ(
−→c )ρ, (

−→c †)σ(e−iθkσ1)σν}
ρ=σ
= (eiθkσ1)µρ(e

−iθkσ1)ρν = δµν . (9)

c) We now verify that the choice of a rotation angle to be sin 2θk = −i∆k/εk with εk =√
ξ2k + |∆k|2 brings H to the canonical form

H =
∑
k>0

εk(α
†
kαk − α−kα

†
−k) =

∑
k

εkα
†
kαk + Const.

(note, that in the 2nd sum a summation goes over all momenta k ∈ [−π, π]).

Using vectors −→αk the Hamiltonian in its canonical form reads

H =
∑
k>0

εk
−→αk†σ3−→αk. (10)

Expressing the latter in terms of original operators ck and c†k it becomes

H =
∑
k>0

εk
−→ck †e−iθkσ1σ3eiθkσ1−→ck =

∑
k>0

εk
−→ck †σ3e2iθkσ1−→ck . (11)

When written explicitly in the Nambu form, it reads

H =
∑
k>0

(c†k, c−k)

(
εk cos 2θk iεk sin 2θk
−iεk sin 2θk −εk cos 2θk

)(
ck
c†−k

)
, (12)

From here the required relations, sin 2θk = −i∆k/εk and εk =
√
ξ2k + |∆k|2, follow.

Let us further consider a half-infinite chain with x ∈ Z and x ≥ 1 and introduce two Majorana
fermions

γAx = i(c†x − cx), γBx = cx + c†x

per each cite.

d) Checking anti-commutation relations {γsx, γs
′
x′} = 2δxx′δss′ is straightforward.
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e) Next one can show that the lattice Hamiltonian (1) takes the following form (up to a
constant)

H = − iµ
2

+∞∑
x=1

γBx γ
A
x +

i

4

+∞∑
x=1

(w + ∆)γAx γ
B
x+1 +

i

4

+∞∑
x=1

(−w + ∆)γBx γ
A
x+1,

when expressed via Majorana fermions.

Let’s discuss the hopping term as an example.

−w
2

+∞∑
x=1

(c†xcx+1 + h.c.) = −w
8

+∞∑
x=1

(γBx − iγAx )(γBx+1 + iγAx+1) + h.c. (13)

= −w
8

+∞∑
x=1

(γBx γ
B
x+1 + iγBx γ

A
x+1 − iγAx γBx+1 + γAx γ

A
x+1) + h.c. (14)

At this stage we use that γAx γ
A
x+1 + h.c. = γAx γ

A
x+1 + γAx+1γ

A
x = {γAx , γAx+1} = 0 and the same for

γBx γ
B
x+1 term. On other hand iγBx γ

A
x+1 + h.c. = 2iγBx γ

A
x+1 and −iγAx γBx+1 + h.c. = −2iγAx γ

B
x+1.

Therefore the kinetic term reads

(14) =
iw

4

+∞∑
x=1

(γAx γ
B
x+1 − γBx γAx+1). (15)

Other pieces of the Hamiltonian can be re-expressed in terms of Majorana operators in a similar
fashion. For the µ-term one finds

− µ
+∞∑
x=1

c†xcx = −µ
4

+∞∑
x=1

(γBx − iγAx )(γBx + iγAx ) = −µ
4

+∞∑
x=1

(2 + iγBx γ
A
x − iγAx γBx ) =

− iµ

2

+∞∑
x=1

γBx γ
A
x + Const. (16)

And the ∆-term transforms as

∆

2

+∞∑
x=1

(cxcx+1 + h.c.) =
∆

8

+∞∑
x=1

(γBx + iγAx )(γBx+1 + iγAx+1) + h.c. =
i∆

4

+∞∑
x=1

(γAx γ
B
x+1 + γBx γ

A
x+1)

(17)

Then the sum of (15), (16) and (17) gives the required Hamiltonian.

f) In addition to the bulk spectrum εk, the half-chain may posses the boundary Majorana
zero-mode γ0 such that [γ0, H] = 0. To find it we initially derive a formal solution for
the infinite chain. For that we verify that the ansatz

γ0 =
∑
x

(C+z
x
+ + C−z

x
−)γBx

solves the equation of motion [γ0, H] = 0. Here C± are two arbitrary constants while z±
are two roots of the quadratic equation

(w + ∆)z2 + 2µz + (w −∆) = 0.

To prove it we use the relation

[A,BC] = {A,B}C −B{A,C}, (18)
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which is valid for any operators A,B and C. Indeed {A,B}C − B{A,C} = ABC + BAC −
BAC −BCA = ABC −BCA = [A,BC].

Let’s further assume that γ0 =
∑

x z
xγBx and derive the equation for z from [γ0, H] = 0 using

the relation (18). We apply the latter to each term of H. For the µ-term one finds

− iµ

2

+∞∑
x,x′=1

zx[γBx , γ
B
x′γ

A
x′ ] = − iµ

2

+∞∑
x,x′=1

zx{γBx , γBx′}γAx′
x=x′
= −iµ

+∞∑
x=1

zxγAx . (19)

The (w + ∆)-term gives

i

4
(w + ∆)

+∞∑
x,x′=1

zx[γBx , γ
A
x′γ

B
x′+1] = − i

4
(w + ∆)

+∞∑
x,x′=1

zxγAx′{γBx , γBx′+1}
x=x′+1

=

− i
2

(w + ∆)

+∞∑
x′=1

zx
′+1γAx′

x′→x
= − i

2
(w + ∆)

+∞∑
x=1

zx+1γAx , (20)

while the (−w + ∆)-term brings us

i

4
(−w + ∆)

+∞∑
x,x′=1

zx[γBx , γ
B
x′γ

A
x′+1] =

i

4
(−w + ∆)

+∞∑
x,x′=1

zx{γBx , γBx′}γAx′+1
x′=x
=

i

2
(−w + ∆)

+∞∑
x=1

zxγAx+1
x→x−1

=
i

2
(−w + ∆)

+∞∑
x=2

zx−1γAx . (21)

Summing up (19), (20) and (21) we find the commutator

[γ0, H] = −iµ
+∞∑
x=1

zxγAx −
i

2
(w + ∆)

+∞∑
x=1

zx+1γAx +
i

2
(−w + ∆)

+∞∑
x=2

zx−1γAx . (22)

From here it follows that for all x ≥ 2 the commutator is zero provided

− iµ− i

2
(w + ∆)z +

i

2
(−w + ∆)z−1 = 0, (23)

which gives the required quadratic equation.

g) The point x = 1 is special since the last sum in Eq. (22) starts from a cite x = 2. We
thus assume that γ0 =

∑+∞
x=1(C+z

x
+ + C−z

x
−)γBx and find the constrain on C±.

The relation (22) at x = 1 reduces to

− iµ(z+C+ + z−C−)− i

2
(w + ∆)(z2+C+ + z2−C−) = 0. (24)

But we know that z± are the roots of quadratic equation (23). Hence the relation (24) yields
i
2(−w + ∆)(C+ + C−) = 0 or C− = −C+. Hence

γ0 ∝
+∞∑
x=1

(zx+ − zx−)γBx (25)

is a possible zero mode up to a normalization constant provided both terms decay at x→ +∞.
The latter requires |z±| < 1.

h) One needs to check that the condition for existence of the Majorana boundary modes is
w > |µ|.

The latter condition guarantees that |z±| < 1. Indeed, from the quadratic equation for z it follows
that z+z− = (w −∆)(w + ∆). Since both w > 0 and ∆ > 0 (by the initial assumption), we see
that |z+z−| < 1. In particular, at the special point µ = w one finds that z+ = (w −∆)/(w + ∆)
and z− = −1. Then the direct inspection shows that if µ > 0 then |z−| < 1 at µ < w and |z−| > 1
otherwise. The case µ < 0 can be analyzed in a similar way.
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