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Solution

3. Majorana boundary state in the Kitaev’s chain

Consider a chain consisting of L >> 1 sites. Each site can be empty or occupied by an electron
(with the fixed spin direction). The Hamiltonian of such chain reads

w A
H = -5 Z(C;Cx+1 + CLHcm) — ,u;clcx + 5 ;(Cxcx+1 + CLHCL). (1)

T

Here w > 0 is the hopping amplitude, p is a chemical potential, and A > 0 is the induced
superconducting gap. To start, let us assume periodic boundary conditions and infinitely long
chain with L > 1.

a) By introducing the Fourier transform for electron operators ¢, = ﬁ >k cpe*® one
needs to show that the Hamiltonian up to a constant term can be written in the Nambu

form
_ t A Ck
nepeen(§ %0)(1,) ®

k>0
where &, = —(u + wcosk) and Ay = —iAsink.

We use the identity + >, etke=ik's — 5., Then the 1st term in Eq. (1) becomes

_w <€—ikxeik’(x+1)clck, + hC) k::k’ _% Z(e—ikclck + hC) = —w Z cosk CLCk- (3)
x,kk’ k k

In a similar way the term proportional to a chemical potential transforms into
_ % e—ikmeik/wczck/ k=k —u Z C};Ck- (4)
z,kk’' k

For the order parameter term one gets

A ika ik (z41) k=—k A ik
5L (e e cker + h.c.) = 3 Z(e c_kck +h.c.) (5)
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= 5 Z(emc_kck +h.c.)+ B Z(e’kckc_k +h.c.) =iA Zsm k(c_ger — chik). (6)
k>0 k<0 k>0

Here, to get the very last expression, one needs to change k — —k in the 2nd sum. Now, using
chk =1- ckc:,rC one can rewrite

(3) = —choskchck +chosk:c_ch_k, (7)
k>0 k>0

4) = —u Z chk + u Z C—kCT,k- (8)
k>0 k>0



Introducing a dispersion relation & = —(u + wcos k) and the momentum dependent 'p-wave’
order parameter Ay = —iAsink, Eqgs. (7,8) and (6) give the desired Nambu representation,

Eq. (2).

b) The next task is to diagonalize the Hamiltonian (2) by the Bogolioubov transformation

Qo [ cost isind Ck

aT_k, ~ \ isinf cosb cT_k ’
where angle 0_j = —0;, is odd function of k and check that anti-commutation relations
{ag, oz;/} = ki and {ag, ap } = 0 are preserved for any angle 6.

c Q@
Let’s introduce C_k) = < ch ) and oT;Z = ( aTk > Then the Bogolioubov transformation written

—k —k
in a matrix form becomes aj = ¢91¢} and ajf = ¢fte~®ko1. It suffices then to discuss the case

k = K’ only, since for different momenta all operators anti-commute anyway. Thus, omitting &,
one can write {(7),, (Y = O, where Greek indices refer to the Nambu space. The latter
gives

{(ﬁ)uv (3):&} = {(ewkal?)uv (?Te_wkgl)u} = {(ewkol)up(?)pv (?T)U(‘f—wkal)au}

p=0 (Ciekol)up(e_iekal)puz - (9)

c¢) We now verify that the choice of a rotation angle to be sin 20 = —iAy /e, with ¢ =

f,% + |Ag|? brings H to the canonical form

H = Z ek(alak — a,kaik) = Z ekazak + Const.
k>0 k

(note, that in the 2nd sum a summation goes over all momenta k € [—m, 7]).
Using vectors @, the Hamiltonian in its canonical form reads

H=> e osa. (10)
k>0

Expressing the latter in terms of original operators ¢; and CL it becomes
H = Z ercite ko1 g eifho1ey — Z exchiose? Rl (11)
k>0 k>0
When written explicitly in the Nambu form, it reads

_ t €}, cos 20y, 1€y, sin 20y, Ck
H = go(ck’c_k) < —i€,sin 20,  —ey, cos 20, cik ’ (12)

From here the required relations, sin 20, = —iAg/ex and e = \/5,3 + |Ag|?, follow.

Let us further consider a half-infinite chain with z € Z and x > 1 and introduce two Majorana

fermions

’73;4 :i(c};—cm), ’Yf :Cm‘i‘cjc

per each cite.

d) Checking anti-commutation relations {~3, 'y;i} = 204,/0, is straightforward.



e) Next one can show that the lattice Hamiltonian (1) takes the following form (up to a

constant)
z,u +0oo i —+00
A A
H=-2% %%+ Zw+A Ve g D (Cw+ A,
=1 r=1

when expressed via Majorana fermions.

Let’s discuss the hopping term as an example.

+00 +oo
w w . .
) Z(ijciv-l-l +he.) = ) Z(’Yf - W:’cq)(’YxBH + Z’Yfﬂ) + h.c. (13)
=1 =1
w +o0
= =5 2 (W i — 1 + ) + he (14)

=1

At this stage we use that y4 'yx“ + h c. =~ ')/:L,Jrl + 7x+1'7x {y4, 7;4“} = 0 and the same for
’yffyfﬂ term. On other hand iv? 7x+1 + h.c. = 2iyB fymH and —ivf’yfﬂ + h.ec. = —Qinfny.
Therefore the kinetic term reads

iw +oo

A_B B A
r=1

Other pieces of the Hamiltonian can be re-expressed in terms of Majorana operators in a similar
fashion. For the p-term one finds

+oo
. , B
- MZ ches = =D (0F —inH(F + i) = Z2+m%—%%)—
r=1
’uzfyx v, + Const. (16)

And the A-term transforms as

[e'¢] A 400 lA 400
3 2 (Gt +he) =23 (0 +i) (v +iven) Hhe = = D (0 + )
=1 r=1 rx=1

(17)
Then the sum of (15), (16) and (17) gives the required Hamiltonian.

f) In addition to the bulk spectrum ¢, the half-chain may posses the boundary Majorana
zero-mode 7y such that [yy, H] = 0. To find it we initially derive a formal solution for
the infinite chain. For that we verify that the ansatz

20 =3 (Cazh +C_2E)F

T

solves the equation of motion [yy, H] = 0. Here C'y are two arbitrary constants while z4
are two roots of the quadratic equation

(w+ A)2* 4+ 2uz + (w — A) = 0.

To prove it we use the relation

[4, BC] = {A, B}C — B{A,C}, (18)
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which is valid for any operators A, B and C. Indeed {A, B}C' — B{A,C} = ABC + BAC —
BAC — BCA = ABC — BCA = [A, BC].
Let’s further assume that vo = > 2%y5 and derive the equation for z from [yo, H] = 0 using
the relation (18). We apply the latter to each term of H. For the u-term one finds
i = B B A M x B By, Az=z' . ~ z A
-5 2 A v = Z (V2 v = iy 2 (19)
r,x'=1 2= =

The (w + A)-term gives

) +o0 ; +oo
7 A ? A =z'+1
Z(w +A) Z e Y] = _Z(w +4) Z e v} T =
r,x’'=1 r,x'=1
7 =2 ’ / ) =
—§(w + A) Z Z g =T —5(“) +A) Z ZHy, (20)
z/=1

while the (—w + A)-term brings us

. “+o00 . “+00
4 B _B_A ¢ B By A =
w8 Y0 i) = pcw+ ) Y0 I e =
r,x’'=1 r,x'=1
+oo Z
—w—i—A)sz’ny ezl —w+ A) sz 1,4 (21)

Summing up (19), (20) and (21) we find the commutator
+00 +oo

i
o, H :—WZZ TGt a)) x“%’HQ( wHA)Y (22)
=1 =2
From here it follows that for all z > 2 the commutator is zero provided
. i i _
—w—i(w—l—A)z—i—i(—w—i—A)z L=, (23)

which gives the required quadratic equation.

g) The point 2 = 1 is special since the last sum in Eq. (22) starts from a cite z = 2. We
thus assume that vo = Y72 (C4 2% + C_2z% )P and find the constrain on Cl.

The relation (22) at x = 1 reduces to
—ip(z4+Cy +2-C-) — %(w +A)(Z1CL +220-) = 0. (24)

But we know that zy are the roots of quadratic equation (23). Hence the relation (24) yields
s(—w+A)(Cy+C-)=0o0r C_ = —C,. Hence

“+oo
Yo o< Y (25 =2y (25)
r=1

is a possible zero mode up to a normalization constant provided both terms decay at x — +oc.
The latter requires |z4| < 1.

h) One needs to check that the condition for existence of the Majorana boundary modes is

w > |pl.
The latter condition guarantees that |z1| < 1. Indeed, from the quadratic equation for z it follows
that z42_ = (w — A)(w + A). Since both w > 0 and A > 0 (by the initial assumption), we see
that |z42_| < 1. In particular, at the special point 1 = w one finds that z; = (w — A)/(w + A)
and z_ = —1. Then the direct inspection shows that if > 0 then |2_| < 1 at p < w and |z_| > 1
otherwise. The case p < 0 can be analyzed in a similar way.

4



