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Solution

1. Braiding of anyons

In the lecture we considered the braiding statistics of e and m particles. In this exercise, we
calculate the braiding statistics of e and ε = (e,m).

1. Write down the space-time diagram that corresponds to the definition of the entry Seε of
the S-matrix.

2. Write down the corresponding expectation value.

3. Parameterize the braid by string and ribbon operators along suitable contours.

4. Evaluate the expectation value step-by-step by using the properties of the string operators.

Solution

Consider the following space time plot and the corresponding contours on the lattice.

They evaluate to the following expectation value when expressed in terms of string operators

Se,ε = 〈GS|Sm(C̄3)Se(C3)Se(C2)Sm(C̄1)Se(C1)|GS〉 . (1)

We apply the following properties of string operators to simplify the expression. First, string
operators of the same anyon type commute

Se,ε = 〈GS|Sm(C̄3)Se(C2)Se(C3)Sm(C̄1)Se(C1)|GS〉 . (2)

String operators e and m anticommute if their contours cross an odd number of times, i.e.,

Se,ε = −〈GS|Se(C2)Sm(C̄3)Se(C3)Sm(C̄1)Se(C1)|GS〉 . (3)

String operators with non-overlapping contours commute

Se,ε = −〈GS|Se(C2)Sm(C̄3)Sm(C̄1)Se(C3)Se(C1)|GS〉 , (4)
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contours can be joined

Se,ε = −〈GS|Se(C2)Sm(C̄3 ∪ C̄1)Se(C3 ∪ C1)|GS〉 , (5)

and string-operators along closed contours commute with the Hamiltonian and thus preserve the
ground state space. In particular string-operators along topologically trivial closed contours act
trivially on the ground state space, hence

Se,ε = −〈GS|GS〉 . (6)

The ground state is normalized and we obtain

Se,ε = −1 . (7)

2. Commuting projector Hamiltonians

In the lecture we discussed how the ground state space G of a commuting projector Hamiltonian

H =
∑
i

Pi , [Pi, Pj ] = 0 , P 2
i = Pi , (8)

can be obtained from sequentially projecting to the orthogonal complements

P⊥i = (1− Pi) (9)

of all individual projectors

P =
∏
i

P⊥i , Im[P ] = G , HG = 0 . (10)

As a warm up, convince yourself, that Pi and P⊥i are indeed orthogonal and that PiP = 0.
Next, consider a tiny ferromagnet, i.e., a system of three spins on the vertices of a triangle with
the following Hamiltonian

HF = −
∑
i

zizi+1 . (11)

1. Write this Hamiltonian as a sum of commuting projectors as in Eq. (8) by shifting the
zero-energy and multiplication by a scalar and convince yourself that this does not change
the eigenstates of the Hamiltonian.

2. Define the orthogonal complements of the individual projectors and ’calculate’ their images
Gi = Im[P⊥i ].

3. Convince yourself that the image of P =
∏
i P
⊥
i is the intersection of the individual images,

i.e., Im[P ] = G = ∩iGi and calculate it.

In systems with frustration, the recipe to construct the ground state space as Im[P ] fails. As an
illustration consider the example for anti-ferromagnetic interactions, i.e.,

HAF =
∑
i

zizi+1 (12)

and repeat the three steps above. What do you find for G and why is this result expected? How
does the actual ground state space look like? What it the ground state energy of the commuting
projector Hamiltonian?
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Solution

Ferromagnet
1. The Hamiltonian in Eq. (11) can be written as a commuting projector Hamiltonian by adding
a constant term 31 and dividing the whole Hamiltonian by 2

H ′F =
HF + 31

2
=
∑
i

1− zizi+1

2
=
∑
i

PFi . (13)

This shifts the spectrum by an offset of 3/2 and rescales the level spacings by 1/2. The eigenstates
are unchanged. If |Ψ〉 is an eigenstate to HF with eigenvalue λ, the state |Ψ〉 is also an eigenstate
of H ′F with a shifted ans scaled eigenvalue

HF |Ψ〉 = λ |Ψ〉 ⇒ H ′F =
HF + 31

2
|Ψ〉 =

λ+ 3

2
|Ψ〉 . (14)

2. The images GFi = Im[P⊥i ] of the orthogonal complements P⊥i = 1− Pi = 1+zizi+1

2 are

GF1 = span{|000〉 , |001〉 , |110〉 , |111〉}
GF2 = span{|000〉 , |100〉 , |011〉 , |111〉}
GF3 = span{|000〉 , |010〉 , |101〉 , |111〉}

3. The ground state projector P is a product of all individual P⊥i , hence its image contains
exactly the states that survive all the P⊥i projections. This is the intersection of the images Gi
which is

GF = span{|000〉 , |111〉} . (15)

Anti-ferromagnet For the antiferrmagnet, the projector is ¶AF
i = 1+zizi+1

2 and the images of
the orthogonal complements are

GAf
1 = span{|010〉 , |011〉 , |100〉 , |101〉}
GAf
2 = span{|001〉 , |101〉 , |010〉 , |110〉}
GAf
3 = span{|100〉 , |110〉 , |001〉 , |011〉}

We note that the intersection is empty. This is expected because on a triangle not all pairs
of spins can point in opposite directions. The ground state space can be calculated explicitly.
It is six-fold degenerate since all states except for |000〉 and |111〉 are equally bad. We find
that the ground state energy of HAF is −1 and the ground state energy of the commuting
projector Hamiltonian is (3− 1)/2 = 1. This means, the minimal possible energy values (zero) of
a commuting projector Hamiltonian is not reached.

3. Topological ground state degeneracy and Euler characteristic∗

In the lecture we claimed that the ground state degeneracy of the toric code depends on the
topology of the manifold on which it is defined as

dimG = 22g , (16)

where g is the genus of the manifold, i.e, the number of (independent) holes. In this exercise
we will sketch the proof of this formula. It is divided into two parts. First, we will repeat the
counting of independent projectors to express dimG as a function of the number of qubits N
and the number of independent projectors #Pind as

dimG = 2N−#Pind . (17)

Second, we will find that the number N −#Pind does only depend on the genus of the manifold.
a) Independent projectors
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1. Convince yourself that the total Hilbert space dimension is 2N and that a single vertex or
a single plaquette projector projects out half the space, i.e. dim Im[Pv] = 2N/2 = 2N−1.

2. When we count independent vertex projectors, we find that on any closed manifold, we
have the following two constraints∏

v

Pv = 1 ,
∏
p

Bp = 1 , (18)

and thus the number of independent vertex and plaquette operators is reduced. Check this
constraint for a small closed manifold of your choice and understand where it comes from1.

3. Conclude that the ground state space dimension is

dimG = 2Ne−Nv−Nf+2 , (19)

where Ne is the number of edges of the lattice, Nv is the number of vertices and Nf is the
number of faces (plaquettes).

b) Euler characteristic

The expression
χ = Nv −Ne +Nf , (20)

is well known and called the Euler characteristic of a manifold. It is independent of the
discretization (drawing a mesh on the manifold) of the manifold and only depends on the genus
g (the number of holes) as

χ = 2− 2g . (21)

Inserting Eq. (20) into Eq. (19) immediately yields the desired result in Eq. (16). However, we
are a little more ambitious here and try to convince ourselves that Eq. (20) is indeed correct.

1. Count the number of vertices, edges and faces for a minimal sphere, i.e., a tetrahedron.

2. Convince yourself that the Euler characteristic does not change when you remove a single
edge from a grid to form larger plaquettes.

3. Convince yourself that the following ’fine-graining’ does also not change the Euler charac-
teristic2.

4. Understand the ’lattice’ and the Euler characteristic of a minimal cylinder and calculate
the Euler characteristic of a minimal torus.

1Hint: recall how Se[∂D] =
∏

p∈D Bp was ’derived’.
2This fine-graining is called a 1-3 Pachner move. Sequences of this move and another Pachner move (the 2-2

move) can transform any triangulation of a manifold into another triangulation.
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5. To increase the genus, we can glue another torus (handle) to our manifold. What happens
to the Euler characteristic in this process? Hint: Consider to remove two discs from the
two manifolds that we want to glue and to connect them with a minimal cylinder.

Solution

a) Counting independent projectors
1. The total Hilbert space dimension of a system with N qubits is 2N . The vertex projector
projects onto all states with even parity of the four spins around a vertex. Half of all the states in
the Hilbert space fulfill this condition, while the other half does not. For the plaquette operator
we can argue the same way. We can think about the space as being written in the basis of x̂.
Then, the plaquette operator again checks for even parity (now of x-basis states) and we find
that it also divides the space in two halves.
2. We know that a x(z)-string operator along a closed contour can be expressed as the product of
all plaquette (vertex) operators inside the contour. Consider the case of x-strings and plaquette.
We choose a topologically trivial loop C on a closed manifold, such that the contour divides the
manifold into an inside and outside part, i.e., C = ∂Rin = ∂out and M = Rin ∪Rout. Its string
operator Sm(C) can be expressed as

Sm(C) = Sm(∂Rin) =
∏
p∈Rin

Bp (22)

and likewise
Sm(C) = Sm(∂Rout) =

∏
p∈Rout

Bp . (23)

We know that a string operator squares to one, i.e.,

Sm(C)2 = Sm(C)Sm(C) = 1 . (24)

Inserting Eq. (22) and Eq. (23) we find

Sm(C)Sm(C) =
∏
p∈Rin

Bp
∏

p∈Rout

Bp =
∏

p∈Rin∪Rout

Bp =
∏
p∈M

Bp = 1 . (25)

The considerations for the vertex operators is the same (consider a z-string).
3. The ground state degeneracy on a manifold is given by the number of qubits and the number
of independent vertex and plaquette projectors. There are Nv − 1 independent vertex projectors
and Np − 1 independent plaquette projectors, each reducing the ground state degeneracy by a
factor of 1

2 . Thus, we obtain dimG = 2N/(2Nv−12Np−1) which gives the desired result.
b) Euler characteristic
Remarks. The questions of this exercise sheet serve the purpose to get familiar with combi-
natorial representations of manifolds and the Euler characteristic and introduce some concepts
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used to calculate topological invariants on an informal level. Their answers do not result in a full
proof of Eq. (21) (which is beyond the scope of this lecture), but give some intuition for why
Eq. (21) is correct. As a first warm up, we consider a simple type of manifold discretization
called simplicial complex. It is a tiling of the manifold with triangles. Every 2D manifold can be
triangulated in that way. The minimal simplicial complex of a sphere is a tetrahedron. We can
explicitly calculate the Euler characteristic (ex. 1).
To show that a quantity is independent of the particular discretization and only depends on the
topology of the manifold, one often invokes the fact that two topological equivalent triangulations
(i.e., the manifold has the same genus) can be transformed into each other by applying a sequence
of so-called Pachner moves. One such move (a particular fine graining) is considered in ex. 3,
where we see that the Euler characteristic is invariant under such a deformation.
To get an idea about more general cellulations, e.g., a mesh that contains also squares, or general
n-gons, we convince ourselves that the Euler characteristic does not change when e.g. two
triangles are ’merged’ to a square in ex. 2.
General ’meshes’ are more formally known as CW complexes or sometimes just ’cell complexes’.
A simple class of 2D cell-complexes are the ones that consist of n-gons3. Here n can be as small
as one. The edges of the n-gons have to be bounded by vertices, i.e., each edge ends in a vertex,
but it can be the same vertex for both ends. As an example, consider a small cell complex for a
sphere. It consists of two 1-gons (northern and southern hemisphere) connected along a common
edge (equator), i.e, the cell complex consists of two faces, one edge and one vertex and its Euler
characteristic is 2 = 2− 2 · 0. In ex. 4 and 5 we consider manifolds discretized with cell complexes
of this kind and investigate how the Euler characteristic changes when we glue these manifolds
together changing their genus.
Answers. 1. A minimal sphere can be represented as a tetrahedron with four faces, six edges
and four vertices. Its genus is zero. And we find

χmin sphere = 4− 6 + 4 = 2 = 2− 2 · 0 , (26)

which is consistent with Eq. (21).
2. If we remove an edge in a grid, the number of edges changes from Ne → Ne − 1. The number
of faces changes from Nf → Nf − 1 and the number of vertices does not change, thus the EUler
characteristic remains the same.
3. The 1-3 Pachner move has the following effect

Nv −Ne +Nf → (Nv + 1)− (Ne + 3) + (Nf + 2) (27)

and thus does not change χ.
4. We now want to compare the Euler characteristic of a cylinder that is topologically equivalent
to a sphere (genus zero) to that of a torus. First, we find a cellulation for the cylinder. It can be
cellulated as depicted above, i.e., by three faces, two 1-gons for the left and right side (red and
orange) and one square (blue) with two opposing edges identified for the middle part. It has
three edges (one left, one right and one in the middle) and two vertices (one left and one right)
and its Euler characteristic is two as expected (χ = 2− 2 · 0). We now compare it to a torus. To
this end, we imagine ’gluing’ the left and right side together. In doing so orange and red faces
are removed. The two vertices merge into one vertex and the two closed edges melt into one
closed edge. Thus, we are left with one vertex, two edges and one face and

χ = 1− 2 + 1 = 0 = 2− 2 · 1 , (28)

which is consistent with Eq. (21), because the genus of a torus is gtorus = 1.

3General 2D CW complexes are also allowed to have faces that are not bounded by edges, but by a single
vertex. We will not consider these here.
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5. When gluing another tours (handle) to a manifold, we increase its genus by one and hence we
expect that the Euler characteristic changes by

χ = 2− 2g → χ′ = 2− 2(g + 1) = 2− 2g − 2 = χ− 2 . (29)

In general, when we glue two manifolds with genus g1 and g2 in the way described above, we
expect to obtain a manifold with genus g′ = g1 + g2. We consider now how the number of edges,
faces and vertices changes in such a process. Before we glue, we have all vertices, edges and
faces of the two manifolds. The gluing itself has the following effect. We cut two holes in the
manifold, i.e., we remove two discs (red). Then we insert a minimal open cylinder (i.e., the
cylinder without the red and orange left and right face). Thus, we subtract two faces and then
add one face and the total number of faces decreases by one. The attached cylinder adds one
additional edge to the cell complex, thus the number of edges increases by one. The number of
vertices stays the same. Thus, we have

χ′ = N ′v −N ′e +N ′f = N (1)
v +N (2)

v − (N (1)
e +N (2)

e + 1) + (N
(1)
f +N

(2)
f − 1)

= (N (1)
v −N (1)

e +N
(1)
f ) + (N (2)

v −N (2)
e +N

(2)
f )− 2

= χ(1) + χ(2) − 2 = (2− 2g1) + (2− 2g2)− 2 = 2− 2(g1 + g2) = 2− 2g′ .

We have shown that the Euler characteristic changes as χ′ = χ(1) + χ(2) − 2 and verified the
intuition, that the genus of two manifolds glued together in this way is the sum of the two
genera of the individual manifolds. Thus, by induction we can verify that Eq. (21) holds for all
manifolds glued from minimal tori. The fact that every 2D surface can be glued from tori is
known as ’handle decomposition’.
Proof sketch. For a complete proof, we would also need to show that every cellulation can be
obtained by fine graining a cellulation of glued minimal tori and that the Euler characteristic
does not change under such fine grainings. Similiar to the considerations for the Pachner move,
we can show, that adding a vertex to split one edge into two edges does not change the Euler
characteristic and that adding an additional edge connecting two vertices and splitting a face
into two does also not change the Euler characteristic. With these moves we can obtain arbitrary
fine grainings and deform cellulations as we wish.
Note to tutorial question about minimal cellulation of a torus. It was suggested to
cellulate a torus with a single edge, a vertex and one face. This is not a proper CW complex. A
general 2D CW complex is obtained by gluing discs to a collection of points, lines and circles (cf
wikipedia). We can not obtain the cellulation above in this way. This can be seen by cutting the
torus open along the one given edge. We obtain an annulus and not a disk. The minimal CW
complex of a torus is the one obtained in ex. 4. It can be constructed by taking two circles that
meet at one vertex and glue a square-shaped disc to them.
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4. Electric-magnetic duality

In the lecture, we mentioned several times, that vertex and plaquette operators are ’equivalent’.
In this exercise, we convince ourselves that vertex and plaquette operators are indeed related by
a local change of basis and going to the dual lattice. We start with the toric code Hamiltonian

HTC = −
∑
v

Av −
∑
p

Bp , (30)

of vertex and plaquette operators, where Av acts with z on all four spins around a vertex and
Bp with x on all spins around a plaquette.

1. Local change of basis. Find a unitary 2×2 matrix H4, for which H†xH = z and HzH† = x.
Show that one can choose H to have the additional properties H2 = 1 and HT = H.

2. Define the basis change U = ⊗iHi, i.e., applying H to every site, and write H ′ = UHU †

as a sum of new vertex and plaquette operators H ′ = −
∑

v A
′
v −

∑
pB
′
p.

3. Consider the dual lattice and write H ′ as a sum of vertex and plaquette operators on
the dual lattice. Convince yourself that under both local basis change and going to the
dual lattice, Av is mapped to Bp. Conclude that likewise Bp is mapped to Av and as a
consequence the role of e and m-particles is interchanged.

This mapping is known as ’electric-magnetic’-duality and we note that the toric code is self-dual
under this mapping.

Solution

1. With the ansatz H = HT and H† = H−1 = H we have that H is real and symmetric. We
write

H =

(
a b
b c

)
(31)

and evaluate HzH = x, i.e., (
a2 − b2 ab− bc
ab− bc b2 − c2

)
=

(
0 1
1 0

)
, (32)

from which we fint that a2 = b2 = c2 and a = −c. We guess a = b = 1 and c = −1 and normalize
the matrix such that also H2 = 1 is fulfilled. We find

H =
1√
2

(
1 1
1 −1

)
. (33)

2. Applying U , we know that x changes to z and vice-versa. We have A′v =
∏
i∈v xi and

B′p =
∏
j∈p zi.

3. On the dual lattice, vertices turn into plaquettes and plaquettes turn into vertices.

4Unfortunately, this particular matrix is called the Hadamard matrix/gate and is always denoted by the letter
H, which is also the letter used for the Hamiltonian.
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