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1. Braiding of Majorana fermions

Consider four Majorana modes, γ1, . . . , γ4, satisfying anti-commutation relations {γi, γj} = 2δij .
They can be realized, e.g., as zero bound states of half-quantum vorticies in a 2D p-wave
superconductor. Let’s introduce operators

c1 =
1

2
(γ1 + iγ2), c2 =

1

2
(γ3 + iγ4) (1)

which combine two pairs of Majoranas in two ’complex’ fermions. Let further |0〉 ≡ |0〉c be the

vacuum state (ci|0〉c = 0) and |1〉 ≡ c†1c
†
2|0〉c be the doubly occupied state.

a) Upto a global phase, three braiding operators B12, B23 and B34 for Majorana fermions
read Bi i+1 = exp(π4γi+1γi) with i = 1, 2, 3. Verify that Bi i+1 can be written in the
equivalent form

Bi i+1 =
1√
2

(1 + γi+1γi). (2)

b) Check that in the even parity basis {|0〉, |1〉} the matrices of braiding operators are

B12 = B34 = R =

(
e−iπ/4 0

0 eiπ/4

)
, B23 =

1√
2

(
1 −i
−i 1

)
. (3)

c) Check the defining relation of braiding group

B12B23B12
!

= B23B12B23. (4)

You may perform a calculation either in a matrix or in an operator form (the latter is
more general, since it holds for both even and odd parity sectors). Draw related brading
diagrams for world lines of three Majoranas.

As it was discussed in a lecture, one may pair 4 Majoranas into 2 fermions in a different way by
introducing operators

d1 =
1

2
(γ1 + iγ4), d2 = − i

2
(γ2 + iγ3) (5)

and the corresponding basis states, |0′〉 ≡ |0〉d and |1′〉 ≡ d†1d
†
2|0〉d, where di|0〉d = 0 is the

definition of a vacuum in d-basis and which is not the same as |0〉c.

d) Check that two choices of basis states are related by the F -matrix(
|0〉
|1〉

)
= F

(
|0′〉
|1′〉

)
, F =

1√
2

(
1 1
1 −1

)
. (6)

Hint: One may start by assuming that |0′〉 = |0〉α+ |1〉β and find two unknown constants from
the defining relation di|0′〉 = 0 and the normalization by expressing d-operators in terms of ci
and c†i . After that one may evaluate |1′〉 in terms of c-basis.
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Figure 1: Two different basis sets of the splitting space V τττ
τ .

e) Verify the general relation B23 = FRF−1 derived in a lecture, which relates B23 in the
basis of c-operators to its diagonal form in d-basis.

2. Fibonacci anyons

Consider the Fibonacci anyonic system with two particle types {I, τ} and fusion rules

I× τ = τ × I = τ, τ × τ = I + τ. (7)

a) Verify that a dimension of the Hilbert space of n anyons of type τ equals to dim(H(n)
τ ) =

Fn, where Fn are Fibonacci numbers.

Hint: You may check that a number of all trees with a overall fusion channel being I is Fn−2
while the number of those with a final result being τ is Fn−1. Since Fibonacci numbers are
defined by a recurrence relation Fn = Fn−2 + Fn−1 with F0 = F1 = 0, it will bring you the
required result. The proof can be done by induction.

Consider now a two-dimensional Hilbert space of three anyons V τττ
τ with the overall fusion

channel τ . We denote its orthogonal basis in terms of left standard trees as {|0〉, |1〉} and in
terms of right standard trees as {|0′〉, |1′〉}, see Fig. 1. Similar to Eq. (6), these two basis sets are
related by the 2× 2 orthogonal fusion matrix F ττττ satisfying to the pentagon equation

(F ττcτ )da(F
aττ
τ )cb =

∑
e

(F τττd )ca(F
τeτ
τ )db(F

τττ
b )ea. (8)

b) Check that splitting spaces V τττ
I and V Iττ

τ are one-dimensional by drawing the corre-
sponding left and right fusion trees. Then set a = d = I and c = b = τ and derive a
simpler equation for fusion matrix

(F ττττ )II = (F ττττ )Iτ (F ττττ )τI . (9)

You may assume that F-matrices in one-dimensional splitting spaces just equal to 1.

c) Solve Eq. (9) under the assumption that matrix F ττττ is orthogonal with det = −1, which
corresponds to a particular gauge choice. The result you’ll obtain should read

F ττττ =

(
φ−1 φ−1/2

φ−1/2 −φ−1

)
, φ = (1 +

√
5)/2. (10)
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