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1. Topological entanglement entropy

We discussed in the lecture that the entanglement in a state with topological order fulfills an
area law with a topological correction , i.e., the von Neumann entanglement entropy

SA = −Tr(ρA log ρA) (1)

of a simply connected1 region A is given by

SA = c|∂A| − γ , (2)

where |∂A| denotes the length of the boundary ∂A and

− γ = Stopo (3)

is called the topological entanglement entropy. We discussed how to compute Stopo by adding
and subtracting the entanglement entropies of appropriately chosen regions. In this exercise we
will consider how to calculate Stopo from an alternative set of regions and show that

Stopo =
1

2
[(SA − SB)− (SC − SD)] , (4)

where the regions A,B,C,D are defined below.

A B C D
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Figure 1: Definition of the regions A,B,C,D (from Fig. 9.6. of Ref. [1]).

To evaluate Eq. (4), we first need to consider how Eq. (2) is modified in the case, that the region
A is not simply connected. Here we consider two ways to convince us of the fact that

SA = c|∂A| − nγ , (5)

if ∂A consists of n disconnected parts.

1a disk-like region without any holes
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a) Flat spectrum

We checked in the lecture that a tensor network patch of the toric code state on a simply
connected region is invariant under applying the operator V = σx ⊗ σx ⊗ . . .⊗ σx to all virtual
indices (see Fig. 2) and deduced that the rank of the reduced density matrix is reduced due to
the presence of this symmetry by a fatctor 1/2. For a patch A with two disconnected boundaries
similar considerations2 lead to the fact that

rank(ρA) = 2|∂A|/4 . (6)

Assume that spectrum of ρA is flat, i.e., all its eigenvalues have the same magnitude. Show that
in this case

log rank(ρA) = −Tr(ρA log ρA) (7)

and conclude that
SA = |∂A| log 2− 2 log 2 . (8)

⇒

Figure 2: Virtual symmetries of the toric code PEPS. The symmetry of individual tensors (left)
implies the symmetry on patches (right).

Solution
If the spectrum of the reduced density matrix ρ is flat and its rank is r, we can write as a diagonal
matrix with r entries of magnitude 1/r, such that the condition Tr(ρ) = 1 is fulfilled. The von
Neumann entropy is then calculated as

S(ρ) = −Tr(ρ log ρ) = −
r∑

i=1

1

r
log(1/r) = − log(1/r) = log r . (9)

So we conclude that in the case of a flat spectrum, the von Neumann entanglement entropy is
just the logarithm of the rank. For rank(ρA) = 2|∂A|/4, we find

SA = log(2|∂A|/4) = log(2|∂A|−2) = |∂A| log 2− 2 log 2 . (10)

Additional information – non-simply connected region (toric code PEPS)
In the following we calculate the reduced density matrix in the tensor network formalism for
the toric code for on a non-simply connected region. We checked in the lecture that a tensor
network patch of the toric code state on a simply connected region is invariant under applying
the operator V = σx ⊗ σx ⊗ . . .⊗ σx to all virtual indices (see Fig. 3) and used this argument to
deduce that the rank of the reduced density matrix of a simply connected region R is

rank(ρR) = 2|∂R|/2 , (11)

because the symmetry halves the space.
This intuition is formalized by the following observations. Denote a single tensor from virtual to
physical space by A : V 4

v → Vp (four virtual to one physical index). For calculating the reduced

2A proof will be provided in the tutorial or on the solution sheet.
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density matrix, we encounter the following operator A⊗A†. Tracing out the physical indices, the
operator Trp(A⊗A†) : V 4

v → V 4
v defines a map from virtual space to virtual space. In agreement

with the virtual symmetry of the A-tensor, we find

Trp(A⊗A†) = 1⊗ 1⊗ 1⊗ 1 + x̂⊗ x̂⊗ x̂⊗ x̂ , (12)

where x̂ denotes the Pauli matrix. Up to an unimportant normalization factor the operator on
the right is a projector, which halves the space. We can check, that just like the symmetry, the
projector property Eq. (12) holds on all patches. More formally, we write a tensor network patch
on a simply connected region R as AR and define the projector on its boundary as

P|∂R| = 1⊗|∂R| + x̂⊗|∂R| . (13)

Eq. (12), the projector property for a single tensor, then generalizes to

TrR(AR ⊗A†R) = P|∂R| , (14)

where TrR denotes the trace over all physical indices in the region R. For calculating the reduced
density matrix of a simply connected region R, we consider a sphere that is divided into the
region R̄ and its complement R and calculate

ρR = TrR̄(AR∪R̄ ⊗A
†
R∪R̄) = (AR ⊗A†R)P∂R̄ . (15)

We note that the rank of (AR ⊗A†R) is upper bounded by 2|∂R| (the number of virtual indices
on the boundary is the bottleneck). The effect of P∂R̄ is to project out half the space and as a
consequence we obtain Eq. (11).

a b

c d

Figure 3: a) Virtual symmetry. b) Projector property for a single site (Eq. (12)). c) Definition
of a patch AR for the example of R a 2× 2-square. d) Regions A,B, C. The region A ∪ B ∪ C is
a sphere (not a disk).

We can now apply Eq. (15) to calculate the reduced density matrix on a region with a topology
of an annulus. To this end, we divide the sphere into regions A,B, C as shown in Fig. 3d and
evaluate

ρB = TrA∪C(AA∪B∪C ⊗A†A∪B∪C) . (16)

We start by tracing out C and apply Eq. (15) to find

ρB = TrA(TrC(AA∪B∪C ⊗A†A∪B∪C))

= TrA((AA∪B ⊗A†A∪B)P∂C) .
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Next, we trace out A

ρB = TrA((AA∪B ⊗A†A∪B)P∂C)

=P∂A(AB ⊗A†B)P∂C .

The crucial observation is know that the two symmetry projectors P∂A and P∂C are independent
and each reduce the 2|∂B|-dimensional space of virtual indices by a factor 2. Thus, we have

rank(ρB) = 2|∂B|/4 . (17)

b) Entropy of a non-simply connected region – counting states

Alternatively, we can convince ourselves that the rank of the reduced density matrix on a region
A with n disconnected components of the boundary ∂A of the toric code state is

rank(ρA) = 2|∂A|/2n (18)

by counting the number of allowed states. For a boundary of size |∂A|, there are 2|∂A| boundary
spins. Recall that the toric code ground state is a superposition of all closed loops of strings
(’string’ means |1〉, ’no string’ means |0〉). Convince yourself that as a consequence the number
of spins in state |1〉 on a connected component of the boundary is even. Do so by drawing
pictures. Consider first the case, where the region A is simply connected and the boundary is just
a single circle. Convince yourself that this ’mechanism’ reduces the number of allowed boundary
configurations by a factor of two for every boundary component and conclude that we obtain
Eq. (18). As in the previous exercise we can conclude that Eq. (8) holds for a region with two
disconnected boundary components.
Solution

Figure 4: A simply vs non-simply connected region (top vs bottom) for different states in the
loop soup superposition (left and right).

We consider the loop soup groundstate of the toric code. It is a superposition of all possible closed
loop states. A state with only closed loops has the property that strings cross the boundary of a
region an even number of times (see Fig. 4). This means, the number of spins on the boundary
that is in the up state is even. Thus, the number of possible boundary configurations is reduced
by a factor of two. If there are two disconnected boundaries, we have two independent constraints,
because the number of spins in the up state needs to be even for each component separately.
Since each boundary configuration leads to a unique bulk state (superposition of all closed loop
patterns compatible with the boundary condition), we find that the rank of the reduced density
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matrix for a region R is 2|∂R|−n, where n is the number of disconnected boundary components.
For a flat spectrum, this results in Eq. (5)where c = γ = log 2.
The idea is due to Levin and Wen, who came up with interesting ways to generalize the toric code
in so called string-net models (cf. Ref. [4]). Their construction for the topological entanglement
entropy can be found in Ref. [3].

c) Calculating Stopo

We checked in the previous two exercises that the entanglement entropy for a region A with two
boundary components is SA = |∂A| log 2− 2 log 2 in the case of the toric code. This is consistent
with Eq. (5). We are not ready to compute Stopo. Use Eq. (5) to calculate Stopo given in Eq. (4)
similar to the calculation performed in the lecture. Comment: This exercise is independent of
the previous two and can be done without solving a) and b).
Solution
We assume that Eq. (5) is valid and calculate Stopo using Eq. (4). The key observation is that
the boundary contributions of SA − SB cancels with the boundary components of SC − SD. The
boundary can be expressed as two parallel lines of a square in horizontal and vertical direction,
which we denote by ∂Rh and ∂Rh. We find ∂A− ∂B = ∂C − ∂D = ∂Rh − ∂Rv and evaluate

Stopo =
1

2
[(c|∂A| − 2γ − c|∂B|+ γ)− (c|∂C| − γ − c|∂D|+ 2γ)]

=
1

2
[c(∂Rh − ∂Rv)− γ)− (c(∂Rh − ∂Rv) + γ)] = −γ .
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2. The tube algebra of the toric code

This exercise is just for fun. We introduced the tube algebra of the toric code in the lecture (see
Fig. 5). In this exercise we will take a closer look at it. An algebra is a vector space on which
one can define multiplication of elements. The most well known algebra for physicists are matrix
algebras. For example, the algebra of 2× 2 matrices, where we can add and multiply matrices.
For the tube algebra, addition and scalar multiplication is defined formally by simply writing
e.g., 1 + b. Multiplication is defined by gluing to tubes together and using the string deformation
rule (Fig.5). For example we have seen in the lecture that b · b = 1.

Figure 5: Left. Elemantary elements of the tube algebra of the toric code. Right. Deformation
rule.

A good object to characterize algebras are the so-called central idempotents

Pi · Pj = δijPj . (19)

These are orthogonal projectors which span the vector space.

We have already seen a vague correspondence between tube algebra elements and anyonic
excitations in the lecture. In more detail, one can show that the anyons correspond to the central
idempotents. In this exercise we calculate the central idempotents. We will convince ourselves
that they correspond to the anyons of the toric code in the tutorial (if you are interested).

a) Multiplication table

To calculate the central idempotents, calculate the multiplication table of 1, a, b, c. Hint: We
impose that a tube with string ending on its boundary can not be glued to a tube without a
string at the boundary, e.g., 1 · c = 0. Check, that the multiplication is commutative. Thus, it
suffices to calculate only the six products 1 · 1, 1 · b, b · b, a · a, a · c, c · c. All the others are obtained
by commutativity or zero.
Solution
It is trivial to verify

1 · 1 = 1, 1 · b = b , a · a = a, a · c = c

The identities
b · b = 1, c · c = a (20)

are proven using the deformation rule in Fig. 6.

b) Idempotents

Calculate the central idempotents, i.e, find linear combination α1 + βb+ γa+ δc of tubes which
fulfill Eq. (19). Hint: We already know that multiplying a linear combinations of 1 and b with a
linear combination of a and c yields 0. Thus, it makes sense to try to use the ansatz

P1 = α11 + β1b , P2 = α21 + β2b , P3 = γ1a+ δ1c , P4 = γ2a+ δ2c . (21)

Find P1, P2, P3, P4 using this ansatz, i.e., determine the coefficients α1, α2, β1, β2, γ1, γ2, δ1, δ2

such that Eq. (19) holds.
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Figure 6: Proving the identities b · b = 1 and c · c = a.

Solution
We can think of 1 and b as 1 and x, because they behave in the same way under multiplication.
This suggests to use

P1 =
1

2
(1 + b) , P2 =

1

2
(1− b) (22)

as the two central idempotents of the first ’block’. We check that

P1 · P2 =
1

4
(1 · 1− 1 · b+ b · 1− b · b) =

1

4
(1− 1) = 0 . (23)

Similarly, we identify a and c with 1 and x̂ (of an algebra independent from the one spanned by
1, b, think of different blocks in a block diagonal matrix) and guess

P3 =
1

2
(a+ c) , P4 =

1

2
(a− c) . (24)

We verify that
P3 · P4 = 0 . (25)

The other relations follow from commutativity and the fact that products of the form x · y with
x = 1, b and y = a, c are zero.
Relation to anyons (vertex and plaquette violations)
We can identify P1 with the trivial particle (vacuum). This is because it corresponds to a
superposition of ’no loop’ and ’closed loop’ with the right sign factors. The idempotent P2

corresponds to a violation of the plaquette operator, because the configuration ’loop’ carries a
negative sign, which corresponds to the effect of a single z-operator like it occurs at the end of
the familiar z-string. P3 corresponds to a violation of an vertex operators, i.e., the presence of an
open string (more formally, a superposition of a bare string and a ’string+loop’ configuration).
Lastly, P4 is again a superposition of two variant of an open string, so it constitutes a violation
of the vertex operator, but also, the superposition is with the ’wrong sign’ – the ’no loop’ vs.
’loop’ configuration differs by a minus sign. Thus, the plaquette constraint is violated as well and
we can identify P4 with the compound particle (e,m) = ε.
Some more insights in how to calculate with tubes is provided in Ref.[2], but this paper is
formulated using tensor networks and it is not an easy read.
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