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This exercise will be discussed on 11.2.2021

1. Topological entanglement entropy

We discussed in the lecture that the entanglement in a state with topological order fulfills an
area law with a topological correction , i.e., the von Neumann entanglement entropy

SA = −Tr(ρA log ρA) (1)

of a simply connected1 region A is given by

SA = c|∂A| − γ , (2)

where |∂A| denotes the length of the boundary ∂A and

− γ = Stopo (3)

is called the topological entanglement entropy. We discussed how to compute Stopo by adding
and subtracting the entanglement entropies of appropriately chosen regions. In this exercise we
will consider how to calculate Stopo from an alternative set of regions and show that

Stopo =
1

2
[(SA − SB)− (SC − SD)] , (4)

where the regions A,B,C,D are defined below.
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Figure 1: Definition of the regions A,B,C,D (from Fig. 9.6. of Ref. [1]).

To evaluate Eq. (4), we first need to consider how Eq. (2) is modified in the case, that the region
A is not simply connected. Here we consider two ways to convince us of the fact that

SA = c|∂A| − nγ , (5)

if ∂A consists of n disconnected parts.

1a disk-like region without any holes
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a) Flat spectrum

We checked in the lecture that a tensor network patch of the toric code state on a simply
connected region is invariant under applying the operator V = σx ⊗ σx ⊗ . . .⊗ σx to all virtual
indices (see Fig. 2) and deduced that the rank of the reduced density matrix is reduced due to
the presence of this symmetry by a fatctor 1/2. For a patch A with two disconnected boundaries
similar considerations2 lead to the fact that

rank(ρA) = 2|∂A|/4 . (6)

Assume that spectrum of ρA is flat, i.e., all its eigenvalues have the same magnitude. Show that
in this case

log rank(ρA) = −Tr(ρA log ρA) (7)

and conclude that
SA = |∂A| log 2− 2 log 2 . (8)

⇒

Figure 2: Virtual symmetries of the toric code PEPS. The symmetry of individual tensors (left)
implies the symmetry on patches (right).

b) Entropy of a non-simply connected region – counting states

Alternatively, we can convince ourselves that the rank of the reduced density matrix on a region
A with n disconnected components of the boundary ∂A of the toric code state is

rank(ρA) = 2|∂A|/2n (9)

by counting the number of allowed states. For a boundary of size |∂A|, there are 2|∂A| boundary
spins. Recall that the toric code ground state is a superposition of all closed loops of strings
(’string’ means |1〉, ’no string’ means |0〉). Convince yourself that as a consequence the number
of spins in state |1〉 on a connected component of the boundary is even. Do so by drawing
pictures. Consider first the case, where the region A is simply connected and the boundary is just
a single circle. Convince yourself that this ’mechanism’ reduces the number of allowed boundary
configurations by a factor of two for every boundary component and conclude that we obtain
Eq. (9). As in the previous exercise we can conclude that Eq. (8) holds for a region with two
disconnected boundary components.

c) Calculating Stopo

We checked in the previous two exercises that the entanglement entropy for a region A with two
boundary components is SA = |∂A| log 2− 2 log 2 in the case of the toric code. This is consistent
with Eq. (5). We are not ready to compute Stopo. Use Eq. (5) to calculate Stopo given in Eq. (4)
similar to the calculation performed in the lecture. Comment: This exercise is independent of
the previous two and can be done without solving a) and b).

2A proof will be provided in the tutorial or on the solution sheet.
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2. The tube algebra of the toric code

This exercise is just for fun. We introduced the tube algebra of the toric code in the lecture (see
Fig. 3). In this exercise we will take a closer look at it. An algebra is a vector space on which
one can define multiplication of elements. The most well known algebra for physicists are matrix
algebras. For example, the algebra of 2× 2 matrices, where we can add and multiply matrices.
For the tube algebra, addition and scalar multiplication is defined formally by simply writing
e.g., 1 + b. Multiplication is defined by gluing to tubes together and using the string deformation
rule (Fig.3). For example we have seen in the lecture that b · b = 1.

Figure 3: Left. Elemantary elements of the tube algebra of the toric code. Right. Deformation
rule.

A good object to characterize algebras are the so-called central idempotents

Pi · Pj = δijPj . (10)

These are orthogonal projectors which span the vector space.

We have already seen a vague correspondence between tube algebra elements and anyonic
excitations in the lecture. In more detail, one can show that the anyons correspond to the central
idempotents. In this exercise we calculate the central idempotents. We will convince ourselves
that they correspond to the anyons of the toric code in the tutorial (if you are interested).

a) Multiplication table

To calculate the central idempotents, calculate the multiplication table of 1, a, b, c. Hint: We
impose that a tube with string ending on its boundary can not be glued to a tube without a
string at the boundary, e.g., 1 · c = 0. Check, that the multiplication is commutative. Thus, it
suffices to calculate only the six products 1 · 1, 1 · b, b · b, a · a, a · c, c · c. All the others are obtained
by commutativity or zero.

b) Idempotents

Calculate the central idempotents, i.e, find linear combination α1 + βb+ γa+ δc of tubes which
fulfill Eq. (10). Hint: We already know that multiplying a linear combinations of 1 and b with a
linear combination of a and c yields 0. Thus, it makes sense to try to use the ansatz

P1 = α11 + β1b , P2 = α21 + β2b , P3 = γ1a+ δ1c , P4 = γ2a+ δ2c . (11)

Find P1, P2, P3, P4 using this ansatz, i.e., determine the coefficients α1, α2, β1, β2, γ1, γ2, δ1, δ2
such that Eq. (10) holds.
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