Entangled Phases of Matter

Dr. Dmitry Bagrets (<u>dbagrets@uni-koeln.de</u>) Dr. Carolin Wille (<u>carolin.wille@fu-berlin.de</u>)

Meetings via Zoom - the same link as of today! Tuesdays & Thursdays, 16:00–17:30

Tutorial sessions (6LP), each 2nd week, either Tue or Thu

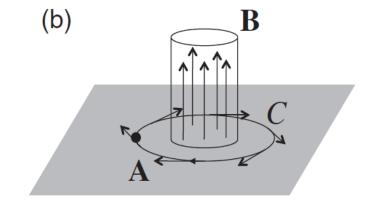
 Jiannis K. Pachos, "Introduction to Topological Quantum Computation"
David Tong, "Lectures on the Quantum Hall Effect"
Steven H. Simon, "Topological Quantum: Lecture Notes and Proto-Book"
Xiao-Gang Wen, "Quantum Field Theory of Many-body Systems"

Anyons and Aharonov-Bohm effect

We discuss the physics of 2D world

Wave-function acquires the phase:

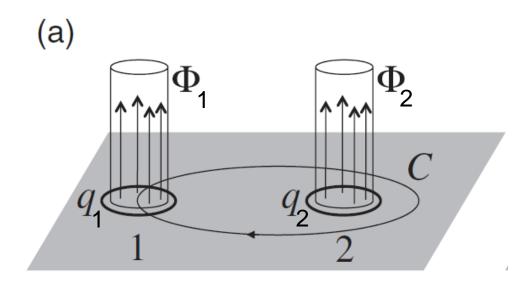
$$\varphi = \frac{q}{c\hbar} \oint_C \mathbf{A} \cdot d\mathbf{r}.$$



Employing Stokes' theorem

$$\varphi = \frac{q}{c\hbar} \iint_{S(C)} \nabla \times \mathbf{A} \cdot d\mathbf{s} = \frac{q}{c\hbar} \iint_{S(C)} \mathbf{B} \cdot d\mathbf{s} = \frac{q}{c\hbar} \Phi.$$

Anyons and Aharonov-Bohm effect



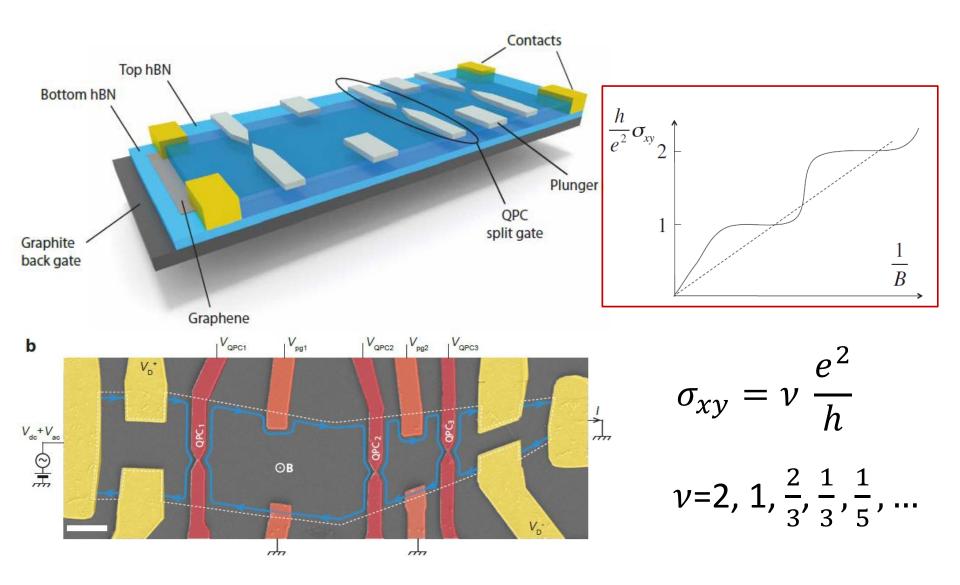
The phase acquired by the 1st particle is $\varphi = q_1 \Phi_2 + q_2 \Phi_1$

The phase under exchange of two identical particles is

$$\varphi = q\Phi$$

Quantum Hall effect (QHE)

Realization: 2DEG or graphene

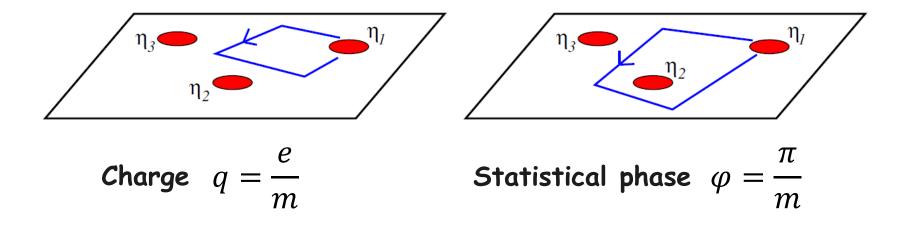


Fractional QHE

$$v = \frac{1}{m}$$
, m = (2p + 1), p being integer

FQHE state is described by many-body (!) Laughlin wave function

$$\psi_{\text{hole}}(z;\eta) = \prod_{i=1}^{N} (z_i - \eta) \prod_{k < l} (z_k - z_l)^m e^{-\sum_{i=1}^{n} |z_i|^2 / 4l_B^2}$$



2D spinless p+ip superconductor

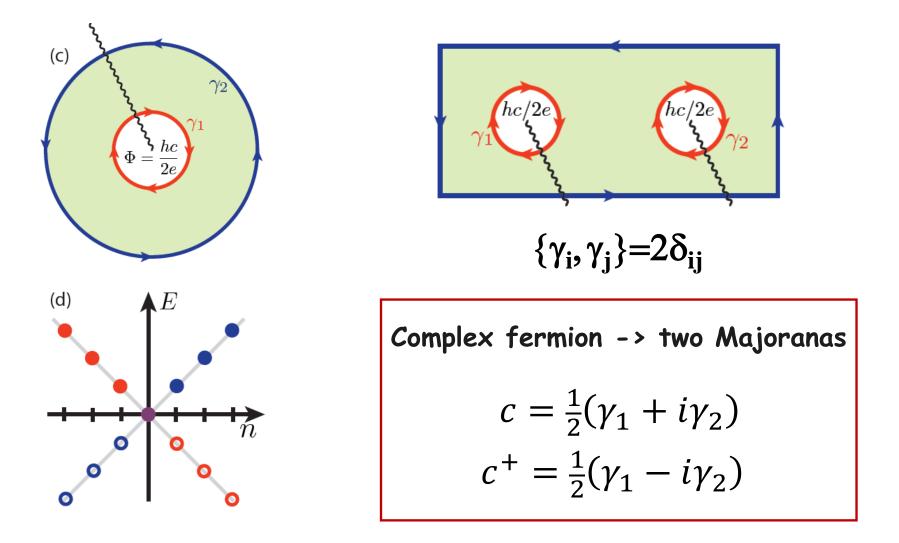
Realization: FQHE at v=5/2

Bogoliubov-de Gennes Hamiltonian:

$$\begin{split} H &= \int d^2 \mathbf{r} \bigg\{ \psi^\dagger \left(-\frac{\nabla^2}{2m} - \mu \right) \psi \\ &+ \frac{\Delta}{2} \left[e^{i\phi} \psi (\partial_x + i \partial_y) \psi + H.c. \right] \bigg\} \\ \end{split}$$

Vorticies in p+ip superconductor

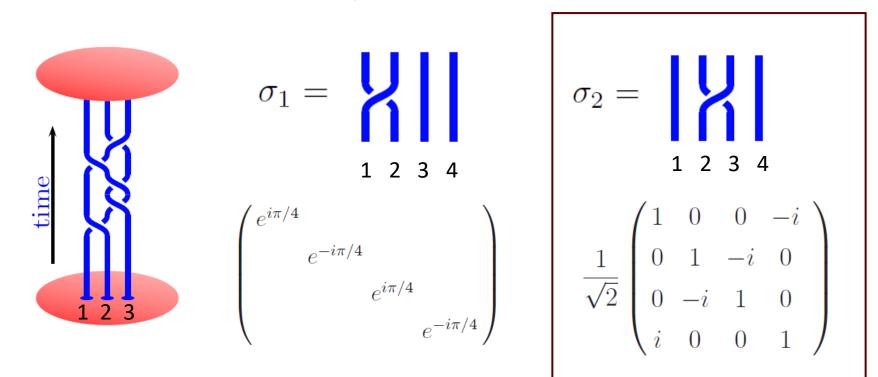
Vorticies host the so-called zero-modes = Majorana fermions



Braiding of Majoranas

Majoranas are non-Abelian anyons!

Consider 4 Majoranas = 2 complex fermions

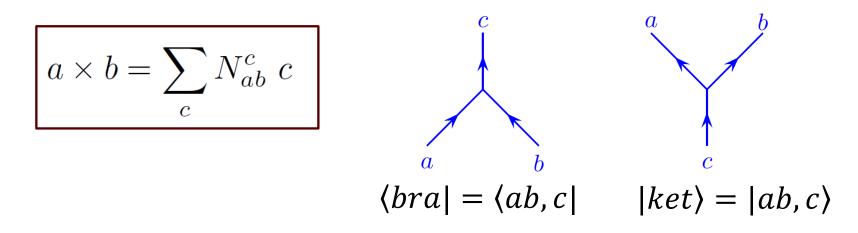


Basis: $|0\rangle$, $c_1^+|0\rangle$, $c_2^+|0\rangle$, $c_1^+c_2^+|0\rangle$

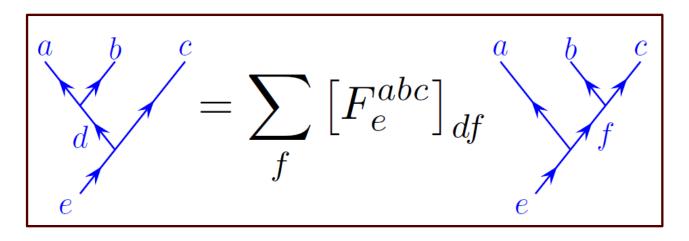
Entangling/non-Abelian transformation

Fusion of non-Abelian anyons

Fusion rules define a structure of Hilbert space of N anyons



Change of basis (associativity), F-matrix



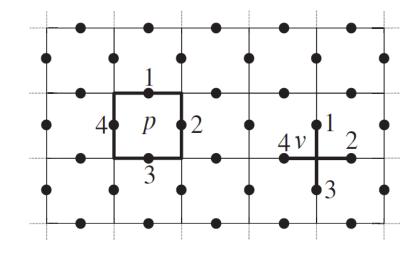
Toric code

Alexei Kitaev, 2003

Spins are located on links

- Vertex: $A(v) = \sigma_{v,1}^x \sigma_{v,2}^x \sigma_{v,3}^x \sigma_{v,4}^x$
- Plaquette : $B(p) = \sigma_{p,1}^z \sigma_{p,2}^z \sigma_{p,3}^z \sigma_{p,4}^z$.

$$H = -\sum_{v} A(v) - \sum_{p} B(p).$$



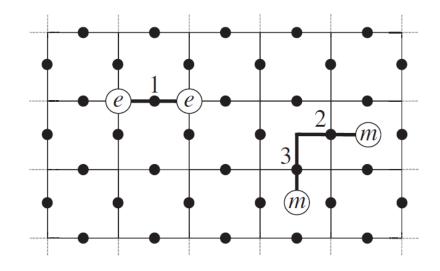
• Vertex & plaquette mutually commute: [A(v), B(p)] = 0

• Ground state: $|\xi\rangle = \prod_{v} \frac{1}{\sqrt{2}} (1 + A(v)) |00 \dots 0\rangle$ A(v) = B(p) = +1

Anyons of toric code

Alexei Kitaev, 2003

- e-particle: $|e, e\rangle = \sigma_1^{\chi} |GS\rangle$
- m-particle: $|m,m\rangle = \sigma_2^z \sigma_3^z |GS\rangle$
- ϵ -particle: $|\varepsilon, \varepsilon\rangle = i\sigma_1^{\mathcal{Y}} |GS\rangle$

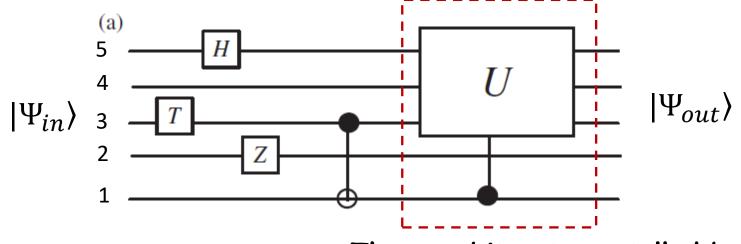


Fusion rules:

 $e \times e = m \times m = \epsilon \times \epsilon = 1$, $e \times m = \epsilon$, $\epsilon \times e = m$ and $\epsilon \times m = e$

When put on a torus (g=1), toric code can be used to encode q-info

Quantum computer (software)



Three-qubit gate contolled by the 1st qubit

Single-qubit gates:

Hadamard:
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$\pi/8: T = \left(\begin{array}{cc} 1 & 0\\ 0 & \mathrm{e}^{\mathrm{i}\pi/4} \end{array}\right)$$

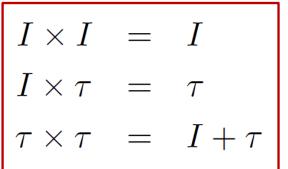
Advanced quantum algorithms:

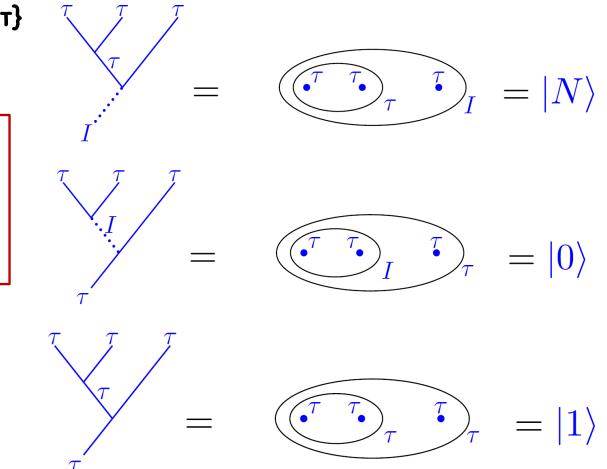
- Quantum Fourier transform
- Grover's quantum search

Fibonacci anyons

Realization (?): FQHE at v=12/5

- Particle types = {I, T}
- Fusion rules are:





Fibonacci sequence {1,1,2,3,5,8,13, ...} = degeneracy of a state

Quantum computer (hardware) Exploiting Fibonacci anyons

Covariant distance measure between gates:

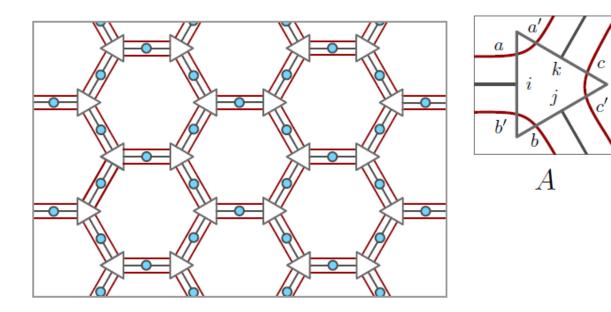
$$\mathbf{dist}(U;V) = \sqrt{1 - \frac{|\mathrm{Tr}[U^\dagger V]|}{D}}$$

Braid (right) as approximate single qubit X-gate

$$U_{\text{approx}} \approx e^{-3\pi i/5} \begin{pmatrix} 0.073 - 0.225i & 0.972 \\ 0.972 & -0.073 - 0.225i \end{pmatrix}$$
$$U_{\text{approx}} = \hat{\sigma}_2^{-1} \hat{\sigma}_1^3 \hat{\sigma}_2^{-1} \quad \text{dist}(\mathbf{U}, \mathbf{X}) = 0.17 \quad \mathbf{C}_{\text{approx}} = 0.17 \quad \mathbf{C}_{\text{ap$$

Other topics

- Topological entanglement entropy & top. phases
- Tensor networks:



(C) Carolin Wille' 2018