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to leading order in π⃗ . From Eqs. (7.55) we find the dispersion relation for

ferromagnetic spin waves

|p0| ≈ |J |Sa2
0 | p⃗|2 (7.56)

which is known as Bloch’s law (Bloch, 1930). As expected, we find that the fre-

quency of the low-energy excitations of a quantum ferromagnet scales as the square

of the momentum.

7.5 The effective action for one-dimensional quantum antiferromagnets

We will not consider here frustrated systems. Thus, and for the sake of simplicity,

we will consider the case of quantum antiferromagnets on bipartite lattices, such as

the hypercubic lattice. We will see that, unlike in the case of the ferromagnets, the

effective low-energy action is different for 1D systems and for higher-dimensional

cases such as the square and cubic lattices. In all cases we will find a non-linear

sigma model, in agreement with our previous discussion (see Chapter 3) that was

based on a mean-field weak-coupling treatment of the Hubbard model. But we will

get more. For the spin-chain case we will find that the action has an extra term, a

topological term.

The starting point will be, once again, the real-time action of Eq. (7.39) with a

nearest-neighbor antiferromagnetic coupling constant J > 0. Since we expect that

at least the short-range order should have Néel character, it is natural to consider

the staggered and uniform components of the spin field n⃗. This construction, as is,

works only for two-sublattice systems close to a Néel state, although it is possible

to generalize it to other cases.

Consider a spin chain with an even number of sites N occupied by spin-S degrees

of freedom. The sites of the lattice are labeled by an integer j = 1, . . . , N . The

real-time action is

SM[n⃗] = S

N
∑

j=1

SWZ[n⃗( j)] −

∫ T

0

dx0

N
∑

j=1

JS2n⃗( j, x0) · n⃗( j + 1, x0) (7.57)

where we have assumed periodic boundary conditions. Since we expect to be close

to a Néel state, we will stagger the configuration

n⃗( j) → (−1) j n⃗( j) (7.58)

On a bipartite lattice, the substitution of Eq. (7.58) into Eq. (7.57) will change the

sign of the exchange term of the action to a ferromagnetic one. The Wess–Zumino

terms are odd under the replacement of Eq. (7.58) and thus become staggered.

Thus, it is the Wess–Zumino term, a purely quantum-mechanical effect, which will
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distinguish ferromagnets from antiferromagnets. After staggering the spins we get,

up to an additive constant,

SM[n⃗] = S

N
∑

j=1

(−1) jSWZ[n⃗( j)] −
J S2

2

∫ T

0

dx0

N
∑

j=1

(n⃗( j, x0) − n⃗( j + 1, x0))
2

(7.59)

We now split the (staggered) spin field n⃗ into a slowly varying piece m⃗( j), the order

parameter field, and a small rapidly varying part, l⃗( j), which roughly represents

the average spin (Affleck, 1990). Hence, we write

n⃗( j) = m⃗( j) + (−1) j a0l⃗( j) (7.60)

The constraint n⃗2 = 1 and the requirement that the order-parameter field m⃗ should

obey the same constraint, m⃗2 = 1, demand that m⃗ and l⃗ be orthogonal vectors:

m⃗ · l⃗ = 0 (7.61)

The Wess–Zumino terms are rewritten as

S

N
∑

j=1

(−1) jSWZ[n⃗( j)] = S

N/2
∑

r=1

(SWZ[n⃗(2r)] − SWZ[n⃗(2r − 1)]) (7.62)

which, by making use of the approximation

n⃗(2r) − n⃗(2r − 1) = m⃗(2r) − m⃗(2r − 1) + a0(l⃗(2r) + l⃗(2r − 1))

= a0

(

∂1m⃗(2r) + 2l⃗(2r)
)

+ O(a2
0) (7.63)

becomes

S

N
∑

j=1

(−1) jSWZ[n⃗( j)] ≈ S

N/2
∑

r=1

∫ T

0

dx0 δn⃗(2r, x0) · (n⃗(2r, x0) × ∂0n⃗(2r, x0))

≈ S

N/2
∑

r=1

∫ T

0

dx0

(

a0 ∂1m⃗(2r, x0) + 2a0l⃗(2r, x0)
)

× (m⃗(2r, x0) × ∂0m⃗(2r, x0)) (7.64)

Thus, in the continuum limit, one finds

lim
a0→0

S

N
∑

j=1

(−1) jSWZ[n⃗( j)] ≈
S

2

∫

d2x m⃗ · (∂0m⃗ × ∂1m⃗)

+ S

∫

d2x l⃗ · (m⃗ × ∂0m⃗) (7.65)
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204 Sigma models and topological terms

Similarly, the continuum limit of the potential-energy terms can also be found to

be given by

lim
a0→0

JS2

2

N
∑

j=1

∫ T

0

dx0(n⃗( j, x0) − n⃗( j + 1, x0))
2

≃
a0 JS2

2

∫

d2x
(

(∂1m⃗)2 + 4l⃗2
)

(7.66)

On collecting terms we find a Lagrangian density involving both the order-

parameter field m⃗ and the local spin density l⃗,

LM(m⃗, l⃗ ) = −2a0 J S2l⃗2 + sl⃗ · (m⃗ × ∂0m⃗) −
a0 J S2

2
(∂1m⃗)2

+
S

2
m⃗ · (∂0m⃗ × ∂1m⃗) (7.67)

The fluctuations in the average spin density l⃗ can be integrated out. The result is

the Lagrangian density of the non-linear sigma model,

LM(m⃗) =
1

2g

(

1

vs

(∂0m⃗)2 − vs(∂1m⃗)2

)

+
θ

8π
ϵµνm⃗ ·

(

∂µm⃗ × ∂νm⃗
)

(7.68)

where g and vs are, respectively, the coupling constant and spin-wave velocity:

g =
2

S
(7.69)

vs = 2a0 JS (7.70)

The last term in Eq. (7.68) has topological significance. We have chosen the

normalization so that the coupling constant θ is given by

θ = 2πS (7.71)

The tensor ϵµν is the usual Levi-Civita antisymmetric tensor in two dimensions.

Thus, apart from an anisotropy determined by the spin-wave velocity vs and

apart from the topological term, we find that the effective action for the low-

frequency, long-wavelength fluctuation about a state with short-range Néel order

is given by the non-linear sigma model. We reached the same results within the

weak-coupling mean-field theory of the half-filled Hubbard model of Chapter 3.

Indeed, using that approach, it is also possible to get the topological term (Wen

and Zee, 1988).
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