to leading order in $\vec{\pi}$. From Eqs. (7.55) we find the dispersion relation for ferromagnetic spin waves

$$|p_0| \approx |J| S a_0^2 |\vec{p}|^2 \tag{7.56}$$

which is known as Bloch's law (Bloch, 1930). As expected, we find that the frequency of the low-energy excitations of a quantum ferromagnet scales as the square of the momentum.

7.5 The effective action for one-dimensional quantum antiferromagnets

We will not consider here frustrated systems. Thus, and for the sake of simplicity, we will consider the case of quantum antiferromagnets on *bipartite* lattices, such as the hypercubic lattice. We will see that, unlike in the case of the ferromagnets, the effective low-energy action is *different* for 1D systems and for higher-dimensional cases such as the square and cubic lattices. In all cases we will find a non-linear sigma model, in agreement with our previous discussion (see Chapter 3) that was based on a mean-field weak-coupling treatment of the Hubbard model. But we will get more. For the spin-chain case we will find that the action has an extra term, a topological term.

The starting point will be, once again, the real-time action of Eq. (7.39) with a nearest-neighbor *antiferromagnetic* coupling constant J > 0. Since we expect that *at least* the short-range order should have Néel character, it is natural to consider the *staggered* and *uniform* components of the spin field \vec{n} . This construction, as is, works only for two-sublattice systems close to a Néel state, although it is possible to generalize it to other cases.

Consider a spin chain with an *even* number of sites N occupied by spin-S degrees of freedom. The sites of the lattice are labeled by an integer j = 1, ..., N. The real-time action is

$$S_{\rm M}[\vec{n}] = S \sum_{j=1}^{N} S_{\rm WZ}[\vec{n}(j)] - \int_{0}^{T} dx_0 \sum_{j=1}^{N} J S^2 \vec{n}(j, x_0) \cdot \vec{n}(j+1, x_0)$$
(7.57)

where we have assumed periodic boundary conditions. Since we expect to be close to a Néel state, we will stagger the configuration

$$\vec{n}(j) \to (-1)^j \vec{n}(j) \tag{7.58}$$

On a bipartite lattice, the substitution of Eq. (7.58) into Eq. (7.57) will change the sign of the *exchange term* of the action to a *ferromagnetic* one. The Wess–Zumino terms are *odd* under the replacement of Eq. (7.58) and thus become *staggered*. Thus, it is the Wess–Zumino term, a purely quantum-mechanical effect, which will

distinguish ferromagnets from antiferromagnets. After staggering the spins we get, up to an additive constant,

$$\mathcal{S}_{\mathrm{M}}[\vec{n}] = S \sum_{j=1}^{N} (-1)^{j} \mathcal{S}_{\mathrm{WZ}}[\vec{n}(j)] - \frac{J S^{2}}{2} \int_{0}^{T} dx_{0} \sum_{j=1}^{N} (\vec{n}(j, x_{0}) - \vec{n}(j+1, x_{0}))^{2}$$
(7.59)

We now split the (staggered) spin field \vec{n} into a slowly varying piece $\vec{m}(j)$, the order parameter field, and a small rapidly varying part, $\vec{l}(j)$, which roughly represents the average spin (Affleck, 1990). Hence, we write

$$\vec{n}(j) = \vec{m}(j) + (-1)^j a_0 \vec{l}(j)$$
(7.60)

The constraint $\vec{n}^2 = 1$ and the requirement that the order-parameter field \vec{m} should obey the same constraint, $\vec{m}^2 = 1$, demand that \vec{m} and \vec{l} be orthogonal vectors:

$$\vec{m} \cdot \vec{l} = 0 \tag{7.61}$$

The Wess–Zumino terms are rewritten as

$$S\sum_{j=1}^{N} (-1)^{j} \mathcal{S}_{WZ}[\vec{n}(j)] = S\sum_{r=1}^{N/2} (\mathcal{S}_{WZ}[\vec{n}(2r)] - \mathcal{S}_{WZ}[\vec{n}(2r-1)])$$
(7.62)

which, by making use of the approximation

$$\vec{n}(2r) - \vec{n}(2r-1) = \vec{m}(2r) - \vec{m}(2r-1) + a_0(\vec{l}(2r) + \vec{l}(2r-1))$$
$$= a_0 \left(\partial_1 \vec{m}(2r) + 2\vec{l}(2r)\right) + O(a_0^2)$$
(7.63)

becomes

$$S\sum_{j=1}^{N} (-1)^{j} S_{WZ}[\vec{n}(j)] \approx S\sum_{r=1}^{N/2} \int_{0}^{T} dx_{0} \,\delta\vec{n}(2r, x_{0}) \cdot (\vec{n}(2r, x_{0}) \times \partial_{0}\vec{n}(2r, x_{0}))$$
$$\approx S\sum_{r=1}^{N/2} \int_{0}^{T} dx_{0} \left(a_{0} \,\partial_{1}\vec{m}(2r, x_{0}) + 2a_{0}\vec{l}(2r, x_{0})\right)$$
$$\times (\vec{m}(2r, x_{0}) \times \partial_{0}\vec{m}(2r, x_{0}))$$
(7.64)

Thus, in the continuum limit, one finds

$$\lim_{a_0 \to 0} S \sum_{j=1}^{N} (-1)^j S_{WZ}[\vec{n}(j)] \approx \frac{S}{2} \int d^2 x \, \vec{m} \cdot (\partial_0 \vec{m} \times \partial_1 \vec{m}) + S \int d^2 x \, \vec{l} \cdot (\vec{m} \times \partial_0 \vec{m})$$
(7.65)

Similarly, the continuum limit of the potential-energy terms can also be found to be given by

$$\lim_{a_0 \to 0} \frac{JS^2}{2} \sum_{j=1}^N \int_0^T dx_0 (\vec{n}(j, x_0) - \vec{n}(j+1, x_0))^2$$
$$\simeq \frac{a_0 JS^2}{2} \int d^2 x \left((\partial_1 \vec{m})^2 + 4\vec{l}^2 \right) \tag{7.66}$$

On collecting terms we find a Lagrangian density involving both the orderparameter field \vec{m} and the local spin density \vec{l} ,

$$\mathcal{L}_{\mathrm{M}}(\vec{m},\vec{l}\,) = -2a_0 J S^2 \vec{l}^2 + s \vec{l} \cdot (\vec{m} \times \partial_0 \vec{m}) - \frac{a_0 J S^2}{2} (\partial_1 \vec{m})^2 + \frac{S}{2} \vec{m} \cdot (\partial_0 \vec{m} \times \partial_1 \vec{m})$$
(7.67)

The fluctuations in the average spin density \vec{l} can be integrated out. The result is the Lagrangian density of the non-linear sigma model,

$$\mathcal{L}_{\mathrm{M}}(\vec{m}) = \frac{1}{2g} \left(\frac{1}{v_{\mathrm{s}}} (\partial_0 \vec{m})^2 - v_{\mathrm{s}} (\partial_1 \vec{m})^2 \right) + \frac{\theta}{8\pi} \epsilon_{\mu\nu} \vec{m} \cdot \left(\partial_\mu \vec{m} \times \partial_\nu \vec{m} \right)$$
(7.68)

where g and v_s are, respectively, the coupling constant and spin-wave velocity:

$$g = \frac{2}{S} \tag{7.69}$$

$$v_{\rm s} = 2a_0 JS \tag{7.70}$$

The last term in Eq. (7.68) has topological significance. We have chosen the normalization so that the coupling constant θ is given by

$$\theta = 2\pi S \tag{7.71}$$

The tensor $\epsilon_{\mu\nu}$ is the usual Levi-Civita antisymmetric tensor in two dimensions.

Thus, apart from an anisotropy determined by the spin-wave velocity v_s and apart from the topological term, we find that the effective action for the low-frequency, long-wavelength fluctuation about a state with *short-range* Néel order is given by the non-linear sigma model. We reached the same results within the weak-coupling mean-field theory of the half-filled Hubbard model of Chapter 3. Indeed, using that approach, it is also possible to get the topological term (Wen and Zee, 1988).

204