Quantum Field Theory III Exercise sheet 7

23.06.2016

7. Equation of motion for the WZW action

Consider the non-linear σ -model action in d = 2 dimensions

$$S_{\text{WZW}}[g] = S_2[g] + \Gamma[g] = \frac{1}{8\pi} \int_{S^2} d^2 x \operatorname{tr}(\partial_\mu g \partial_\mu g^{-1}) + \Gamma[g], \qquad (1)$$

where the field $g \in U(N)$, the two-dimensional space is compactified to the 2-sphere S^2 , and $\Gamma[g]$ is the Wess-Zumino-Witten term

$$\Gamma[g] = -\frac{i}{12\pi} \int_{B^3} d^3x \,\epsilon^{\mu\nu\rho} \mathrm{tr}(g^{-1}\partial_\mu g g^{-1}\partial_\nu g g^{-1}\partial_\nu g g^{-1}\partial_\nu g). \tag{2}$$

It is assumed here that the sphere S^2 serves as the boundary of one half of a three-dimensional unit ball B^3 (i.e. $\partial B^3 \equiv S^2$) and the field $g(x_0, x_1)$ initially defined in d = 2 is smoothly extended in the third (x_2) -direction.

- a) Check first that without the WZW term, the saddle point equation corresponding to the σ -model action $S_2[g]$ has the form $\partial_{\mu}(g^{-1}\partial_{\mu}g) = 0$.
- b) Derive further the saddle point equation of the full action S[g] with the WZW term included. You have to arrive to the result $\partial_z \bar{j} = 0$, where the current $\bar{j} \propto (\partial_{\bar{z}}g)g^{-1}$ and the complex coordinates are defined as $z = (x_0 + ix_1)/\sqrt{2}$ and $\bar{z} = (x_0 ix_1)/\sqrt{2}$.

8. The σ -model action of the disordered BCS superconductor

The disordered s-wave BCS superconductor (in dimension d = 2, 3) can be described by the following low-energy action

$$S[Q] = \frac{1}{2}\pi\nu \int d^d \mathbf{r} \operatorname{tr} \left[\frac{1}{4} D(\nabla_{\mathbf{r}} Q)^2 - \epsilon_n \tau_3 Q - \Delta \tau_2 Q \right], \qquad (3)$$

where the field Q is the Matsubara Green's function at energy ϵ_n (evaluating at coinciding spatial points) obeying the constrain $Q^2 = 1$, Pauli matrices τ_i act in the Nambu space, Δ is the BCS gap, D is the diffusion coefficient, and ν is the density of states (DoS) in the normal state at Fermi energy.

a) By minimazing the action S[Q] derive the saddle point equation for Q,

$$D\nabla_{\mathbf{r}}(Q\nabla_{\mathbf{r}}Q) = \left[\epsilon_n \tau_3 + \Delta \tau_2, Q\right],\tag{4}$$

which is known as the Usadel equation.

b) Using the above result, find the stationary (position-independent) Green's function $Q(\epsilon_n)$. Performing the analytic continuation to the real energy, deduce the DoS in the disordered superconductor, $\nu(\epsilon) = \nu \operatorname{Re} \operatorname{tr} \tau_3 Q(\epsilon_n) \Big|_{i\epsilon_n \to \epsilon + i0^+}$. Compare it with the density of states known from the BCS model.

References

[1] Altland, A. and Simons, B. Condensed Matter Field Theory, 2nd edition, Cambridge University Press (2010)