Klassische Theoretische Physik I Blatt 5

SS 2015

18. Schwingungsdauer

Skript WS2000/01, S.28.

19. Drehimpuls der Relativbewegung

a) Mit $M = m_1 + m_2$ gilt

$$\gamma_1 = \Gamma + \frac{m_2 q}{M} , \qquad \gamma_2 = \Gamma - \frac{m_1 q}{M} .$$

Für den Drehimpuls des i. Massenpunkts finden wir

$$L_{i} = p_{i} \otimes q_{i} - \mathcal{I}(q_{i}) \otimes \mathcal{I}^{-1}(p_{i})$$
$$= \langle m_{i}\dot{\gamma}_{i}, \cdot \rangle \otimes (\gamma_{i} - \Gamma) - \langle \gamma_{i} - \Gamma, \cdot \rangle \otimes m_{i}\dot{\gamma}_{i}.$$

Mit der reduzierten Masse $m = \frac{m_1 m_2}{M}$ und $p = \mathcal{I}(m\dot{q})$ ergibt sich dann durch einsetzen

$$L = L_1 + L_2 = p \otimes q - \mathcal{I}(q) \otimes \mathcal{I}^{-1}(p) .$$

b) Mit der Produktregel ergibt sich

$$\frac{d}{dt}L = \mathcal{I}(m\ddot{q}) \otimes q + \underbrace{\mathcal{I}(m\dot{q}) \otimes \dot{q} - \mathcal{I}(\dot{q}) \otimes (m\dot{q})}_{=0} - \mathcal{I}(q) \otimes m\ddot{q}.$$

Die mittleren Terme heben sich auf, da das Tensorprodukt "durchsichtig" für Skalare ist, die restlichen beiden sind bis auf das Vorzeichen gleich, da es sich um eine Zentralkraft handelt.

20. Zur Bewegungsebene

a) Aus der Vorlesung über mathematische Methoden ist Ihnen bekannt, dass ein Skalarprodukt $\langle \cdot, \cdot \rangle$ auf V ein Skalarprodukt auf V^* induziert gemäß

$$\langle \varphi, \psi \rangle_{V^*} = \langle \mathcal{I}^{-1}(\varphi), \mathcal{I}^{-1}(\psi) \rangle_V$$
.

Daher ist die Bedingung $v \perp q \wedge v \perp \mathcal{I}^{-1}(p)$ äquivalent zu $\mathcal{I}(v) \perp \mathcal{I}(q) \wedge \mathcal{I}(v) \perp p$. $\mathcal{I}(v)$ liegt im Kern von L, denn

$$L(\mathcal{I}(v)) = p \otimes \mathcal{I}(v)(q) - \mathcal{I}(q) \otimes \mathcal{I}(v)(\mathcal{I}^{-1}(p))$$

= $\langle v, q \rangle_V p - \langle v, \mathcal{I}^{-1}(p) \rangle_V \mathcal{I}(q) = 0$.

Nun gilt aber per Definition $\operatorname{Ker}(L) = A$ sowie $A = (A^{\perp})^{\perp}$, daher ist $\mathcal{I}(v) \perp A^{\perp}$ und $v \perp \mathcal{I}^{-1}(A^{\perp})$.

b) Wir zeigen die Eigenschaft $Lf_1(t) = |L|f_2(t)$, die andere folgt analog. Das induzierte Skalarprodukt auf V^* (siehe a) definiert eine Norm, bzgl. der $\mathcal{I}\left(\frac{q}{\|q\|}\right)$ normiert ist. Daher gilt $p_{\parallel} = \|p_{\parallel}\|\mathcal{I}\left(\frac{q}{\|q\|}\right)$. Es folgt

$$\begin{split} Lf_1 &= p \otimes \left\langle q, \frac{q}{\|q\|} \right\rangle - \mathcal{I}(q) \otimes \left\langle \mathcal{I}^{-1}(p), \frac{q}{\|q\|} \right\rangle \\ &= \|q\|p - \|p_{\parallel}\|\mathcal{I}(q) \\ &= \|q\|p_{\perp} + \|q\|p_{\parallel} - \|p_{\parallel}\|\mathcal{I}(q) \\ &= |L|f_2 \; . \end{split}$$

21. Flächensatz

Der folgende Beweis orientiert sich an Beispiel 4.A.11 aus Band III des Lehrbuchs der Mathematik von Storch/Wiebe.

Es sei $f: I \to \mathbb{E}^2$ eine stetig differenzierbare Kurve. $a = t_0 \le t_1 \le \cdots \le t_m = b$ sei eine Unterteilung des Intervalls $[a,b] \subset I$, ferner sei Ω eine Volumenform¹. Die Fläche $F(\Delta_i)$ eines Dreiecks Δ_i mit Eckpunkten O, $f(t_i)$ und $f(t_{i+1})$ ist

$$F(\Delta_i) = \frac{1}{2}\Omega(f(t_i) - O, f(t_{i+1}) - O) = \frac{1}{2}\Omega(f(t_i) - O, f(t_{i+1}) - f(t_i)).$$

Eine Approximation der vom Vektor f(t) - O für $t \in [a, b]$ überstrichenen Fläche ist somit durch $\frac{1}{2} \sum_{j=0}^{m-1} \Omega(f(t_i) - O, f(t_{i+1}) - f(t_i))$ gegeben und es ist zu vermuten, dass dieser Ausdruck für jede Folge von Unterteilungen, für die die maximale Länge der Teilintervalle gegen Null konvergieren, gegen ein Integral konvergiert,

$$\frac{1}{2}\sum_{i=0}^{m-1}\Omega(f(t_i)-O,f(t_{i+1})-f(t_i))\to F_a^b(f):=\frac{1}{2}\int_a^b\Omega(f(t),f'(t))dt.$$

Dies sieht man wie folgt:

$$\sum_{j=0}^{m-1} \Omega(f(t_i) - O, f(t_{i+1}) - f(t_i))$$

$$= \sum_{j=0}^{m-1} \Omega(f(t_i) - O, f'(t_j))(t_{j+1} - t_j) + \sum_{j=0}^{m-1} \Omega(f(t_i) - O, f(t_{j+1}) - f(t_j) - f'(t_j)(t_{j+1} - t_j)).$$

Der Mittelwertsatz liefert für stetig differenzierbares f die Abschätzung

$$||f(t_{j+1}) - f(t_j) - f'(t_j)(t_{j+1} - t_j)|| \le ||f'(\tau_j) - f'(t_j)||(t_{j+1} - t_j)||$$

für ein $\tau_j \in [t_j, t_{j+1}]$. f' ist auf [a, b] gleichmäßig stetig, der zweite Summand konvergiert daher gegen Null. Der erste Summand ist eine Riemann-Summe für die stetige (und damit R-integrierbare) Funktion $\Omega(f(t), f'(t))$ und konvergiert daher gegen das Integral. Damit ist es gerechtfertigt, den Integranden

$$c_f(t) := \frac{1}{2}\Omega(f(t), f'(t))$$

¹Z.B. die Determinante.

als Flächengeschwindigkeit zu bezeichnen. Ist f zweimal differenzierbar, so gilt nach der Produktregel

 $c_f'(t) = \frac{1}{2}\Omega(f'(t), f'(t)) + \frac{1}{2}\Omega(f(t) - O, f''(t)) .$

Der erste Summand verschwindet, da Ω alterniert. Anhand des zweiten Summanden sieht man, dass die Flächengeschwindigkeit konstant ist, wenn der Fahrstrahl f(t) - O und die Beschleunigung f''(t) parallel sind. Das zweite Kepler'sche Gesetz gilt also für alle Zentralkräfte.

