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H. A. Lorentz f

Hardly a few months have gone by since the meeting of the fifth physics
conference in Brussels, and now I must, in the name of the scientific
committee, recall here all that meant to the Solvay International Insti-
tute of Physics he who was our chairman and the moving spirit of our
meetings. The illustrious teacher and physicist, H. A. Lorentz, was taken
away in February 1928 by a sudden illness, when we had just admired,
once again, his magnificent intellectual gifts which age was unable to
diminish in the least.

Professor Lorentz, of a simple and modest demeanour, nevertheless
enjoyed an exceptional authority, thanks to the combination of rare
qualities in a harmonious whole. Theoretician with profound views —
eminent teacher in the highest forms of instruction and tirelessly devoted
to this task — fervent advocate of all international scientific collabora-
tion — he found, wherever he went, a grateful circle of pupils, disciples
and those who carried on his work. Ernest Solvay had an unfailing
appreciation of this moral and intellectual force, and it was on this
that he relied to carry through a plan that was dear to him, that of
serving Science by organising conferences composed of a limited number
of physicists, gathered together to discuss subjects where the need for
new insights is felt with particular intensity. Thus was born the Solvay
International Institute of Physics, of which Ernest Solvay followed the
beginnings with a touching concern and to which Lorentz devoted a loyal
and fruitful activity.

All those who had the honour to be his collaborators know what he
was as chairman of these conferences and of the preparatory meetings.
His thorough knowledge of physics gave him an overall view of the
problems to be examined. His clear judgement, his fair and benevolent
spirit guided the scientific committee in the choice of the assistance it
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was appropriate to call upon. When we then were gathered together at
a conference, one could only admire without reservations the mastery
with which he conducted the chairmanship. His shining intellect domi-
nated the discussion and followed it also in the details, stimulating it
or preventing it from drifting, making sure that all opinions could be
usefully expressed, bringing out the final conclusion as far as possible.
His perfect knowledge of languages allowed him to interpret, with equal
facility, the words uttered by each one. Our chairman appeared to us,
in fact, gifted with an invincible youth, in his passion for scientific truth
and in the joy he had in comparing opinions, sometimes with a shrewd
smile on his face, and even a little mischievousness when confronted
with an unforeseen aspect of the question. Respect and affection went
to him spontaneously, creating a cordial and friendly atmosphere, which
facilitated the common work and increased its efficiency.

True creator of the theoretical edifice that explains optical and elec-
tromagnetic phenomena by the exchange of energy between electrons
contained in matter and radiation viewed in accordance with Maxwell’s
theory, Lorentz retained a devotion to this classical theory. All the
more remarkable is the flexibility of mind with which he followed the
disconcerting evolution of the quantum theory and of the new mechanics.

The impetus that he gave to the Solvay institute will be a memory
and an example for the scientific committee. May this volume, faithful
report of the work of the recent physics conference, be a tribute to the
memory of he who, for the fifth and last time, honoured the conference
by his presence and by his guidance.

M. CURIE



Fifth physics conference

The fifth of the physics conferences, provided for by article 10 of the sta-
tutes of the international institute of physics founded by Ernest Solvay,
held its sessions in Brussels on the premises of the institute from 24 to
29 October 1927.

The following took part in the conference:
Mr H. A. LORENTZ t, of Haarlem, Chairman.

Mrs P. CuRrilg, of Paris; Messrs N. BOHR, of Copenhagen; M. BORN,
of Gottingen; W. L. BRAGG, of Manchester; L. BRILLOUIN, of Paris;
A. H. CompTON, of Chicago; L.-V. DE BROGLIE, of Paris; P. DEBYE,
of Leipzig; P. A. M. DIRAC, of Cambridge; P. EHRENFEST, of Leiden;
A. EINSTEIN, of Berlin; R. H. FOWLER, of Cambridge; Ch.-E. GUYE,
of Geneva; W. HEISENBERG, of Copenhagen; M. KNUDSEN, of Copen-
hagen; H. A. KRAMERS, of Utrecht; P. LANGEVIN, of Paris; W. PAULI,
of Hamburg; M. PLANCK, of Berlin; O. W. RICHARDSON, of London;
[E. SCHRODINGER, of Zurich;] C. T. R. WILSON, of Cambridge, Members.

Mr J.-E. VERSCHAFFELT, of Gent, fulfilled the duties of Secretary.

Messrs Th. DE DONDER, E. HENRIOT and Aug. PICCARD, professors
at the University of Brussels, attended the meetings of the conference
as guests of the scientific committee, Mr Ed. HERZEN, professor at the
Ecole des Hautes Etudes de Bruxelles, as representative of the Solvay
family.
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Professor I. LANGMUIR, of Schenectady (U. S. of America), visiting
Europe, attended the meetings as a guest.

Mr Edm. van AUBEL, member of the Scientific Committee, and Mr H.
DESLANDRES, director of the Meudon observatory, invited to participate
in the conference meetings, had been excused.

Sir W. H. BRAGG, member of the scientific committee, who had handed
in his resignation before the meetings and requested to be excused, also
did not attend the sessions.

The administrative commission of the institute was composed of:

Messrs Jules BORDET, professor at the University of Brussels, appointed
by H. M. the King of the Belgians; Armand SOLVAY, engineer, mana-
ger of Solvay and Co.; Maurice BOURQUIN, professor at the University
of Brussels; Emile HENRIOT, professor at the University of Brussels;
Ch. LEFEBURE, engineer, appointed by the family of Mr Ernest Solvay,
Administrative Secretary.

The scientific committee was composed of:

Messrs H. A. LORENTZT, professor at the University of Leiden, Chair-
man; M. KNUDSEN, professor at the University of Copenhagen, Secreta-
ry; W. H. BRAGG, professor at the University of London, president of the
Royal Institution; Mrs Pierre CURIE, professor at the Faculty of Sciences
of Paris; Messrs A. EINSTEINB professor, in Berlin; Charles-Eug. GUYE,
professor at the University of Geneva; P. LANGEVIN, professor at the
College de France, in Paris; O. W. RICHARDSON, professor at the Uni-
versity of London; Edm. van AUBEL, professor at the University of Gent.

Sir W. H. BRAGG, resigning member, was replaced by Mr B. CABRERA,
professor at the University of Madrid.

To replace its late chairman, the scientific committee chose Professor
P. LANGEVIN.

a Chosen in replacement of Mr H. Kamerlingh Onnes, deceased.



The intensity of X-ray reflection®

By MrR W. L. BRAGG

1. — THE CLASSICAL TREATMENT OF X-RAY DIFFRACTION
PHENOMENA

The earliest experiments on the diffraction of X-rays by crystals showed
that the directions in which the rays were diffracted were governed by the
classical laws of optics. Laue’s original paper on the diffraction of white!
radiation by a crystal, and the work which my father and I initiated on
the reflection of lines? in the X-ray spectrum, were alike based on the
laws of optics which hold for the diffraction grating. The high accuracy
which has been developed by Siegbahn and others in the realm of X-ray
spectroscopy is the best evidence of the truth of these laws. Advance in
accuracy has shown the necessity of taking into account the very small
refraction of X-rays by the crystal, but this refraction is also determined
by the classical laws and provides no exception® to the above statement.

The first attempts at crystal analysis showed further that the strength
of the diffracted beam was related to the structure of the crystal in a way
to be expected by the optical analogy. This has been the basis of most
work on the analysis of crystal structure. When monochromatic X-rays
are reflected from a set of crystal planes, the orders of reflection are
strong, weak, or absent in a way which can be accounted for qualitatively

a We follow Bragg’s original English typescript, from the copy in the Richardson
collection, AHQP-RDN, document M-0059 (indexed as ‘unidentified author’ in
the microfilmed catalogue). Obvious typos are corrected mostly tacitly and some
of the spelling has been harmonised with that used in the rest of the volume.
Discrepancies between the original English and the published French are endnoted
(eds.).
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by the arrangement of atoms* parallel to these planes. In the analysis
of many structures, it is not necessary to make a strict examination of
the strength of the diffracted beams. Slight displacements of the atoms
cause the intensities of the higher orders to fluctuate so rapidly, that
it is possible to fix the atomic positions with high accuracy by using a
rough estimate of the relative intensity of the different orders.

When we attack the problem of developing an accurate quantitative
theory of intensity of diffraction, many difficulties present themselves.
These difficulties are so great, and the interpretation of the experimental
results has often been so uncertain, that it has led® to a natural distrust
of deductions drawn from intensity measurements. Investigators of cry-
stal structures have relied on qualitative methods,’ since these were in
many cases quite adequate. The development of the quantitative analysis
has always interested me personally, particularly as a means of attacking
the more complicated crystalline structures, and it would seem that at
the present time the technique has reached a stage when we can rely on
the results. It is my purpose in this paper to attempt a critical survey
of the present development of the subject. It is of considerable interest
because it is our most direct way of analysing atomic and molecular
structure.

In any X-ray examination of a crystalline body, what we actually
measure is a series of samples’ of the coherent radiation scattered in
certain definite directions by the unit of the structure. This unit is, in
general, the element of pattern of the crystal, while in certain simple
cases it may be a single atom.

In the examination of a small body by the microscope, the objective
receives the radiation scattered in different directions by the body, and
the information about its structure, which we get by viewing the final
image, is contained at an earlier stage® in these scattered beams. Though
the two cases of microscopic and X-ray examination are so similar, there
are certain important differences. The scattered beams in the microscope
can be combined again to form an image, and in the formation of
the image the phase relationship between beams scattered in different
directions plays an essential part. In the X-ray problem, since we can only
measure the intensity of scattering in each direction, this phase relation-
ship cannot be determined experimentally, though in many cases it can
be inferred.” Further, the microscope receives the scattered beams over
a continuous range of directions, whereas the geometry of the crystalline
structure limits our examination to certain directions of scattering. Thus
we cannot form directly an image of the crystalline unit which is being
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illuminated by X-rays. We can only measure experimentally the strength
of the scattered beams, and then build up an image piece by piece from
the information we have obtained.

It is important to note that in the case of X-ray examination all
work is being carried out at what is very nearly the theoretical limit
of the resolving power of our instruments. The range of wavelength
which it is convenient to use lies between 0.6 A and 1.5 A. This range
is of sufficiently small wavelength for work with the details of crystal
structure, which is always on a scale of several Angstrt‘)m units, but
the wavelengths are inconveniently great for an examination into atomic
structure. It is unfortunate from a practical point of view that there
is no convenient steady source of radiation between the K lines of the
metal palladium, and the very much shorter K lines of tungsten. This
difficulty will no doubt be overcome, and a technique of ‘ultraviolet’
X-ray microscopy will be developed, but at present all the accurate
work on intensity of reflection has been done with wavelengths in the
neighbourhood of 0.7 A.

We may conveniently!'? divide the process of analysis into three stages.

a) The experimental measurement of the intensities of the diffracted
beams.

b) The reduction of these observations, with the aid of theoretical for-
mulae, to measurements of the amplitudes of the waves scattered by a
single unit of the structure, when a wave train of given amplitude falls
on it.

c¢) The building up of the image, or deduction of the form of the unit,
from these measurements of scattering in different directions.

2. — HISTORY OF THE USE OF QUANTITATIVE METHODS

The fundamental principles of a mathematical analysis of X-ray reflec-
tion were given in Laue’s original paper [1], but the precise treatment of
intensity of reflection may be said to have been initiated by Darwin [2]
with two papers in the Philosophical Magazine early in 1914, in which
he laid down the basis for a complete theory of X-ray reflection based
on the classical laws of electrodynamics.!! The very fundamental and
independent treatment of the whole problem by Ewald [3], along quite
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different lines, has confirmed Darwin’s conclusions in all essentials. These
papers established the following important points.

1. Two formulae for the intensity of X-ray reflection can be deduced,
depending on the assumptions which are made. The first of these has
since come to be known as the formula for the ‘ideally imperfect crystal’
or ‘mosaic crystal’H It holds for a crystal in which the homogeneous
blocks are so small that the reduction in intensity of a ray passing
through each block, and being partly reflected by it, is wholly accounted
for by the ordinary absorption coefficient. This case is simple to treat
from a mathematical point of view, and in actual fact many crystals
approach this physical condition of a perfect mosaic.

The second formula applies to reflection by an ideally perfect crystal.
Here ordinary!'? absorption plays no part in intensity of reflection. This is
perfect over a finite range of glancing angles, all radiation being reflected
within this range. The range depends on the efficiency of the atom planes
in scattering. The second formula is entirely different from the first, and
leads to numerical results of a different order of magnitude.

2. The actual intensity of reflection in the case of rocksalt is of the order
to be expected from the imperfect crystal formula.

3. The observed rapid decline in intensity of the high orders is only partly
accounted for by the formula for reflection, and must be due in addition
to the spatial distribution of scattering matter in the atoms (electron
distribution).

4. When a crystal is so perfect that it is necessary to allow for the
interaction of the separate planes, the transmitted beam is extinguished
more rapidly than corresponds to the true absorption of the crystal
(extinction).

5. There exists a refractive index for both crystalline and amorphous
substances, slightly less than unity, which causes small deviations from
the law nA = 2dsin 6.

Another important factor in intensity of reflection had been alrea-
dy examined theoretically by Debye [4], this being the diminution in

a I believe we owe to Ewald the happy suggestion of the word ‘mosaic’.
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intensity with rising temperature due to atomic movement. Though
subsequent work has put Debye’s and Darwin’s formulae in modified
and more convenient forms, the essential features were all contained in
these early papers.

On the experimental side,the first accurate quantitative measurements
were made by W. H. Bragg [5].® The crystal was moved with constant
angular velocity through the reflecting position, and the total amount
of reflected radiation measured. He showed that the reflection'* from
rocksalt for a series of faces lay on a smooth curve when plotted against
the sine of the glancing angle, emphasising that a definite physical con-
stant was being measured. This method of measurement has since been
widely used. The quantity £, where E is the total energy of radiation'®
reflected, w the angular velocity of rotation, and I the total radiation
falling on the crystal face per second, is independent of the experimental
arrangements, and is a constant for a given reflection from a mosaic
crystal; it is generally termed the ‘integrated reflection’.'® It is related
in a simple way to the energy measurements from a powdered crystal,
which have also been employed for accurate quantitative work. W. H.
Bragg’s original measurements were comparisons!” of this quantity for
different faces, not absolute measurements in which the strength of an
incident beam was considered.

W. H. Bragg further demonstrated the existence of the extinction
effect predicted by Darwin, by passing X-rays through a diamond cry-
stal set for reflection and obtaining an increased absorption. He made
measurements of the diminution in intensity of reflection'® with rising
temperature predicted by Debye, and observed!? by Laue, and showed
that the effect was of the expected order. In the Bakerian Lecture in
1915 [6] he described measurements in the intensity of a very perfect
crystal, calcite, which seemed to show that the intensity was proportional
to the scattering power of the atomic planes and not to the square of the
power (this is to be expected from the formula for reflection by a perfect
crystal). In the same address he proposed the use of the Fourier method
of interpreting the measurements?® which has been recently used with
such success by Duane, Havighurst, and Compton, and which is dealt
with in the fourth section of this summary.2! At about the same time,
Debye and Compton independently discussed the influence of electronic
distribution in the atom on the intensity of reflection.

The next step was made by Compton [7] in 1917. Darwin’s formula for
the mosaic crystal was deduced by a different method, and was applied
to the interpretation of W. H. Bragg’s results with rocksalt. Compton
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concluded that the electronic distribution in the atoms was of the type to
be expected from Bohr’s atomic model. Compton then published the first
measurements of the absolute intensity of reflexion. A monochromatic
beam of X-rays was obtained by reflection from a crystal, and this
was reflected by a second rotating crystal (rocksalt and?? calcite). The
absolute value of the integrated reflection % was found to be of the right
order for rocksalt when calculated by the imperfect crystal formula, but
to be very low for calcite indicating strong extinction or a wrong formula,
in the second case.

In 1921 and 1922 I published with James and Bosanquet a series
of measurements on rocksalt in which we tried to obtain a high ac-
curacy. We made absolute measurements of intensity for the strongest
reﬂectionsB and compared the weaker reflections with them. Our main
contributions in these papers were a more accurate set of measurements
of integrated reflection for a large number of planes, and a method for
estimating and correcting for the effect of extinction. As Darwin showed
in a paper in 1922 [9] on the theoretical interpretation of our results,
we only succeeded in correcting for extinction of the kind he termed ‘se-
condary’ and not for ‘primary’ extinctionﬁ Since then measurements by
Havighurst [10], by Harris, Bates and McInnes®® [11] and by Bearden [12]
have been made on the reflecting power of powdered sodium chloride
when extinction is absent. Their measurements have agreed with ours
very closely indeed, confirming one’s faith in intensity measurements,
and showing that we were fortunate in choosing a crystal for our ex-
amination where primary extinction was very small. In the same papers
we tried to make a careful analysis of the results in order to find how
much information about atomic structure could be legitimately deduced
from them, and we published curves showing the electron distribution
in sodium and chlorine?* atoms.

In this discussion, I have refrained from any reference to the question
of reflection by ‘perfect’ crystals. The formula for reflection by such
crystals was first obtained by Darwin, and has been arrived at inde-
pendently by Ewald. The reflection by such crystals has been examined
amongst others by Bergen Davis?® and Stempel [13], and by Mark [14]
and predictions of the theory have been verified. It is not considered

a In our paper we failed to give due acknowledgement to Compton’s absolute
measurements in 1917 of which we were not aware at the time.

b Primary extinction is an excessive absorption of the beam which is being reflected
in each homogeneous block of crystal, secondary extinction a statistical excessive
absorption of the beam in the many small blocks of a mosaic crystal.
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here, because I wish to confine the discussion to those cases where a
comparison of the intensity of incident and reflected radiation leads to
accurate quantitative estimates of the distribution of scattering matter.
This ideal can be attained with actual crystals,?® when they are of the
imperfect or mosaic type, though allowance for extinction is sometimes
difficult in the case of the stronger reflections. On the other hand, it is
far more difficult to know what one is measuring in the case of crystals
which approximate to the perfect type. It is a fortunate circumstance
that mathematical formulae can be applied most easily to the type of
imperfect crystal more common in nature.

3. — RESULTS OF QUANTITATIVE ANALYSIS

For the sake of conciseness, only one of the many intensity formulae will
be given here, for it illustrates the essential features of them all. Let us
suppose that the integrated reflection is being measured when X-rays
fall on the face of a rotating crystal of the mosaic type. We then have

. Q 14cos®20
P=5,7 2 '

(a) w is the effective absorption coefficient, which may be greater than the
normal coefficient, owing to the existence of extinction at the reflecting
angle.

(b) The factor HL;Q% is the ‘polarisation factor’, which arises because
the incident rays are assumed to be unpolarised.

()

Ne2 \? 23
= F -,
@ ( mc? ) sin 26
where e and m are the electronic constants,?” ¢ the velocity of light, A

the wavelength used, N the number of scattering units per unit volume,
and 6 the glancing angle.

(d) F is the quantity we are seeking to deduce. It represents the scat-
tering power of the crystal unit in the direction under consideration,
measured in terms of the scattering power of a single?® electron according
to the classical formula of J. J. Thomson. It is defined by Ewald as the
‘Atomfaktor’?® when it applies to a single atom.
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Formulae applicable to other experimental arrangements (the powder
method for instance) are very similar, and contain the same quantity Q.
Our measurements of reflection thus lead to values of @), and so of F,
since all other quantities in the formulae are known. Measurements on
a given crystal yield a series of values for F', and all the information
that can be found out about this crystalline or atomic structure is
represented by these values. They are the same for the same crystal
whatever wavelength is employed (since F is a function of Si‘/{e ), though
of course with shorter wavelength we have the advantage of measuring
a much greater number of these coefficients (increased resolving power).

At this stage the effect of the thermal agitation of the atom will be
considered as influencing the value of F'. If we wish to make deducti-
ons about atomic structure, the thermal agitation must be taken into
account. Allowance for it is a complicated matter, because not only do
some atoms move more than others, but also they change their relative
mean positions as the temperature alters in the more complex crystals.

This will be dealt with more fully below.

A series of examples will now be given to show that these quantitative
formulae, when tested, lead to results which indicate that the theory is
on the right lines. It is perhaps more convincing to study the results
obtained with very simple crystals, though I think that the success of
the theory in analysing highly complex structures is also very strong
evidence, because we have covered such a wide range of substances.

In the simple crystals, where the positions of the atoms are definite,
we can get the scattering power of individual atoms. The results should
both indicate the correct number of electrons in the atom, and should
outline an atom of about the right size. When F' is plotted against %
its value should tend to the number, N, of electrons in the atom for small
values of %, and should fall away as SiK(’ increases, at a rate which is
reasonably explained by the spatial extension of the atom. In Fig. 1, the
full lines give F' curves obtained experimentally by various observers.
The dotted lines are F' curves calculated for the generalised atomic
model of Thomas [15], of appropriate atomic number. The Thomas
atomic model, which has been shown for comparison, is most useful

as it gives us the approximate electronic distribution in an atom of any
atomic number. Thomas calculates an ideal distribution of electrons in
an atom of high atomic number. He assumes spherical symmetry for
the atom, and supposes that ‘electrons are distributed uniformly in the
six-dimensional phase-space for the motion of an electron, at the rate
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of two for each h? of (six) volume’.3® He thus obtains an ideal electron
atmosphere around the nucleus, the constants of which can be simply
adjusted®! so as to be suitable for any given nuclear charge. It is of course
to be expected that the lower the atomic weight, the more the actual
distribution of scattering matter will depart from this arrangement, and
will reflect the idiosyncrasies of the particular atom in question. The
figure will show, however, that the actual curves are very similar to those
calculated for Thomas’ models. In particular, it will be clear that they
tend to maximum values not far removed from the number of electrons in
the atom in each case. The general agreement between the observed and
calculated F' curves must mean that our measurements of F' are outlining
a picture of the atom. The agreement holds also for other atomic models
than those of Thomas, which all lead to atoms with approximately the
same spatial extension and electronic distribution, as is well known.
All these measurements of F' necessitate absolute values for the inte-
grated reflection. It is not necessary to measure these directly in each



292 W. L. Bragg

case. When any one reflection has been measured in absolute value (by
comparison of incident and reflected radiation), other crystals may be
compared with it. The standard which has been used in every case, as
far as I am aware, is the rocksalt crystal. Absolute measurements on this
have been made by Compton [7], by Bragg, James and Bosanquet [§],
and by Wasastjerna [18] which agree satisfactorily with each other.

4. — INTERPRETATION OF MEASUREMENTS OF F'

In interpreting these measurements of scattering power, we may either
calculate the scattering of a proposed atomic model and compare it
with the observed F' curve, or we may use the observations to calculate
the distribution of scattering matter directly. The latter method is the
more attractive, and in the hands of Duane, Havighurst, and Comp-
ton it has yielded highly interesting ‘images’ of the atomic structure
seen by X-rays. There is a close analogy between the examination of
a series of parallel planes by means of X-rays, and the examination of
a diffraction grating, by a microscope, which is considered in Abbe’s
theory of microscopic visionH The objective of the microscope may be
considered as receiving a limited number of orders of spectra from the
grating. These spectra in their turn build up the image viewed by the
eyepiece, and the perfection of this image depends on the number of
spectra received. The strength of each spectral order depends on the
magnitude of the corresponding coefficient in that Fourier series which
represents the amplitude of the light transmitted at each point of the
grating. The extension of this well-known optical principle to the X-ray
field was suggested by W. H. Bragg [6] in 1915. He had formed the
conclusion®? that the amplitudes of the scattered wave from rocksalt
were inversely proportional to the square of the order of reflection, and
he showed that3? ‘the periodic function which represents the density of
the medium must therefore be of the form?3*

cos2my  cosdmy cos2nms
+ +

12 22 n?
and in this way built up a curve showing the periodic density of the
rocksalt grating. The method was not applied, however, to the much
more accurate measurements which are now available until recently,
when Duane and Havighurst showed how much could be done with it.

const +

a See for instance the discussion of this theory and of A. B. Porter’s experiments to
illustrate it in Wood’s Optics, Chapter VIII.
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Duane independently arrived at a more general formula of the same type,
giving the density of scattering matter at any point in the whole crystal
as a triple Fourier series, whose coefficients depend on the intensity of
reflection from planes of all possible indices. Havighurst applied this
principle to our measurements of rocksalt, and to measurements which he
has made on other crystals, and obtained a picture of the relative density
of scattering matter along certain lines in these crystals. Compton made
the further step of putting the formulae in a form which gives the
absolute density of electronic distribution (assuming the scattering to
be by electrons obeying the classical laws). Compton gives a very full
discussion of the whole matter in his book X-rays and Electrons.?® It
is not only an extremely attractive way of making clear just what has
been achieved by the X-ray analysis, but also the most direct method of
determining the structure.

The formula for the distribution of scattering matter in parallel sheets,
for a crystal with a centre of symmetry, is given by Compton as follows

7 2 2mnz
P,=—+4 - F, .
+ a 21: cos

a a

Here z is measured perpendicularly to the planes which are spaced a
distance a apart. P,dz is the amount of scattering matter between planes
at distances z and z + dz, and Z (= foa P.dz) is the total scattering
matter of the crystal unit. This is a simplified form of Duane’s formula
for a Fourier series of which the general term is

2 2 2
Apoon sin ( TT 5m) sin (M _ 5n2) sin ( ™maz 5n3> ’

aj a2

Ap nans being proportional to the amplitude of the scattered wave from
the plane (ninang).

Another Fourier series, due to Compton, gives the radial distribution
of scattering matter, i.e. the values of U,, where U, dr is the amount of
scattering matter between radii  and r + dr

87— . 2mnr
U, = 2 ;nFnsm .
where a is chosen so that values of F' occur at convenient intervals on
the graph for F.

If we know the values of F for a given atom over a sufficiently wide
range, we can build up an image of the atom either as a ‘sheet dis-
tribution’ parallel to a plane, or as a radial distribution of scattering
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matter around the nucleus. In using these methods of analysis, howe-
ver, it is very necessary to remember that we are working right at the
limit of resolving power of our instruments, and in fact are attempting
a more ambitious problem than in the corresponding optical case. In
A. B. Porter’s experiments to test Abbe’s theory, he viewed the image
of a diffraction grating and removed any desired group of diffracted rays
by cutting them off with a screen. The first order gives blurred lines, four
or five orders give sharper lines with a fine dark line down the centre,
eight orders give two dark lines down the centre of each bright line and
so forth. These imperfect images are due to the absences of the higher
members in building up the Fourier series. In exactly the same way we
get false detail in our X-ray image, owing to ignorance of the values of
the higher members in the F' curve. Similarly, the fine structure which
actually exists may be glossed over, since by using a wavelength of 0.7 A,
we cannot hope to ‘resolve’ details of atomic structure on a scale of less
than half this value.

The ignorance of the values of higher members of the Fourier series
matters much less in the curve of sheet distribution than in that for
radial distribution, since the latter converges far more slowly. Examples
of the Fourier method of analysis are given in the next paragraph.

As opposed to this method of building up an image from the X-ray
results,?¢ we may make an atomic model and test it by calculating an F'
curve for it which can be compared with that obtained experimentally.
This is the most satisfactory method of testing models arrived at by
other lines of research, for nothing has to be assumed about the values
of the higher coefficients F'. It is of course again true that our test only
applies to details of the proposed model on a scale comparable with the
wavelength we are using. Since we can reflect X-rays right back from an
atomic plane, we may get a resolving power for a given wavelength with
the X-ray method twice as great as the best the microscope can yield.

It is perhaps worth mentioning the methods I used with James and
Bosanquet in our determination of the electronic distribution in sodium
and chlorine in 1922. We tried to avoid extrapolations of the F' curve
beyond the limit of experimental investigation. We divided the atom
arbitrarily into a set of shells, with an unknown number of electrons
in each shell. These unknowns were evaluated by making the scattering
due to them fit the F' curve over the observed range, this being simply
done by solving simultaneous linear equations. We found we got much
the same type of distribution however the shells were chosen, and that a
limit to the electronic distribution at a radius of about 1.1 A in sodium
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and 1.8 A in chlorine was clearly indicated. Our distribution corresponds
in its general outline to that found by the much more direct Fourier
analysis, as the examples in paragraph 7 will show.

5. — EXAMPLES OF ANALYSIS

We owe to Duane [20] the appreciation of the very attractive way in
which the Fourier analysis represents the results of X-ray examinations.
It has the great merit of representing, in the form of a single curve,
the information yielded by all orders of reflection from a given plane,
or from the whole crystal. It is of course only an alternative way of
interpreting the results, and the deductions we can make about atomic
or molecular structures depend in the end on the extent to which we can
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Fig. 3a. — Distribution of electrons in sheets parallel to 0001.37

trust our experimental observations, and not on the method of analysis
we use. The Fourier method is so direct however, and its significance so
easy to grasp, that Duane’s introduction of it marks a great advance in
technique of analysis.

I have reserved to paragraph 7 the more difficult problem of the arran-
gement of scattering matter in the atoms themselves, and the examples
given here are of a simpler character. They illustrate the application of
analysis to the general problem of the distribution of scattering matter in
the whole crystal, when we are not so near the limit of resolving power.
The curves in Fig. 2 represent the first application of the new method
of Fourier analysis to accurate data, carried out by Havighurst [21] in
1925. He used our determinations of F' for sodium chloride, and Duane’s
three-dimensional Fourier series, and calculated the density of scattering
matter along a cube edge through sodium and chlorine centres, along a
cube diagonal through the same atoms, and along two face diagonals
chosen so as to pass through chlorine atoms alone or sodium atoms
alone in the crystal. The atoms show as peaks in the density distribution.
In the other examples, the formula for distribution in sheets has been
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applied to some results we have obtained in our work on crystal structure
at Manchester. I have given them because I feel they are convincing
evidence of the power of quantitative measurements, and show that all
methods of interpretations lead to the same results.

Mr West and I [22] recently analysed the hexagonal crystal beryl,
Be3A1,Si5015,3® which has a structure of some complexity, depending
on seven parameters. We obtained the atomic positions by the usual
method of analysis, using more or less known F' curves for the atoms in
the crystal, and moving them about till we explained the observed F's due
to the crystal unit. Fig. 3 shows the reinterpretations of this result by the
Fourier method. Fig. 3a gives the electron density in sheets perpendicular
to the principal axis of the crystal, which is of a very simple type. The
particular point to be noted is the correspondence between the position
of the line B in the figure and the hump of the Fourier analysis. The line
B marks the position of a group of oxygen atoms which lies between two
other groups A and C fixed by symmetry, the position of B being fixed
by a parameter found by familiar methods of crystal analysis. The hump
represents the same group fixed by the Fourier analysis, and it will be
seen how closely they correspond. In Figs. 3b and 3¢ more complex sets
of planes are shown. The dotted curve represents the interpretation of
our results by Fourier analysis. The full curve is got by adding together
the humps due to the separate atoms shown below, the position of these
having been obtained by our X-ray analysis and their sizes by the aid
of the curve in Fig. 3a in which the contribution of the atoms can be
separated out. The correspondence between the two shows that the older
methods and the Fourier analysis agree. It is to be noted that the crystal
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had first to be analysed by the older methods, in order that the sizes of
the Fourier coefficients might be known.

In Fig. 4 T have given a set of curves for the alums, recently analysed by
Professor Cork [23]. The alums are complicated cubic crystals with such
formulae as KA1(SO4)2.12 H2O. Wyckoff*? has shown that the potassium
and aluminium atoms*' occupy the same positions in the cubic cell
as the sodium atom in rocksalt. Now we can replace the potassium
by ammonium, rubidium, caesium, or thallium, and the aluminium by
chromium, or other trivalent metals. Though the positions of the other
atoms in the crystals are not yet known, they will presumably be much
the same in all these crystals. If we represent by a Fourier series the
quantitative measurements of the alums, we would expect the density of
scattering matter to vary from crystal to crystal at the points occupied
by the metal atoms, but to remain constant elsewhere. The curves show

this in the most interesting*?® way.
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The effect of heat motion on the movements of the atoms has already
been mentioned. It was first treated theoretically by Debye [4]. Recent-
ly Waller [24] has recalculated Debye’s formula, and has arrived at a
modified form of it. Debye found that the intensities of the interference
maxima in a simple crystal should be multiplied by a factor e, where

~ 6h? o(x) sin®0
Copk® oz A2

©  characteristic temperature of crystal
x = — = .
T absolute temperature

Without going into further detail, it is sufficient to note that Waller’s
formula differs from Debye’s by making the factor e =2 not e~ . James
and Miss Firth [25] have recently carried out a series of measurements
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for rocksalt between the temperatures 86° abs. and 900° abs. They find
that Waller’s formula is very closely followed up to 500° abs., though
at higher temperatures the decline in intensity is even more rapid, as
is perhaps to be expected owing to the crystal becoming more loosely
bound. I have given the results of the measurements in Figs. 5 and 6,
both as an example of the type of information which can be got from
X-ray measurements, and because these actual figures are of interest as
a set of careful and accurate measurements of scattering power.

Fig. 5 shows the F' curves for sodium and chlorine at different tem-
peratures. The rapid decline in intensity for the higher orders will be
realised when it is remembered that they are proportional to F2. The
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curve for absolute zero is an extrapolation from the others, following the
Debye formula as modified by Waller.

In Fig. 6 the same results are interpreted by the Fourier analysis.
The curve at room temperatures for NaCl is practically identical with
the interpretation of our earlier figures by Compton, in his book X-rays
and Electrons,** though the figures on which it is based should be more
accurate.*> The curves show the manner in which the sharply defined
peaks due to Cl and Na at low temperatures become diffuse owing to
heat motion at the higher temperatures.

Several interesting points arise in connection with this analysis. In
the first place, James and Firth*® find that the heat factor is different
for sodium and chlorine, the sodium atoms moving with greater average
amplitudes than the chlorine atoms. This has a very interesting bearing
on the crystal dynamics which is being further investigated by Waller.
To a first approximation both atoms are affected equally by the elastic
waves travelling through the crystal, but in a further approximation it
can be seen that the sodium atoms are more loosely bound than the
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chlorine atoms. If an atom of either kind were only fixed in position
by the six atoms immediately surrounding it, Waller has shown that
there would be no difference between the motions of a sodium atom
between six chlorine atoms, or a chlorine atom between six sodium
atoms. However, the chlorine is more firmly pinned in position because
it has in addition twelve large chlorine neighbours, whereas the sodium
atom is much less influenced by the twelve nearest sodium atoms. Hence
arises the difference in their heat motions. It is important to find the
correct method for reducing observations to absolute zero, and this
difference in heat motion must be satisfactorily analysed before this is
possible.

In the second place, the accuracy which can be attained by the ex-
perimental measurements holds out some hope that we may be able to
test directly whether there is zero-point energy*” or not. This is being
investigated by James and Waller. If a reliable atomic model is available,
it would seem that the measurements can tell whether there is vibration
at absolute zero or not, for the theoretical diminution in intensity due to
the vibration is much larger than the experimental error in measuring
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F. 1 feel considerable diffidence in speaking of the question of zero-point
energy, and would like to have the advice of the mathematical physicists
present.

We may calculate, either from the measured heat factor or directly
from the Fourier analyses, the average amplitude of vibration for diffe-
rent temperatures. James and Firth find by both methods, for instance,
that at room temperature the mean amplitude of vibration for both
atoms is 0.21 A, and at 900° abs. it is about 0.58 A. They examined the
form which the Fourier curve at 0° abs. assumes when it is deformed
by supposing all the atoms to be in vibration with the same mean
amplitude.

It has been already remarked that the observed F' curves for atoms
are very similar to those calculated for the Thomas atomic model. The
same comparison may be made between the distributions of scattering
matter. In Fig. 7 the distribution in sheets for NaCl at absolute zero is
shown as a full curve. The dotted curve shows the horizontal distribution
in sheets for atoms of atomic number 17 and 11. In Thomas’ model the
density rises towards an infinite value very close to the nucleus, and this
is represented by the very sharp peaks at the atomic centres in the dotted
curve. We would not expect the observed distribution to correspond to
the actual Thomas distribution at these points. Throughout the rest of
the crystal the distribution is very similar. The comparison is interesting,
because it shows how delicate a matter it is to get the fine detail of
atomic structure from the observations. Thomas’ distribution is quite
continuous and takes no account of K, L and M sets of electrons. The
slight departures of the observed curve from the smooth Thomas curve
represent the experimental evidence for the existence of all the individual
features of the atom.

6. — THE MECHANISM OF X-RAY SCATTERING

Before going on to discuss the application of the analysis to atomic
structure, it is necessary to consider what is being measured when a
distribution of scattering matter is deduced from the X-ray results. The
classical treatment regards the atom as containing a number of electrons,
each of which scatters radiation according to the formula of J. J. Thom-
son. Since a vast number of atoms contribute to the reflection by a
single crystal plane, we should obtain a picture of the average electronic
distribution. The quantity F' should thus tend to a maximum value, at
small angles of scattering, equal to the number of electrons in the atom,
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and should fall away owing to their spatial distribution as SiEQ increases.

The observed*® F curves are of this character, as has been seen. When
interpreted as an atomic distribution, they give atoms containing the
correct number of electrons, and this seems satisfactory from the classical
viewpoint. On the other hand, the evidence of the Compton effect would
appear at first sight to cast doubt on the whole of our analysis. What
we are measuring is essentially the coherent radiation diffracted by the
crystal, whereas the Compton effect shows that a part of the radiation
which is scattered is of different wavelength. Further, this radiation of
different wavelength is included with the coherent radiation, when the
total amount of scattered radiation is measured, and found to agree
under suitable conditions with the amount predicted by J. J. Thomson’s
formula. It would therefore seem wrong to assume that we obtain a
true picture of electronic distribution by the aid of measurements on the
coherent radiation alone.

Even before the advent of the new mechanics, Compton’s original
treatment of the effect which he discovered suggested a way out of this
difficulty. The recoil electron is given an amount of energy

2 (s’
m v A ’
where v and v/ are the frequencies of the modified and unmodified
radiations. If the electron is ejected from the atom the radiation is
modified in wavelength, if not coherent waves are scattered. Since there
is little modified scattering at small angles, the F' curve will tend to
a maximum equal to the number of electrons in the atom, and any
interpretation of the curve will give an atom containing the correct
% increases, more and more of the scattered
radiation will be modified, and in calculating the F' curve this must be
taken into account. However, if % is not far from unity, the F' curve
will remain a function of Siie, since whatever criterion is applied for
the scattering of modified or unmodified radiation, it will depend on the
energy imparted to the scattering electron, which is itself a function of
%. Our X-ray analysis would thus give us an untrue picture of the
atom, but one which is consistently the same whatever wavelength is
employed. Williams [27] and Jauncey [28] have recalculated F' curves
from atomic models using this criterion, and found a better fit to the
experimental curves when the Compton effect was taken into account.

number of electrons. As

(Examples of this closer approximation will be found in the paper by
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Williams [27] in 1926. See also a discussion by Kallmann and Mark
[26]).19

The point at issue is illustrated by the curves in Fig. 8. Three F' curves
for chlorine are plotted in the figure. The dotted line represents the
observed F' curve (James and Firth). The continuous line is the F' curve
calculated from Hartree’s [29] atomic model for chlorine. It shows a hump
at a value of sin @ of 0.4, which is not present in the observed curve. This
hump arises from the fact that the outer electrons in the chlorine model
give negative values for F just short of this point,®® and positive values
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again at the point itself. All atomic models calculated with electronic
orbits show similar irregularities which are not actually observed. When,
however, the Compton effect is taken into consideration, these outer
electrons are found to give a very small contribution to the F' curve at
the large angles where the humps®! occur, because they scatter so much
modified radiation. The allowance for the Compton effect smooths out
the hump, and leads to F' curves much more like those observed. The
third curve shows the F' curve due to the continuous Thomas distribution
and is a close fit to the observed curve.

I have quoted from a note by Dr Ivar Waller, in the following tentative
summary of the interpretation which the new mechanics gives us of this
phenomenonl In a recent letter to Nature [30], Waller discusses the
transition for the whole range from ordinary dispersion into Compton
effect. His note only refers to scattering by a single electron, but it can
probably be extended to many-electron atoms. Waves of continually
decreasing wavelength are supposed to fall upon the atom, and the
transition is traced through the following stages.

a) While the wavelength of the radiation remains long compared with
atomic dimensions, the dispersion formula for optical frequencies gra-
dually transforms into the scattering for free electrons given by the
classical J. J. Thomson formula. This formula holds approximately to®?
wavelengths approaching atomic dimensions.

b) At this point the scattering of coherent radiation will diminish, owing
to interference, and become more concentrated in the forward direction
of the incident light. This is the phenomenon we are studying, with X-
rays, and our F' curves map out the distribution of the coherent radiation
where the wavelength is of atomic dimensions.

c) At the same time, the scattering of incoherent radiation will become
appreciable, and approximate more and more closely in change of wa-
velength and intensity distribution to the Compton effect. It will have
practically merged into the Compton effect when the momentum of a
quantum of the incident light is large compared with that corresponding
to electronic motions in the atom.

d) Up to this point the Thomson formula holds for the total intensity

a Space forbids a reference to the many theoretical papers which have contributed
towards this interpretation.
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of light scattered in any direction, coherent and incoherent radiation
being summed together. It first ceases to hold, when the frequency
displacement due to the Compton effect is no longer small compared
with the frequency of the incident light.

The point of importance for our present problem is that ‘the coherent
part of the radiation is to be directly calculated from that continuous
distribution of electricity which is defined by the Schrodinger density-
distribution in the initial state of the atom’. The classical treatment
supposes each point electron to scatter according to the J. J. Thomson
formula in all directions. In the new treatment, the electron is replaced
by a spatial distribution of scattering matter, and so each electron has
an ‘F curve’ of its own. It will still scatter coherent radiation in all
directions, but its amount will fall away from that given by the classical
formula owing to interference as % increases, and this decline will be
much more rapid for the more diffuse outer electrons than for the concen-
trated inner electrons. The total amount of radiation 7" scattered in any
direction by the electron is given by the Thomson formula. A fraction
2T will be coherent, and will be calculated by the laws of interference
from the Schrodinger distribution, and the remainder, (1 — f2)T, will
be incoherent. Thus the total coherent radiation will be F?T where
F is calculated from the Schrodinger distribution for the whole atom.
An amount (N — 3 f2)T will be scattered with change of wavelength.
Our measurements of X-ray diffraction, if this be true, can be trusted
to measure the Schrodinger continuous distribution of electricity in the
crystal lattice.

A very interesting point arises in the case where characteristic absorp-
tion frequencies of the scattering atom are of shorter wavelength than
the radiation which is being scattered. In general, this has not been
so when careful intensity measurements have been made since atoms of
low atomic weight have alone been investigated. On the classical analogy,
we would expect a reversal in phase of the scattered radiation, when an
electron has a characteristic frequency greater than that of the incident
light. A fascinating® experiment by Mark and Szilard [31] has shown
that something very like this takes place. They investigated the (111)
and (333) reflections of RbBr, which are extremely weak because Rb and
Br oppose each other and are nearly equal in atomic number. They found
that these ‘forbidden’ reflections were indeed absent when the soft Cuk
or hard Bak radiation was used, but that Srk radiation was appreciably
reflected (Srxq A 0.871 A;* absorption edges of Rbx and Brg, 0.814 A
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and 0.918 A). The atoms are differentiated because a reversal of phase
in scattering by the K electrons takes place in the one case and not in
the other.

7. — THE ANALYSIS OF ATOMIC STRUCTURE BY X-RAY INTENSITY
MEASUREMENTS

It has been seen that the intensity measurements assign the correct
number of electrons to each atom in a crystal, and indicate a spatial
extension of the atoms of the right order. In attempting to make the
further step of deducing the arrangement of the electrons in the atom,
the limitations of the method begin to be very apparent.

In all cases where analysis has been attempted, the atom has been
treated as spherically symmetrical. The analysis is used to determine
the amount of scattering matter U,dr between radii r and r + dr. All
methods of analysis give a distribution of the same general type. I have
given, for instance, a series of analyses of sodium and chlorine in Fig. 9.
In these figures, U, is plotted as ordinate against r as abscissa. The
total area of the curve in each case is equal to the number of electrons
in each atom, since fooo U,dr = N. The full-line curves are our original
interpretations of the distribution in sodium and chlorine, based on our
1921 figures.”> The other curves are the interpretations of the same
or closely similar sets of figures®” by Havighurst [32] and by Compton
(X-rays and Electrons) using the Fourier method of analysis.

In Fig. 9a are included our analysis of sodium in NaCl, two analyses
by Havighurst of sodium in NaCl and NaF obtained by using Duane’s
triple Fourier series, and an analysis of our figures®® by Compton using
the Fourier formula for radial distribution. It will be seen that the
general distribution of scattering matter and the limits of the atom are
approximately the same in each case. The same holds for the chlorine
curves in Fig. 9b.

The interesting point which is raised is the reality of the humps which
are shown by the Fourier analysis. We obtained similar humps in our
analysis by means of shells but doubted their reality because we found
that if we smoothed them out and recalculated the F' curve, it agreed
with the observed curve within the limits of experimental error. The
technique of measurement has greatly improved since then, and it would
even appear from later results that we over-estimated the possible errors
of our first determinations of F'. It is obvious, however, that great care
must still be taken in basing conclusions on the finer details shown by any
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method of analysis. The formula which is used in the Fourier analysis,

oo
4rr 2nkF,, . 2mnr
U, = — sin
a 4 a a

is one which converges very slowly, since the successive coefficients Fi,
are multiplied by n. The observed F' curve must be extrapolated to a
point when F' is supposed to fall to zero, and the precise form of the
curve reacts very sensitively to the way in which this extrapolation is
carried out.
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The curves in Fig. 10 will illustrate the extent to which the analysis
can be considered to give us information about the actual atomic distri-
bution. In Fig. 10a the curve shows the F' values for fluorine obtained by
James and Randall [17]. The circles are points obtained®® by Havighurst
from measurements on CaF, LiF, NaF;50 it will be seen that the two sets
of experimental data are in very satisfactory agreement. In Fig. 10b I
have shown on the one hand Havighurst’s interpretations of the F' curve
drawn through his points, and on the other an analysis carried out by
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Claassen [16] of James and Randall’s using the Fourier method. The
distributions are the same in their main outlines, but the peaks occur in
quite different places.

Compton (X-rays and Electrons, p. 167) in discussing his diagrams of
radial distribution has remarked that slight differences in the F' curves
lead to wide differences in details of the curves, and that too much
confidence should not be placed on these details. Havighurst [32] dis-
cusses the significance of the analysis very fully in his paper on electron
distribution in the atoms. Our data are not yet sufficiently accurate or
extensive. Nevertheless, we are so near to attaining an accuracy of a
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satisfactory order, and the results of the analysis seem to indicate so
clearly its fundamental correctness, that it appears to be well worth
while to pursue enquiry further. Work with shorter wavelengths, and at
low temperatures, when heat motion is small and a large range of F
values can be measured, should yield us accurate pictures of the atomic
structure itself. Given accurate data,’' the Fourier method of analysis
provides a direct way of utilising them.

The radial distribution of scattering power outlined in this way is in
general agreement with any reasonable atomic model. We have seen,
in particular, that the F' curves, and therefore the radial distributions,
of Thomas’ model®® are in approximate accord with those actually ob-
served. If it is true that the scattering of coherent radiation is to be
calculated in all cases by the Schrédinger density distribution, we should
test our model against this distribution.

An interesting attempt along these lines has been recently made by
Pauling [33]. He has used certain simplifying assumptions to obtain an
approximate Schrodinger density-distribution for many-electron atoms.
I have shown in Fig. 11 four sets of curves. The radial electron distribu-
tions deduced by Havighurst and by Compton are shown as one curve
since they are very similar. The figure shows also our first analysis of
electron distribution. Matched against these are plotted the generalised
distribution of the Thomas model, and the Schrodinger density distri-
bution calculated by Pauling.

We have obviously not yet reached a point when we can be satisfied
with the agreement between theory and experiment, yet the success
attained so far is a distinct encouragement to further investigation.

8. — THE REFRACTION OF X-RAYS

At Professor Lorentz’s%*

suggestion I have added a very brief note on the
refraction of X-rays, since the phenomenon is so intimately connected
with the question of intensity of reflection and scattering, and is another
example of the successful application of classical laws. The diffraction
phenomenon dealt with above (intensity of reflection) arises from the
scattering of coherent radiation in all directions by the atoms of a crystal.
The refractive index may be considered as being due to the scattering
in the forward direction of coherent radiation, which interferes with the
primary beam. The arrangement of the scattering matter plays no part,
so that the body may be crystalline or amorphous. The measurement of
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the refractive index is thus a direct measure of the amount of coherent
radiation scattered in the forward direction of the incident beam.

1. Darwin [2] appears to have been first in pointing out that theory
assigns a refractive index for X-rays differing from unity by about one
part in a million. He predicted that a very slight departure from the law
of reflection

n\ = 2d sin 6

would be found, the actual angle 6 being given by Darwin’s formula
1—p
60 = sinf cos
Ewald’s [34] independent treatment of X-ray reflection leads to an equi-
valent result, though the problem is approached along quite different
lines.

As is well known, the first experimental evidence of an index of refrac-
tion was found in a departure from the reflection laws. Stenstrom [35]
observed differences in the apparent wavelength of soft X-rays (3 A) as
measured in the different orders, which were explained by Ewald’s laws
of X-ray reflection. The increased accuracy of X-ray spectroscopy has
shown that similar deviations from the simple law of reflection exist for
harder rays, though the deviations are much smaller than in the ordinary
X-ray region.%® Thus the deviations have been detected for hard rays
by Duane and Patterson [36] and by Siegbahn and Hjalmar [37]. It is
difficult to measure the refractive index by means of these deviations in
the ordinary way, since they are so small, but Davis [38, 39] developed
a very ingenious way of greatly increasing the effect. A crystal is ground
so that the rays reflected by the atomic planes enter or leave a face at a
very fine glancing angle, and thus suffer a comparatively great deflection.

Compton [40] discovered the total reflection of X-rays, and measured
the index of refraction in this way. The refractive index is slightly less
than unity, hence X-rays falling at a very fine glancing angle on a plane
surface of a body are totally reflected, none of the radiation passing
into the body. Compton showed that, although the refractive index is so
nearly unity, yet the critical glancing angle is quite appreciable.

Finally, the direct effect of refraction by a prism has been observed
by Larsson, Siegbahn and Waller [41]. X-rays entered one face of a glass
prism at a very fine glancing angle, and suffered a measurable deflection.
They obtained in this way a dispersion spectrum of X-rays.
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2. In all cases where the frequency of the X-radiation is great compa-
red with any frequency characteristic of the atom, the refractive index
measured by any of these methods is in close accord®® with the formula

TL62

L=n= 2rmuy?

where n is the number of electrons per unit volume in the body, e
and m are the electronic constants, and v the frequency of the incident
radiation. The formula follows directly from the classical Drude-Lorentz
theory of dispersion, in the limiting case where the frequency of the
radiation is large compared with the ‘free periods’ of the electrons in the
atom. It can be put in the form [42]67

pZ
A
where X is the wavelength in Angstrém units of the incident radiation,
p the density of the substance, Z and A the average atomic number and
atomic weight of its constituents (for all light atoms Z/A is very nearly
0.5).%8 Expressed in this form, the order of magnitude of 1 — y is easily
grasped. The critical glancing angle 6 for total reflection is given by

1—p=271x10"0 202

cosf =p ,

whence

ne?

0:

mmy?

Expressing 6 in minutes of arc, and X in Angstrom units as before,

pZ
0=80N/—.
8.0 1

Measurements of refractive index have been made by Compton and by
Doan using the method of total reflection, by Davis, Hatley and Nardroff
using reflection in a crystal, and by Larsson, Siegbahn and Waller with
a prism. A variety of substances has been examined, and wavelengths
between 0.5 and 2 A have been used. The accuracy of the experimental
determination of 1 — p is of the order of one to five per cent. As long as
the critical frequencies of the atom have not been approached, the results
have agreed with the above formula within experimental error. Just as in
the measurements of intensity of reflection the F' curves approach a limit
at small angles equal to the number of electrons in the atom, so these
measurements of refractive index when interpreted by classical theory
lead to a very accurate numbering of the electrons in the scattering units.
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3. A highly interesting field is opened up by the measurements of refrac-
tive index for wavelengths in the neighbourhood of a critical frequency
of the atom. It is a striking fact that the simple dispersion formula

e ns
1=
a 2wm2u§—u2

still gives values for the refractive index agreeing with experiment in
this region, except when the critical frequency is very closely approached
indeed. Davis and von Nardroff reflected Cuk, and Cukg X-rays® from
iron pyrites, and found that the refractive indices could be reproduced by
substituting constants in the formulae corresponding to two K electrons
in iron with the frequency of the K absorption edge.” R. L. Doan [44] has
recently made a series of measurements by the total reflection method.
His accurate data support the conclusion that the Drude-Lorentz theory
of dispersion represents the facts, ‘not only in regions remote from the
absorption edge,”* but also in some instances in which the radiation
approaches the natural frequencies of certain groups of electrons’. The
existence of two K electrons’ is very definitely indicated. Kallmann and
Mark [43] have gone more deeply into the form of the dispersion curve in
the neighbourhood of the critical frequencies. The change in scattering
power of an atom as the frequency of the scattered radiation passes
through a critical value is of course another aspect of this anomalous
dispersion; the experiment of Mark and Szilard which showed this effect
has been described above. There is ample evidence that measurements
of refractive index will in future prove to be a most fruitful means of
investigating the response of the atom to incident radiation of frequency
very near each of its own characteristic frequencies.
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Materie und seine Erforschung durch Réntgenstrahlen, section 18.



318 W. L. Bragg

Discussion of Mr Bragg’s report

MR DEBYE. — To what extent can you conclude that there exists an
energy at absolute zero?

MR BRAGG. — Waller and James have recently submitted a paper
to the Royal Society in which they discuss the relation between the
influence of temperature on the intensity of reflection (Debye effect) and
the elastic constants of a crystal. Using the experimentally determined
value of the Debye coefficient, they deduce the scattering by an atom at
rest from the scattering by the atom at the temperature of liquid air (86°
abs.). The curve deduced for the scattering by a perfectly motionless
atom can of course take two forms, according to whether or not, in
interpreting the results of the experiment, one assumes the existence of
an energy at absolute zero.

If one assumes the existence of such an energy, the curve deduced
from the experimental results agrees with that calculated by Hartree
by applying Schrodinger’s mechanics. The agreement is really very good
for sodium as well as for chlorine. On the other hand, the curve that
one obtains if one does not assume any energy at absolute zero deviates
considerably from the calculated curve by an amount that exceeds the
possible experimental error.

If these experimental resultsH are confirmed by new experiments, they
provide a direct and convincing proof of the existence of an energy at
absolute zero.

MR DEBYE. — Would the effect not be larger if one did the experi-
ments with diamond?

MR BRAGG. — In the case of diamond, it is difficult to interpret
the results obtained using a single crystal, because the structure is very
perfect and the ‘extinction’ is strong. One would have to work with
diamond powder. But I cannot say if it would be easy to find that there
exists an energy at absolute zero in diamond; I should consider it further.

MR FOWLER. — Here is how Hartree calculates the atomic fields.
Starting from Thomas’ atomic field, taken as a first approximation, he

a Note added 5 April 1928. The results to which allusion is made here have just
been published in detail by Messrs James, Waller and Hartree in a paper entitled:
‘An investigation into the existence of zero-point energy in the rock-salt lattice by
an X-ray diffraction method” (Proc. Roy. Soc. A, 118 (1928), 334).
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calculates the Schrodinger functions for an electron placed in this field,
then the density of charge in the atom corresponding to the Schrodinger
functions, and then the corresponding atomic field, which will differ
from that of Thomas. By successive approximations one modifies the
field until the calculations yield the field which served as a starting
point. This method gives very good values for the levels corresponding
to X-rays and to visible light, and leads to the atom that Mr Bragg
considered for comparison with experiments.

MR HEISENBERG. — How can you say that Hartree’s method gives
exact results, if it has not given any for the hydrogen atom? In the case
of hydrogen the Schrodinger functions must be calculated with the aid
of his differential equation, in which one introduces only the electric
potential due to the nucleus. One would not obtain correct results if
one added to this potential the one coming from a charge distribution
by which one had replaced the electron. One may then obtain exact
results only by taking the charge density of all the electrons, except
the one whose motion one wishes to calculate. Hartree’s method is
certainly very useful and I have no objection to it, but it is essentially
an approximation.

MR FOWLER. — I may add to what I have just said that Hartree is
always careful to leave out the field of the electron itself in each state, so
that, when he considers an L electron, for example, the central part of
the field of the whole atom is diminished by the field of an L electron, as
far as this may be considered as central. Hartree’s method would then be
entirely exact for hydrogen and in fact he has shown that it is extremely
close to being exact for helium. (One finds a recent theoretical discussion
of Hartree’s method, by Gaunt, in Proc. Cambr. Phil. Soc., 24 (1928),
328.)

MR PAULI. — In my opinion one must not perform the calculations,
as in wave mechanics, by considering a density |¢(x,y,z)|2 in three-
dimensional space,”” but must consider a density in several dimensions

|¢($1, Y1, 21, .-y TN, YN, ZN)|2 9

which depends on the N particles in the atom. For sufficiently short
waves the intensity of coherent scattered radiation is then proportional
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to

N
/.../Ze2§l(m_ﬁ’ﬁ) (@1, oy 2n)[Pdar . dzn
1

where ) is the wavelength of the incident radiation, 72, a unit vector in
the direction of propagation, and 7y the corresponding unit vector for
the scattered radiation; the sum must be taken over all the particles.
The result that one obtains by assuming a three-dimensional density
cannot be rigorously exact; it can only be so to a certain degree of
approximation.

MR LORENTZ. — How have you calculated the scattering of radiation
by a charge distributed over a region comparable to the volume occupied
by the atom?

MR BrAcG. — To interpret the results of observation as produced by
an average distribution of the scattering material, we applied J. J. Thom-
son’s classical formula for the amplitude of the wave scattered by a single
electron.

MR ComMpPTON. — If we assume that there is always a constant
ratio between the charge and mass of the electron, the result of the
classical calculation of reflection by a crystal is exactly the same, whether
the charge and mass are assumed concentrated in particles (electrons)
or distributed irregularly in the atom. The intensity of reflection is
determined by the average density of the electric charge in different
parts of the atom. That may be represented either by the probability
that a point charge occupies this region or by the volume density of an
electric charge distributed in a continuous manner through this region.

MR KRAMERS. — The use that one may make of the simple Thomas
model of the atom in the search for the laws of reflection is extremely
interesting. It would perhaps not be superfluous to investigate what
result would be obtained for the electron distribution if, instead of
restricting oneself to considering a single centre of attraction, one applied
Thomas’ differential equation to an infinity of centres distributed as in a
crystal grating. Has anyone already tried to solve the problem of which
Mr Bragg has just spoken, of the calculation of the general distribution
of the electronic density around the nucleus of a heavy atom, in the case
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where there are many nuclei, as in a crystal?

MR BRAGG. — No, no one has yet attacked this problem, which I
only mentioned because it is interesting.

MR DirRAC. — Do the scattering curves depend on the phase relations
between the oscillations of different atoms?

MR BRAGG. — No, because the results of our experiments give only
the average scattering produced in each direction by a very large number
of atoms.

MR DirAc. — What would happen if you had two simple oscillators
performing harmonic vibrations? Would they produce a different scat-
tering when in phase than when out of phase?

MR BORN. — The correct answer to the question of scattering by an
atom is contained in the remark by Mr Pauli. Strictly speaking there is
no three-dimensional charge distribution that may describe exactly how
an atom behaves; one always has to consider the total configuration of all
the electrons in the space of 3n dimensions. A model in three dimensions
only ever gives a more or less crude approximation.

MR KRAMERS asks a question concerning the influence of the Comp-
ton effect on the scattering.

MR BRAGG. — I have already said something on that subject in my
reportH Assuming a model of the atom of the old type, Jauncey and
Williams have used the criterion that the wavelength is modified when
the recoil of the scattering electron is sufficient to take it entirely outside
the atom. Williams was the first to apply this criterion to scattering
curves obtained with crystals. He pointed out that while the speed of the
recoil electron depends on both the scattering angle and the wavelength,
any criterion one uses is a function of Siﬁe, just as the interference
effects depend on %. This implies that the existence of the Compton
effect modifies the scattering curve such that we can always assign the
same scattering curve to no matter what type of atom, whatever the

a Cf. Bragg’s report, section 6 (eds).
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wavelength may be.

MR FOWLER. — If I have understood properly, Mr Bragg uses theore-
tical calculations by Waller that have not yet been published. When light
is scattered by an atom in accordance with the interpretation given by
Mr Waller by means of the new mechanics, the total amount of scattered
light is given exactly by J. J. Thomson’s classical formula (except for very
hard ~-rays). This light is composed of the coherent scattered radiation
and of the modified light (Compton scattering). In the theorem of the
reflection of X-rays only the coherent scattered light must be used, and
indeed it is; and this light is given exactly by the F' curves like those
proposed by Hartree. These F' curves for atomic scattering are obviously
given simply by the classical scattering for each electron, diminished by
interference.

MR BRAGG. — I should like to develop Mr Fowler’s remark by re-
calling Waller and Wentzel’s conclusions briefly sketched in my report.
The scattering by one of the electrons in an atom partly remains the
same and partly is modified. Within certain limits the total amount of
scattered radiation is given by J. J. Thomson’s formula. A fraction f2
of this amount is not modified, f being a coefficient smaller than 1,
depending on the interference of the spatial distribution of the charge
according to Schrodinger and calculated according to the classical laws
of optics. The remaining fraction 1 — f? is modified.™

MR LORENTZ. — It is, without doubt, extremely noteworthy that the
total scattering, composed of two parts of quite different origin, agrees
with Thomson’s formula.

Mr KRAMERS makes two remarks:

1. As Mr Bragg has pointed out the importance of there being interest in
having more experimental data concerning the refrangibility of X-rays in
the neighbourhood of the absorption limit, I should like to draw attention
to experiments performed recently by Mr Prins in the laboratory of Pro-
fessor Coster at Groningen. By means of his apparatus (the details of the
experiments and the results obtained are described in a paper published
recently in Zeitschrift fiir Physik, 47 (1928), [479]), Mr Prins finds in
a single test the angle of total reflection corresponding to an extended
region of frequencies. In the region of the absorption limit of the metal,
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he finds an abnormal effect, which consists mainly of a strong decrease
in the angle of total reflection on the side of the absorption limit located
towards the short wavelengths. This effect is easily explained taking into
account the influence of absorption on the total reflection, without it
being necessary to enter into the question of the change in refrangibility
of the X-rays. In fact, the absorption may be described by considering
the refractive index n as a complex number, whose imaginary part is
related in a simple manner to the absorption coefficient. Introducing
this complex value for n in the well-known formulas of Fresnel for the
intensity of reflected rays, one finds that the sharp limit of total reflection
disappears, and that the manner in which the intensity of reflected rays
depends on the angle of incidence is such that the experiment must
give an ‘effective angle of total reflection’ that is smaller than in the
case where there is no absorption and that decreases as the absorption
increases.

According to the atomic theory one would also expect to find, in
the region of the absorption limit, anomalies in the real part of the
refractive index, producing a similar though less noticeable decrease of
the effective angle of total reflection on the side of the absorption edge
directed towards the large wavelengths. Mr Prins has not yet succeeded
in showing that the experiments really demonstrate this effectH

The theory of these anomalies in the real part of the refractive index
constitutes the subject of my second remark.

2. Let us consider plane and polarised electromagnetic waves, in which
the electric force can be represented by the real part of Fe?™"!  striking
an atom which for further simplicity we shall assume to be isotropic.
The waves make the atom behave like an oscillating dipole, giving, by
expansion in a Fourier series, a term with frequency v. Let us represent
this term by the real part of Pe?™! where P is a complex vector having
the same direction as the vector F to which it is, moreover, proportional.
If we set

P )
E:f—i_zga (1)

where f and g are real functions of v, the real and imaginary parts of
the refractive index of a sample of matter are related in a simple way to
the functions f and g of the atoms contained in the sample.

Extending the domain of values that v may take into the negative

a Continuing his research Mr Prins has established (February 1928) the existence of
this effect, in agreement with the theory.
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region and defining f as an even function of v, g as an odd function,
one easily verifies that the dispersion formulas of Lorentz’s classical
theory and also those of modern quantum mechanics are equivalent to

the formula
—+oo /
o) = Hf A @)

/
oo VUV

where the sign f indicates the ‘principal’ value of the integral.

This formula can easily be applied to atoms showing continuous ab-
sorption regions and is equivalent to the formulas proposed for these
cases by R. de Laer Kronig and by Mark and Kallmann. There is hardly
any doubt that this general formula may be derived from quantum
mechanics, if one duly takes into account the absorption of radiation,
basing oneself on Dirac’s theory, for example.

From a mathematical point of view, formula (2) gives us the means
to construct an analytic function of a complex variable v that is holo-
morphic below the real axis and whose real part takes the values g(v')
on this axis. If one considers v as a real variable, the integral equation

(2) has the solution
+oo v
o) =—+f L, 8

T) oo V—V

which shows that the imaginary part of the refractive index depends on
the real part in nearly the same way as the real part depends on the
imaginary part. The fact that the analytic function f of the complex
variable v, defined by (2) for the lower half of the complex plane, has
no singularity in this half-plane, means that dispersion phenomena,
when one studies them by means of waves whose amplitude grows in
an exponential manner (v complex), can never give rise to singular
behaviour for the atoms.

MR CoMPTON. — The measurements of refractive indices of X-rays
made by Doan agree better with the Drude-Lorentz formula than with
the expression derived by Kronig based on the quantum theory of di-
spersion.

MR DE BROGLIE. — I should like to draw attention to recent ex-
periments carried out by Messrs J. Thibaud and A. SoltanB which
touch on the questions raised by Mr Bragg. In these experiments Messrs

a C. R. Acad. Sc., 185 (1927), 642.
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Thibaud and Soltan measured, by the tangent grating method, the
wavelength of a certain number of X-rays in the domain 20 to 70 A.
Some of these wavelengths had already been determined by Mr Dauvillier
using diffraction by fatty-acid gratings. Now, comparing the results of
Dauvillier with those of Thibaud and Soltan, one notices that there is
a systematic discrepancy between them that increases with wavelength.
Thus for the K, line of boron, Thibaud and Soltan find 68 A, while
Dauvillier had found 73.5 A, that is, a difference of 5.5 A.. This systematic
discrepancy appears to be due to the increase of the refractive index
with wavelength. The index does not actually play a role in the tangent
grating method, while it distorts in a systematic way the results obtained
by crystalline diffraction when one uses the Bragg formula. Starting from
the difference between their results and those of Mr Dauvillier, Messrs
Thibaud and Soltan have calculated the value of the refractive index of
fatty acids around 70 A and found

§=1—p=10"2

thereabouts. This agrees well with a law of the form § = K \%; since in the
ordinary X-ray domain the wavelengths are about 100 times smaller, §
is of order 107%. One could object that, according to the Drude-Lorentz
law, the presence of K discontinuities of oxygen, nitrogen and carbon
between 30 and 45 A should perturb the law in A2. But in the X-ray
domain the validity of Drude’s law is doubtful, and if one uses in its place
the formula proposed by Kallmann and MarkEI the agreement with the
experimental results is very good. Let us note finally that the existence
of an index appreciably different from 1 can contribute to explaining why
large-wavelength lines, obtained with a fatty-acid grating, are broad and
spread out.

MR LORENTZ makes a remark concerning the refractive index of a
crystal for Rontgen rays and the deviations from the Bragg law. It is
clear that, according to the classical theory, the index must be less than
unity, because the electrons contained in the atoms have eigenfrequencies
smaller than the frequency of the rays, which gives rise to a speed of
propagation greater than c. But in order to speak of this speed, one must
adopt the macroscopic point of view, abstracting away the molecular
discontinuity. Now, if one wishes to explain Laue’s phenomenon in all
its details, one must consider, for example, the action of the vibrations

a Ann. d. Phys., 82 (1927), 585.
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excited in the particles of a crystallographic layer on a particle of a
neighbouring layer. This gives rise to series that one cannot replace
by integrals. It is for this reason that I found some difficulty in the
explanation of deviations from the Bragg law.%°

MR DEBYE. — Ewald has tried to do similar calculations.

MR LORENTZ. — It is very interesting to note that with Rontgen
rays one finds, in the vicinity of an absorption edge, phenomena similar
to those that in classical optics are produced close to an absorption
band. There is, however, a profound difference between the two cases,
the absorption edge not corresponding to a frequency that really exists
in the particles.
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Notes to the translation

Here and in a few other places, the French adds (or omits) inverted
commas.

[réflexion des radiations des raies|

[ne fait prévoir aucun écart]

The French edition adds ‘en couches’ [in layers|.

Typescript: ‘have often been .... it has led’; French version: ‘a souvent
été .... elles ont conduit’.

[ont eu confiance dans les méthodes quantitatives]

[portions]

[sous une forme plus primitive]

[il soit possible de les trouver]

[logiquement]

[thermodynamique]

Word omitted in the French version.

The French edition adds ‘Sir’.

[les données obtenues par réflexion]

Here following the French edition; the typescript reads ‘total radiation’.
Emphasis omitted in the French edition.

[servirent & comparer|

The French omits ‘of reflection’.

[déja observée]

[il proposa d’employer, pour 'interprétation des mesures, la méthode de
Fourier|

[rapport]

[ou]

[Mc Innes|

[potassium]|

The typescript has a spurious comma after ‘Bergen’.

[4 Paide de cristaux]

[les deux constantes électroniques]

Here and in some other instances, the French renders ‘single’ as ‘simple’.
[‘facteur atomique’]

Not printed as a quotation in the French edition.

choisies simplement

The French adds ‘de ses expériences’.

The French adds ‘dans ces conditions’.

This is indeed a quotation from p. 272 from the lecture by W. H. Bragg.
The typescript has a comma instead of the closing quotation mark, while
the French edition omits the opening quotation mark. The typescript has
a spurious denominator ‘a’ instead of ‘d’ in the second and third terms
(but tacitly corrects another typo in the original).

[dans son livre sur ‘les rayons X et les électrons’]

The French adds ‘on peut procéder de la fagon inverse, c’est-a dire’.
‘Beryl.” omitted in French edition.

The French edition uses superscripts throughout.

The French edition omits the overbar in the caption.

[Wyckhoff]

Word omitted in French edition.

Again, the French edition omits the overbar in the caption.
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43
44
45

[frappante]

[son livre sur les rayons X et les électrons]

[bien que les figures (sic) sur lesquelles la nouvelle courbe se base soient
plus exactes]

Here and in several other places, the French adds ‘Mlle’.

The French reads ‘une énergie au zéro absolu (énergie de structure)’.
Word missing in the French edition.

Bracket printed as a footnote in the French edition.

tout prés de ce point|

irrégularités]

pour]

brillante]

A Sria = 0.871A]

faites d’aprés 1921 figures|

The French omits ‘B. J. B. figures for NaCl’.

[figures]

Again, in the French, the false friend ‘figures’.

déduits|

CaFl, LiF]l, NaFl]

Une fois que nous disposerons de données précises|

The French edition omits ‘& Compton’ and has ‘Modéle de Pauling et
Schrédinger’.

The French translates as if the comma were after ‘of Thomas’ model’
rather than before.

[M. Lorentz]

The typescript reads ‘much smaller in the ordinary X-ray region’, but
given the context the text should be amended as shown (as also done in
the French version).

[parfaitement d’accord]

Reference omitted in the French edition.

[% la valeur moyenne du rapport du nombre atomique au poids atomique
pour ses divers constituants (pour tous les atomes légers ce rapport est a
peu prés égal & 0.5]

[rayons]

Typescript: ‘of the K adsorption edge’; French version: ‘de la
discontinuité K’.

Typescript: ‘adsorption edge’; French: ‘bord d’absorption’.

The French adds ‘dans la pyrite’.

French edition: ‘Mac Innes’.

Typescript and French edition both have ‘532’.

Both typescript and French edition give this reference as ‘B. Davis and
C. C. Hatley’. The typescript has ‘291°.

Authors added in the French edition.

Here and in the following displayed formula, the published version has
square brackets instead of absolute bars.

Arrow missing on 7% in the published volume.

The original text mistakenly states that both fractions are ‘not modified’.
The mixing of first and third person, here and in a few similar instances
throughout the discussions, is as in the published text.




Disagreements between experiment and the
electromagnetic theory of radiation®

By MR ArTrHUuR H. COMPTON

INTRODUCTION

Professor W. L. Bragg has just discussed a whole series of radiation
phenomena in which the electromagnetic theory is confirmed. He has
even dwelt on some of the limiting cases, such as the reflection of X-rays
by crystals, in which the electromagnetic theory of radiation gives us, at
least approximately, a correct interpretation of the facts, although there
are reasons to doubt that its predictions are truly exact. I have been left
the task of pleading the opposing cause to that of the electromagnetic
theory of radiation, seen from the experimental viewpoint.

T have to declare from the outset that in playing this role of the accuser
I have no intention of diminishing the importance of the electromagnetic
theory as applied to a great variety of problems@ It is, however, only by

a An English version of this report (Compton 1928) was published in the Journal of
the Franklin Institute. The French version appears to be essentially a translation
of the English paper with some additions. Whenever there are no discrepancies,
we reproduce Compton’s own English (we have corrected some obvious typos
and harmonised some of the spelling). Interesting variants are footnoted. Other
discrepancies between the two versions are reported in the endnotes (eds.).

b The opening has been translated from the French edition. The English version has
the following different opening (eds.):

During the last few years it has become increasingly evident that the classical
electromagnetic theory of radiation is incapable of accounting for certain large
classes of phenomena, especially those concerned with the interaction between
radiation and matter. It is not that we question the wave character of light
— the striking successes of this conception in explaining polarisation and
interference of light can leave no doubt that radiation has the characteristics

329
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acquainting ourselves with the real or apparent® failures of this powerful
theory that we can hope to develop a more complete theory of radiation
which will describe the facts as we know them.

The more serious difficulties which present themselves in connection
with the theory that radiation consists of electromagnetic waves, propa-
gated through space in accord with the demands of Maxwell’s equations,
may be classified conveniently under five heads:?

(1) Is there an ether? If there are oscillations, there must be a medium
in which these oscillations are produced. Assuming the existence of such
a medium, however, one encounters great difficulties.

(2) How are the waves produced? The classical electrodynamics requires
as a source of an electromagnetic wave an oscillator of the same frequency
as that of the waves it radiates. Our studies of spectra,® however, make
it appear impossible that an atom should contain oscillators of the same
frequencies as the emitted rays.

(3) The photoelectric effect. This phenomenon is wholly anomalous when
viewed from the standpoint of waves.

(4) The scattering of X-rays, and the recoil electrons, phenomena in
which we find gradually increasing departures from the predictions of
the classical wave theory as the frequency increases.

(5) Experiments on individual interactions between quanta of radiation
and electrons. If the results of the experiments of this type are reliable,
they seem to show definitely that individual quanta of radiation, of
energy hv, proceed in definite directions.

The photon hypothesis.* — In order to exhibit more clearly the diffi-
culties with the classical theory of radiation, it will be helpful to keep
in mind the suggestion that® light consists of corpuscles. We need not
think of these two views as necessarily alternative. It may well be that
the two conceptions are complementary. Perhaps the corpuscle is related

of waves; but it is equally true that certain other properties of radiation are
not easily interpreted in terms of waves. The power of the electromagnetic
theory as applied to a great variety of problems of radiation is too well known
to require emphasis.
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to the wave in somewhat the same manner that the molecule is related
to matter in bulk; or there may be a guiding wave which directs the
corpuscles which carry the energy. In any case, the phenomena which
we have just mentioned suggest the hypothesis that radiation is divisible
into units possessing energy hv, and which proceed in definite directions
with momentum hv/c. This is obviously similar to Newton’s old concep-
tion of light corpuscles. It was revived in its present form by Professor
Einstein,® it was defended under the name of the ‘Neutron Theory’ by Sir
William [H.] Bragg, and has been given new life by the recent discoveries
associated with the scattering of X-rays.

In referring to this unit of radiation I shall use the name ‘photon’,
suggested recently by G. N. LewisEI This word avoids any implication
regarding the nature of the unit, as contained for example in the name
‘needle ray’. As compared with the terms ‘radiation quantum’ and ‘light
quant’,” this name has the advantages of brevity and of avoiding any
implied dependence upon the much more general quantum mechanics or
quantum theory of atomic structure.

Virtual radiation. — Another conception of the nature of radiation which
it will be desirable to compare with the experiments is Bohr, Kramers
and Slater’s important theory of virtual radiationﬁ According to this
theory, an atom in an excited state is continually emitting virtual radi-
ation, to which no energy characteristics are to be ascribed. The normal
atoms have associated with them virtual oscillators, of the frequencies
corresponding to jumps of the atom to all of the stationary states of
higher energy. The virtual radiation may be thought of as being absorbed
by these virtual oscillators, and any atom which has a virtual oscillator
absorbing this virtual radiation has a certain probability of jumping
suddenly to the higher state of energy corresponding to the frequency
of the particular virtual oscillator. On the average, if the radiation is
completely absorbed, the number of such jumps to levels of higher energy
is equal to the number of emitting atoms which pass from higher to
lower states. But there is no direct connection between the falling of
one atom from a higher to a lower state and a corresponding rise of a
second atom from a lower to a higher state. Thus on this view the energy
of the emitting atoms and of the absorbing atoms is only statistically
conserved.

a G. N. Lewis, Nature, [118], [874] (Dec. 18, 1926).
b N. Bohr, H. A. Kramers and J. C. Slater, Phil. Mag., 47 (1924), 785; Zeits. f.
Phys., 24 (1924), 69.



332 A. H. Compton

THE PROBLEM OF THE ETHER®

The constancy of the speed of radiation of different wavelengths has
long been considered as one of the most powerful arguments in favour
of the wave theory of light. This constancy suggests that a perturbation
is travelling through a fixed medium in space, the ether.

If experiments like those by Michelson and Morley’s were to show
the existence of a relative motion with respect to such a medium, this
argument would be considerably strengthened. For then we could ima-
gine light as having a speed determined with reference to a fixed axis
in space. But, except for the recent and quite doubtful experiments by
MillerEI no-one has ever detected such a relative motion. We thus find
ourselves in the difficult position of having to imagine a medium in
which perturbations travel with a definite speed, not with reference to
a fixed system of axes, but with reference to each individual observer,
whatever his motion. If we think of the complex properties a medium
must have in order to transmit a perturbation in this way, we find that
the medium differs so considerably from the simple ether from which
we started that the analogy between a wave in such a medium and a
pertubation travelling in an elastic medium is very distant. It is true
that doubts have often been expressed as to the usefulness of retaining
the notion of the ether. Nevertheless, if light is truly a wave motion, in
the sense of Maxwell, there must be a medium in order to transmit this
motion, without which the notion of wave would have no meaning. This
means that, instead of being a support for the wave theory, the concept
of the ether has become an uncomfortable burden of which the wave
theory has been unable to rid itself.

If, on the other hand, we accept the view suggested by the theory of
relativity, in which for the motion of matter or energy there is a limiting
speed relative to the observer, it is not surprising to find a form of energy
that moves at this limiting speed. If we abandon the idea of an ether, it
is simpler to suppose that this energy moves in the form of corpuscles
rather than waves.

a D. C. Miller, Nat. Acad. Sci. Proc., 11 (1925), 306.
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THE EMISSION OF RADIATION

When we trace a sound to its origin, we find it coming from an oscillator
vibrating with the frequency of the sound itself. The same is true of
electric waves, such as radio waves, where the source of the radiation
is a stream of electrons oscillating back and forth in a wire. But when
we trace a light ray or an X-ray back to its origin, we fail to find any
oscillator which has the same frequency as the ray itself. The more com-
plete our knowledge becomes of the origin of spectrum lines, the more
clearly we see that if we are to assign any frequencies to the electrons
within the atoms, these frequencies are not the frequencies of the emitted
rays, but are the frequencies associated with the stationary states of the
atom. This result cannot be reconciled with the electromagnetic theory
of radiation, nor has any mechanism been suggested whereby radiation
of one frequency can be excited by an oscillator of another frequency.
The wave theory of radiation is thus powerless to suggest how the waves
originate.

The origin of the radiation is considerably simpler when we consider
it from the photon viewpoint. We find that an atom changes from a
stationary state of one energy to a state of less energy, and associated
with this change radiation is emitted. What is simpler than to suppose
that the energy lost by the atom is radiated away as a single photon? It
is on this view unnecessary to say anything regarding the frequency of
the radiation. We are concerned only with the energy of the photon, its
direction of emission, and its state of polarisation.

The problem of the emission of radiation takes an especially intere-
sting form when we consider the production of the continuous X-ray
spectrumH Experiment shows that both the intensity and the average
frequency of the X-rays emitted at angles less than 90 degrees with the
cathode-ray stream are greater than at angles greater than 90 degrees.
This is just what we should expect due to the Doppler effect if the X-rays
are emitted by a radiator moving in the direction of the cathode rays. In
order to account for the observed dissymmetry between the rays in the
forward and backward directions, the particles emitting the radiation
must be moving with a speed of the order of 25 per cent that of light.
This means that the emitting particles must be free electrons, since it
would require an impossibly large energy to set an atom into motion
with such a speed.

a The difficulty here discussed was first emphasised by D. L. Webster, Phys. Rev.,
13 (1919), 303.
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But it will be recalled that the continuous X-ray spectrum has a sharp
upper limit. Such a sharp limit is, however, possible on the wave theory
only in case the rays come in trains of waves of considerable length, so
that the interference between the waves in different parts of the train
can be complete at small glancing angles of reflection from the crystal.
This implies that the oscillator which emits the rays must vibrate back
and forth with constant frequency a large number of times while the ray
is being emitted. Such an oscillation might be imagined for an electron
within an atom; but it is impossible for an electron moving through
an irregular assemblage of atoms with a speed comparable with that of
light.

Thus the Doppler effect in the primary X-rays demands that the rays
shall be emitted by rapidly moving electrons, while the sharp limit to
the continuous spectrum requires that the rays be emitted by an electron
bound within an atom.

The only possible escape from this dilemma on the wave theory is
to suppose that the electron is itself capable of internal oscillation of
such a character as to emit radiation. This would, however, introduce
an undesirable complexity into our conception of the electron, and would
ascribe the continuous X-rays to an origin entirely different from that of
other known sources of radiation.

Here again the photon theory affords a simple solution. It is a con-
sequence of Ehrenfest’s adiabatic principldd that photons emitted by a
moving radiator will show the same Doppler effect, with regard to both
frequency and intensity, as does a beam of waves!l But if we suppose
that photons are radiated by the moving cathode electrons, the energy
of each photon will be the energy lost by the electron, and the limit of
the X-ray spectrum is necessarily reached when the energy of the photon
is equal to the initial energy of the electron, i.e., hv = eV. In this case,
if we consider the initial state as an electron approaching an atom with
large kinetic energy and the final state as the electron leaving the atom
with a smaller kinetic energy, we see that the emission of the continuous
X-ray spectrum is the same kind of event as the emission of any other
type of radiation.

a The adiabatic principle consists in the following. Since for a quantised quantity
there should be no quantum jumps induced by an infinitely slowly varying
external force (in this case, one that gently accelerates a radiator), there is an
analogy between these quantities and the classical adiabatic invariants. Ehrenfest
(1917) accordingly formulated a principle identifying the classical quantities to be
quantised as the adiabatic invariants of a system (eds.).

b Cf., e.g., A. H. Compton, Phys. Rev., 21 (1923), 483.
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Absorption of radiation. — According to the photon theory, absorption
occurs when a photon meets an atom and imparts its energy to the atom.
The atom is thereby raised to a stationary state of higher energy —
precisely the reverse of the emission process.

On the wave theory, absorption is necessarily a continuous process, if
we admit the conservation of energy, since on no part of the wave front is
there enough energy available to change the atom suddenly from a state
of low energy to a state of higher energy. What evidence we have is,
however, strongly against the atom having for any considerable length
of time an energy intermediate between two stationary states; and if such
intermediate states cannot exist, the gradual absorption of radiation is
not possible. Thus the absorption of energy from waves? is irreconcilable
with the conception of stationary states.

We have seen that on the theory of virtual radiation the energy of
the emitting atoms and of the absorbing atoms is only statistically
conserved. There is according to this view therefore no difficulty with
supposing that the absorbing atom suddenly jumps to a higher level
of energy, even though it has not received from the radiation as much
energy as is necessary to make the jump. It is thus possible through
virtual oscillators and virtual radiation to reconcile the wave theory of
radiation with the sudden absorption of energy, and hence to retain the
idea of stationary states.

THE PHOTOELECTRIC EFFECT

It is well known that the photon hypothesis was introduced by Einstein
to account for the photoelectric effecty The assumption that light con-
sists of discrete units which can be absorbed by atoms only as units, each
giving rise to a photoelectron, accounted at once for the fact that the
number of photoelectrons is proportional to the intensity of the light;
and the assumption that the energy of the light unit is equal to hv,
where h is Planck’s constant, made it possible to predict the kinetic
energy with which the photoelectrons should be ejected, as expressed by
Einstein’s well-known photoelectric equation,

m&(\/%_@—l) = hv —w, . (1)

a A. Einstein, Ann. d. Phys., 17 (1905), [132].10
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Seven years elapsed before experiments by Richardson and ComptorH
and by Hughesﬁ showed that the energy of the emitted electrons was
indeed proportional to the frequency less a constant,'? and that the
factor of proportionality was close to the value of h calculated from
Planck’s radiation formula. Millikan’s more recent precision photoelec-
tric experiments with the alkali metalsﬁ confirmed the identity of the
constant A in the photoelectric equation with that in Planck’s radiation
formula. De Broglie’s beautiful experiments@ with the magnetic spectro-
graph showed that in the region of X-ray frequencies the same equation
holds, if only we interpret the work function w, as the work required to
remove the electron from the pth energy level of the atom. Thibaud has
made use of this resultE in comparing the velocities of the photoelectrons
ejected by ~y-rays from different elements, and has thus shown that the
photoelectric equation (I) holds with precision even for S-rays of the
highest speed. Thus from light of frequency so low that it is barely able
to eject photoelectrons from metals to y-rays that eject photoelectrons
with a speed almost as great as that of light, the photon theory expresses
accurately the speed of the photoelectrons.

The direction in which the photoelectrons are emitted is no less in-
structive than is the velocity. Experiments using the cloud expansion
method, performed'? by C. T. R. WilsonH and othersE have shown that
the most probable direction in which the photoelectron is ejected from
an atom is nearly the direction of the electric vector of the incident
wave, but with an appreciable forward component to its motion. There
is, however, a very considerable variation in the direction of emission.
For example, if we plot the number of photoelectrons ejected at diffe-
rent angles with the primary beam we find, according to Auger, the
distribution shown in Fig. 1.

Each of these curves, taken at a different potential, represents the
distribution of about 200 photoelectron tracks. It will be seen that as the
potential on the X-ray tube increases, the average forward component
of the photoelectron’s motion also increases.

When polarised X-rays are used, there is a strong preponderance of the
a O. W. Richardson and K. T. Compton, Phil. Mag., 24 (1912), 575.

A. L. Hughes, Phil. Trans. A, 212 (1912), 205.11

R. A. Millikan, Phys. Rev., 7 (1916), 355.

M. de Broglie, Jour. de Phys., 2 (1921), 265.

J. Thibaud, C. R., 179 (1924), 165, 1053 and 1322.

C. T. R. Wilson, Proc. Roy. Soc. A, 104 (1923), 1.

A. H. Compton, Bull. Natl. Res. Coun., No. 20 (1922), 25; F. W. Bubb, Phys.

Rev., 23 (1924), 137; P. Auger, C. R., 178 (1924), 1535; D. H. Loughridge, Phys.
Rev., 26 (1925), 697; F. Kirchner, Zeits. f. Phys., 27 (1926), 385.
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8

Fig. 1. Longitudinal distribution of photoelectrons for X-rays of three different
effective wavelengths, according to Auger.

photoelectrons in or near the plane including the electric vector of the
incident rays. Thus Fig. 2 shows the distribution found by Bubb of the
direction of the photoelectrons ejected from moist air when traversed by
X-rays that have been polarised by scattering at right angles from a block
of paraffin. Because of multiple scattering in the paraffin, the scattered
rays are not completely polarised, and this is probably sufficient to
account for the fact that some photoelectrons appear to start at right
angles with the electric vector. This effect with X-rays is doubtless
similar in character to the selective photoelectric effect discovered many
years ago by Pohl and Pringsheim, in which the number of electrons
ejected by light from the liquid surface of sodium-potassium alloy is
greater when the electric vector is in a plane perpendicular to the surface
than when parallel to the surface.

Recent experiments have shown that the direction in which the pho-
toelectrons are ejected by X-rays is at least very nearly independent of
the material from which the electrons come

Can electromagnetic waves produce photoelectrons? — Before discussing
the production of photoelectrons from the standpoint of radiation quan-
ta, let us see what success meets the attempt'® to account for them
on the basis of electromagnetic waves. The fact that they are emitted

a E. A. Owen, Proc. Phys. Soc., 30 (1918), 133; Auger, Kirchner, Loughridge, loc.
cit.1
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Fig. 2. Lateral distribution of photoelectrons for incompletely polarised X-rays,
according to Bubb.

approximately in the direction of the electric vector would suggest that
the photoelectrons are ejected by the direct action of the electric field
of the incident rays. If this were the case, however, we should expect
the speed of the ejected electrons to be greater for greater intensity
of radiation, whereas experiment shows that for the same wavelength
intense sunlight ejects an electron no faster than does the feeble light
from a star. Furthermore, the energy available from the electromagnetic
wave is wholly inadequate. Thus in a recent experiment performed by
Joffe and DobronrawovE X-rays were produced by the impact on a target
of 10* to 10° electrons per second. Since on the electromagnetic theory
an X-ray pulse is of the order of 10® waves in length or 10~!¢ seconds

a A. Joffe and N. Dobronrawov, Zeits. f. Phys., 34, 889 (1925).
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in duration, the X-ray pulses must have followed each other at widely
separated intervals. It was found, however, that photoelectrons were
occasionally ejected from a bismuth particle which subtended a solid
angle not greater than 107°. It is clearly impossible that all the energy
of an X-ray pulse which has spread out in a spherical wave should spend
itself on this bismuth particle. Thus on the wave theory the ejection
of the photoelectron, which has almost as much energy as the original
cathode electron, could not have been accomplished by a single!® pulse.
It cannot therefore be the direct action of the electric vector of the wave,
taken in the usual sense,'” which has ejected the electron.

We may assume, on the other hand, that the energy is gradually
absorbed in the bismuth particle of Joffe’s experiment until an amount
hv has accumulated, which is then spent in ejecting the photoelectron.
We have already called attention to the fact that this gradual absorption
hypothesis implies the existence of stationary states in the atom having
infinitesimal gradations of energy, whereas the evidence is very strong
that atoms cannot endure except in certain definitely defined stationary
states. But new difficulties also arise. Why do the photoelectrons tend
to start in the direction of the electric field of the incident wave? If we
suppose that it is the gradual absorption of energy from a wave which
liberates the electron, why does there exist a tendency for the electron
to start with a large component of its motion in a forward direction?'®
The forward impulse due to the radiation pressure as'® the energy is
gradually absorbed will be transferred to the atom and not left with
[the] absorbing electron. The accumulation hypothesis is thus difficult
to defend.

Photons and photoelectrons. — On the photon theory it is possible to
account in a simple manner for most of the properties of the photoelec-
trons. We have seen how Einstein was able to predict accurately the
velocity of the photoelectrons, assuming only that energy is conserved
when a photon acts on an electron. In order to account for the direction of
emission we must ascribe to the photon some of the properties of an elec-
tromagnetic pulse. Bubb introduced the suggestion] that we ascribe to
the photon a vector property similar to the electric vector of an electro-
magnetic wave, so that when the photon traverses an atom the electrons
and the nucleus receive impulses in opposite directions perpendicular
to the direction of propagation. Associated with this electric vector, we

a F. W. Bubb, Phys. Rev., 23 (1924), 137.
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should also expect to find a magnetic vector. Thus if an electron is set
in motion by the electric vector of the photon at right angles to the
direction of propagation, the magnetic vector of the photon will act
on the moving electron in the direction of propagation. This is strictly
analogous to the radiation pressure exerted by an electromagnetic wave
on an electron which it traverses, and means that the forward momentum
of the absorbed photon is transferred to the photoelectron.

In the simplest case, where we neglect the initial momentum of the
electron in its orbital motion in the atom, the angle between the direction
of the incident ray and the direction of ejection is found from these
assumptions to be

6 =tan"'/2/a , (2)

where a = v/), and v = h/me = 0.0242 A. The quantity « is small
compared with unity, except for very hard X-rays and ~-rays. Thus for
light, equation (2]) predicts the expulsion of photoelectrons at nearly 90
degrees. This is in accord with the rather uncertain data which have
been obtained with visible and ultra-violet lightH

The only really significant test of this result is in its application to
X-ray photoelectrons. In Fig. 1 are drawn the lines 6, 6, and 603 for the
three curves, at the angles calculated by Auger from equation (2)). It will
be seen that they fall very satisfactorily in the direction of maximum
emission of the photoelectrons. Similar results have been obtained by
other investigators@ This may be taken as proof that a photon imparts
not only its energy, but also its momentum to the photoelectrons

a Cf. A. Partsch and W. Hallwachs, Ann. d. Phys., 41 (1913), 247.

b W. Bothe, Zeits. f. Phys., 26 (1925), 59; F. Kirchner, Zeits. f. Phys., 27 (1926),
385.20

¢ The English version includes here the following footnote. Cf. also the comments
by Bragg on p. and the ensuing discussion (eds.).

Since this was written, experiments by [D. H.| Loughridge (Phys. Rev., 30
(1927), [488]) have been published which show a forward component to the
photoelectron’s motion which seems to be greater than that predicted by
equation (2). Williams, in experiments as yet unpublished, finds that the
forward component is almost twice as great as that predicted by this theory.
These results indicate that the mechanism of interaction between the photon
and the atom must be more complex than here postulated. The fact that
the forward momentum of the photoelectron is found to be of the same
order of magnitude as that of the incident photon, however, suggests that the
momentum of the photon is acquired by the photoelectron, while an additional
forward impulse is imparted by the atom. Thus these more recent experiments
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HonestyH obliges me to point out a difficulty that arises in this explana-
tion of the motion of the photoelectrons. It is the failure of the attempts
made to account properly for the fact that the photoelectrons are emitted
over a wide range of angles instead of in a definite direction, as would
be suggested by the calculation just outlined. The most interesting of
these attempts is that of BubbE who takes into account the momentum
of the electron immediately before the absorption of the photon. Bubb
finds a dispersion of the directions of emission of the photoelectrons of
the correct order of magnitude, but which is larger when the electron
issues from a heavy atom than when it issues from a light one. We
have seen, however, that experiment has shown this dispersion of the
directions of emission to be notably independent of the element from
which the photoelectron originates.

Whatever may be the cause of the dispersion in the directions of moti-
on of the photoelectrons,?! it will readily be seen that if the time during
which the photon exerts a force on the electron is comparable with the
natural period of the electron®? in the atom, the impulse imparted to the
electron will be transferred in part to the positive nucleus about which
the electron is moving. The fact that the photoelectrons are ejected with
a forward component equal, within the limits of experimental error, to
the momentum of the incident photon?® means that no appreciable part
of the photon’s momentum is spent on the remainder of the atom. This
can only be the case if the time of action of the photon on the electron is
short compared with the time of revolution of the electron in its orbit

also support the view that the photoelectron acquires both the energy and the
momentum of the photon.

a This paragraph is present only in the French edition. The corresponding one in
the English edition reads:

If the angular momentum of the atomic system from which the photoelectron
is ejected is to be conserved when acted upon by the radiation, the electron
cannot be ejected exactly in the direction of 8, but must receive an impulse in a
direction determined by the position of the electron in the atom at the instant
it is traversed by the photon.” Thus we should probably consider the electric
vector of the X-ray wave as defining merely the most probable direction in
which the impulse should be imparted to the electron. This is doubtless the
chief reason why the photoelectrons are emitted over a wide range of angles
instead of in a definite direction, as would be suggested by the calculation just
outlined.

With the footnote: *Cf. A. H. Compton, Phys. Rev., [31] (1928), [59] (eds.).
b F. W. Bubb, Phil. Mag., 49 (1925), 824.
a The English edition includes the further sentence: ‘Such a short duration of
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The photoelectric effect and virtual radiation. — It is to be noted that
none of these properties of the photoelectron is inconsistent with the
virtual radiation theory of Bohr, Kramers and Slater. The difficulties
which applied to the classical wave theory do not apply here, since the
energy and momentum are conserved only statistically. There is nothing
in this theory, however, which would enable us to predict anything
regarding the motion of the photoelectrons. The degree of success that
has attended the application of the photon hypothesis to the motion of
these electrons has come directly from the application of the conservation
principles to the individual action of a photon on an electron. The power
of these principles as applied to this case is surprising if the assumption
is correct that they are only statistically valid.

PHENOMENA ASSOCIATED WITH THE SCATTERING OF X-RAYS

As is now well known, there is a group of phenomena associated with
the scattering of X-rays for which the classical wave theory of radiation
fails to account. These phenomena may be considered under the heads
of: (1) The change of wavelength of X-rays due to scattering, (2) the
intensity of scattered X-rays, and (3) the recoil electrons.

The earliest experiments on secondary X-rays and 7-rays?? showed
a difference in the penetrating power of the primary and the secondary
rays. In the case of X-rays, Barkla and his collaboratorsﬁ showed that the
secondary rays from the heavy elements consisted largely of fluorescent
radiations characteristic of the radiator, and that it was the presence of
these softer rays which was chiefly responsible for the greater absorption
of the secondary rays. When later experiments? showed a measurable
difference in penetration even for light elements such as carbon, from
which no fluorescent K or L radiation appears, it was natural to ascrib
this difference to a new type of fluorescent radiation, similar to the K and
L types, but of shorter wavelength. Careful absorption measurement
failed, however, to reveal any critical absorption limit for these assumed

interaction is a natural consequence of the photon conception of radiation, but
is quite contrary to the consequences of the electromagnetic theory’ (eds.).

a C.|G.] Barkla and C. A. Sadler, Phil. Mag., 16, 550 (1908).2°

b C. A. Sadler and P. Mesham, Phil. Mag., 24 (1912), 138; J. Laub, Ann. d. Phys.,
46 (1915), 785.

¢ |C. G.| Barkla and [M. P.| White, Phil. Mag., 34 (1917), 270; J. Laub, Ann. d.
Phys., 46 (1915), 785, et al.

d E.g., [F. K.] Richtmyer and [K.] Grant, Phys. Rev., 15 (1920), 547.
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‘J’ radiations similar to those corresponding to the K and L radiations.
Moreover, direct spectroscopic observationSH failed to reveal the exi-
stence of any spectrum lines2® under conditions for which the supposed
J-rays should appear. It thus became evident that the softening of the
secondary X-rays from the lighter elements was due to a different kind
of process than the softening of the secondary rays from heavy elements
where fluorescent X-rays are present.

A series of skilfully devised absorption experiments performed by
J. Al GrayH showed, on the other hand, that both in the case of -
rays and in that of X-rays an increase in wavelength accompanies the
scattering of the rays of light elements.

It was at this stage that the first spectroscopic investigations of the
secondary X-rays from light elements were madell According to the
usual electron theory of scattering it is obvious that the scattered rays
will be of the same frequency as the forced oscillations of the electrons
which emit them, and hence will be identical in frequency with the
primary waves which set the electrons in motion. Instead of showing
scattered rays of the same wavelength as the primary rays, however,
these spectra revealed lines in the secondary rays corresponding to those
in the primary beam, but with each line displaced slightly toward the
longer wavelengths.

This result might have been predicted from Gray’s absorption meas-
urements; but the spectrum measurements had the advantage of affor-
ding a quantitative measurement of the change in wavelength, which
gave a basis for its theoretical interpretation.

The spectroscopic experiments which have shown this change in wa-
velength are too well knowrﬂ to require discussion. The interpretati-
on of the wavelength change in terms of photons being deflected by
individual®” electrons and imparting a part of their energy to the scatte-
ring electrons is also very familiar. For purposes of discussion, however,
let us recall that when we consider the interaction of a single photon
with a single electron the principles of the conservation of energy and
momentum lead us@ to the result that the change in wavelength of the
a E.g., [W.] Duane and [T.] Shimizu, Phys. Rev., 13 (1919), [289]; ibid., 14 (1919),
a ig?ﬁ Gray, Phil. Mag., 26 (1913), 611; Jour. Frank. Inst., [190], 643 (Nov. 1920).
b A. H. Compton, Bull. Natl. Res. Coun., No. 20, [18] (|[October| 1922); Phys. Rewv.,

22 (1923), 409.
¢ Cf., e.g., A. H. Compton, Phys. Rev., 22 (1923), 409; P. A. Ross, Proc. Nat. Acad.,

10 (1924), 304.

d A. H. Compton, Phys. Rev., 21] (1923), 483; P. Debye, Phys. Zeits., 24 (1923),
161.
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deflected photon is
h
oA =—(1—cosyp) , (3)

mc

where ¢ is the angle through which the photon is deflected. The electron
at the same time recoils from the photon at an angle of 6 given by,?®

1
Cot9:—(1+a)tan§<p ; (4)
and the kinetic energy of the recoiling electron is,
2 20
Fr = hv Q. cos (5)

(1+a)2-a2cos26

The experiments show in the spectrum of the scattered rays two lines
corresponding to each line of the primary ray. One of these lines is of
precisely the same wavelength as the primary ray, and the second line,
though somewhat broadened, has its centre of gravity displaced by the
amount predicted by equation (B]). According to experiments by Kallman
and MarkH and by SharpE this agreement between the theoretical®® and
the observed shift is precise within a small fraction of 1 per cent.

The recoil electrons. — From the quantitative agreement between the
theoretical and the observed wavelengths of the scattered rays, the recoil
electrons predicted by the photon theory of scattering were looked for
with some confidence.?* When this theory was proposed, there was
no direct evidence for the existence of such electrons, though indirect
evidence suggested that the secondary (-rays ejected from matter by
hard ~-rays are mostly of this type. Within a few months of their
prediction, however, C. T. R. WilsorH and W. Bothe@ independently
announced their discovery. The recoil electrons show as short tracks,
pointed in the direction of the primary X-ray beam, mixed among the
much longer tracks due to the photoelectrons ejected by the X-rays.
Perhaps the most convincing reason for associating these short tracks
with the scattered X-rays comes from a study of their number. Each
photoelectron in a cloud photograph represents a quantum of truly
absorbed X-ray energy. If the short tracks are due to recoil electrons,
each one should represent the scattering of a photon. Thus the ratio
N,./N,, of the number of short tracks to the number of long tracks should

a H. Kallman and H. Mark, Naturwiss., 13 (1925), 297.
b H. M. Sharp, Phys. Rev., 26 (1925), 691.

¢ C. T. R. Wilson, Proc. Roy. Soc. [A], 104 (1923), 1.
d W. Bothe, Zeits. f. Phys., 16 (1923), 319.
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be the same as the ratio o/7 of the scattered to the truly absorbed
energy®! when the X-rays pass through air. The latter ratio is known
from absorption measurements, and the former ratio can be determined
by counting the tracks on the photographs. The satisfactory agreement
between the two ratiog? for X-rays of different wavelengths means that
on the average there is about one quantum of energy scattered for each
short track that is produced.

This result is in itself contrary to the predictions of the classical wave
theory, since on this basis all the energy spent on a free electron (except
the insignificant effect of radiation pressure) should reappear as scattered
X-rays. In these experiments, on the contrary, 5 or 10 per cent as much
energy appears in the motion of the recoil electrons as appears in the
scattered X-rays.

That these short tracks associated with the scattered X-rays corre-
spond to the recoil electrons predicted by the photon theory of scat-
tering becomes clear from a study of their energies. The energy of the
electron which produces a track can be calculated from the range of the
track. The ranges of tracks which start in different directions have been
studiedd using primary X-rays of different wavelengths, with the result
that equation (B)*3 has been satisfactorily verified.

In view of the fact that electrons of this type were unknown at the time
the photon theory of scattering was presented, their existence, and the
close agreement with the predictions as to their number, direction and
velocity, supply strong evidence in favour of the fundamental hypotheses
of the theory.

Interpretation of these experiments. — It is impossible to account for
scattered rays of altered frequency, and for the existence of the recoil
electrons, if we assume that X-rays consist of electromagnetic waves
in the usual sense. Yet some progress has been made on the basis of
semi-classical theories. It is an interesting fact that the wavelength of
the scattered ray according to equation ([3)3* varies with the angle just
as one would expect from a Doppler effect if the rays are scattered from
an electron moving in the direction of the primary beam. Moreover,
the velocity that must be assigned to the electron in order to give the
proper magnitude to the change of wavelength is that which the electron
would acquire by radiation pressure if it should absorb a quantum of the

a A. H. Compton and A. W. Simon, Phys. Rev., 25 (1925), 306; J. M. Nuttall and
E. J. Williams, Manchester Memoirs, 70 (1926), 1.
a Compton and Simon, loc. cit.3?
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incident rays. Several WriterSH have therefore assumed that an electron
takes from the incident beam a whole quantum of the incident radiation,
and then emits this energy as a spherical wave while moving forward3®
with high velocity.

This conception that the radiation occurs in spherical waves, and that
the scattering electron can nevertheless acquire suddenly the impulses
from a whole quantum of incident radiation is inconsistent with the prin-
ciple of energy conservation. But there is the more serious experimental
difficulty that this theory predicts recoil electrons all moving in the same
direction and with the same velocity. The experiments show, on the
other hand, a variety of directions and velocities, with the velocity and
direction correlated as demanded by the photon hypothesis. Moreover,
the maximum range of the recoil electrons, though in agreement with
the predictions of the photon theory, is found to be about four times as
great as that predicted by the semi-classical theory.

There is nothing in these experiments, as far as we have described
them, which is inconsistent with the idea of virtual oscillators continu-
ally scattering virtual radiation. In order to account for the change of
wavelength on this view, Bohr, Kramers and Slater assumed that the
virtual oscillators scatter as if moving in the direction of the primary
beam, accounting for the change of wavelength as a Doppler effect. They
then supposed that occasionally an electron, under the stimulation of
the primary virtual rays, will suddenly move forward with a momentum
large compared with the impulse received from the radiation pressure.
Though we have seen that not all of the recoil electrons move directly
forward, but in a variety of different directions, the theory could easily
be extended to include the type of motion that is actually observed.

The only objection that one can raise against this virtual radiation
theory in connection with the scattering phenomena as viewed on a large
scale, is that it is difficult to see how such a theory could by itself predict
the change of wavelength and the motion of the recoil electrons. These
phenomena are directly predictable if the conservation of energy and
momentum are assumed to apply to the individual actions of radiation
on electrons; but this is precisely where the virtual radiation theory
denies the validity of the conservation principles.

We may conclude that the photon theory predicts quantitatively and
in detail the change of wavelength of the scattered X-rays and the charac-

a C. R. Bauer, C. R., 177 (1923), 1211; C. T. R. Wilson, Proc. Roy. Soc. [A]|, 104
(1923), 1; K. Fosterling, Phys. Zeits., 25 (1924), 313; O. Halpern, Zeits. f. Phys.,
30 (1924), 153.35
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teristics of the recoil electrons. The virtual radiation theory is probably
not inconsistent with these experiments, but is incapable of predicting
the results. The classical theory, however, is altogether helpless to deal
with these phenomena.

The origin of the unmodified line — The unmodified line is probably
due to X-rays which are scattered by electrons so firmly held within
the atom that they are not ejected by the impulse from the deflected
photons. This view is adequate to account for the major characteristics of
the unmodified rays, though as yet no quantitatively satisfactory theory
of their origin has been publishedH It is probable that a detailed account
of these rays will involve definite assumptions regarding the nature and
the duration of the interaction between a photon and an electron; but it
is doubtful whether such investigations will add new evidence as to the
existence of the photons themselves.

A similar situation holds regarding the intensity of the scattered X-
rays. Historically it was the fact that the classical electromagnetic theory
is unable to account for the low intensity of the scattered X-rays which
called attention to the importance of the problem of scattering. But
the solutions which have been offered by BreitE Dirac@ and other
of this intensity problem as distinguished from that of the change of
wavelength, seem to introduce no new concepts regarding the nature of
radiation or of the scattering process. Let us therefore turn our attention
to the experiments that have been performed on the individual process
of interaction between photons and electrons.

INTERACTIONS BETWEEN RADIATION AND SINGLE ELECTRONS>Y

The most significant of the experiments which show departures from
the predictions of the classical wave theory are those that study the
action of radiation on individual atoms or on individual electrons. Two

a Cf., however, G. E. M. Jauncey, Phys. Rev., 25 (1925), 314 and ibid., 723;
G. Wentzel, Zeits. f. Phys., 43 (1927), 14, 779; I. Waller, Nature, [120, 155] (July
30, 1927).37[The footnote in the English edition continues with the sentence: ‘It is
possible that the theories of the latter authors may be satisfactory, but they have
not yet been stated in a form suitable for quantitative test’ (eds.).]

b G. Breit, Phys. Rev., 27 (1926), 242.

¢ P. A. M. Dirac, Proc. Roy. Soc. A, [111] (1926), [405].

d W. Gordon, Zeits. f. Phys., 40 (1926), 117; E. Schrédinger, Ann. d. Phys., 82
(1927), 257; O. Klein, Zeits. f. Phys., 41 (1927), 407; G. Wentzel, Zeits. f. Phys.,
43 (1927), 1, 779.38
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methods have been found suitable for performing these experiments,
Geiger’s point counters, and Wilson’s cloud expansion photographs.

(1) Test for coincidences with fluorescent X-rays. — Bothe has perfor-
med an experiment® in which fluorescent K radiation from a thin copper
foil is excited by a beam of incident X-rays. The emitted rays are so
feeble that only about five quanta of energy are radiated per second.
Two point counters are mounted, one on either side of the copper foil in
each of which an average of one photoelectron is produced and recorded
for about twenty quanta radiated by the foil. If we assume that the
fluorescent radiation is emitted in quanta of energy, but proceed[s] in
spherical waves in all directions, there should thus be about 1 chance
in 20 that the recording of a photoelectron in one chamber should be
simultaneous with the recording of a photoelectron in the other.

The experiments showed no coincidences other than those which were
explicable by such sources as high-speed g-particles which traverse both
counting chambers.

This result is in accord with the photon hypothesisE according to
which coincidences should not occur. It is, nevertheless, equally in accord
with the virtual radiation hypothesis, if one assumes that the virtual
oscillators in the copper continuously emit virtual fluorescent radiation,
so that the photoelectrons should be observed in the counting chambers
at arbitrary intervals

a W. Bothe, Zeits. f. Phys., 37 (1926), 547.

b The English edition continues: ‘For if a photon of fluorescent radiation produces a
(-ray in one counting chamber it cannot traverse the second chamber. Coincidences
should therefore not occur’ (eds.).

¢ At this point in the English version Compton is much more critical of the BKS
theory (eds.):

According to the virtual radiation hypothesis, however, coincidences should
have been observed. For on this view the fluorescent K radiation is emitted by
virtual oscillators associated with atoms in which there is a vacancy in the K
shell. That is, the copper foil can emit fluorescent K radiation only during the
short interval of time following the expulsion of a photoelectron from the K
shell, until the shell is again occupied by another electron. This time interval is
so short (of the order of 107" sec.) as to be sensibly instantaneous on the scale
of Bothe’s experiments. Since on this view the virtual fluorescent radiation is
emitted in spherical waves, the counting chambers on both sides of the foil
should be simultaneously affected, and coincident pulses in the two chambers
should frequently occur. The results of the experiment are thus contrary to
the predictions of the virtual radiation hypothesis.
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But the experiment is important in the sense that it refutes the often
suggested idea that a quantum of radiation energy is suddenly emitted
in the form of a spherical wave when an atom passes from one stationary
state to another.

(2) The composite photoelectric effect.*’ — WilsorH and Augerﬁ have
noticed in their cloud expansion photographs that when X-rays eject
photoelectrons from heavy atoms, it often occurs that two or more
electrons are ejected simultaneously from the same atom. Auger has
deduced from studying the ranges of these electrons that, when this
occurs, the total energy of all the emitted electrons is no larger than
that of a quantum of the incident radiation. When two electrons are
emitted simultaneously it is usually the case that the enegy of one of
them is

Eyin = hv — hvk

which according to the photon theory means that this electron is due to
the absorption of an incident photon accompanied by the ejection of an
electron from the K energy level. The second electron has in general the
energy

Ekin = hVK — hVL .

This electron can be explained as the result of the absorption by an L
electron of the Ka-ray emitted when another L electron occupies the
place left vacant in the K orbit by the primary photoelectron. It is
established that all the electrons that are observed in the composite
photoelectric effect have to be interpreted in the same way. Their inter-
pretation according to the photon theory thus meets with no difficulties.

With regard to the virtual radiation theory, we can take two points
of view: first, under the influence of the excitation produced by the
primary virtual radiation, virtual fluorescent K radiation is emitted by
virtual oscillators associated with all the atoms traversed by the primary
beam. In this view, the probability that this virtual fluorescent radiation
will cause the ejection of a photoelectron from the same atom as the one
that has emitted the primary photoelectron is so small that such an
event will almost never occur; second, we can alternatively assume that
a virtual oscillator emitting virtual K radiation is associated only with
an atom in which there is a vacant place in the K shell. In this case,

a C.T. R. Wilson, Proc. Roy. Soc. A, 104 (1923), 1.
b P. Auger, Journ. d. Phys., 6 (1926), 183.
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since the virtual radiation proceeds from the atom that has emitted the
primary photoelectron, we could expect with extremely large probability
that it should excite a photoelectron from the L shell of its own atom,
thus accounting for the composite photoelectric effect. But in this view
the virtual fluorescent radiation is emitted only during a very short
interval after the ejection of the primary photoelectron, in which case
Bothe’s fluorescence experiment, described above, should have shown
some coincidences.

One sees thus that the virtual radiation hypothesis is irreconcilable
both with the composite photoelectric effect and with the absence of
coincidences in Bothe’s fluorescence experiment. The photon hypothesis,
instead, is in complete accord with both these experimental facts.

(3) Bothe and Geiger’s coincidence experiments.*' — We have seen that
according to Bohr, Kramers and Slater’s theory, virtual radiation®? is
being continually scattered by matter traversed by X-rays, but only
occasionally is a recoil electron emitted. This is in sharp contrast with
the photon theory, according to which a recoil electron appears every
time a photon is scattered. A crucial test between the two points of
view is afforded by an experiment devised and brilliantly performed?®?
by Bothe and GeigerH X-rays were passed through hydrogen gas, and
the resulting recoil electrons and scattered rays were detected by means
of two different point counters placed on opposite sides of the column of
gas. The chamber for counting the recoil electrons was left open, but a
sheet of thin platinum prevented the recoil electrons from entering the
chamber for counting the scattered rays. Of course not every photon
entering the second counter could be noticed, for its detection depends
upon the production of a (-ray. It was found that there were about ten
recoil electrons for every scattered photon that recorded itself.

The impulses from the counting chambers were recorded on a moving
photographic film. In observations over a total period of over five hours,
sixty-six such coincidences were observed. Bothe and Geiger calculate
that according to the statistics of the virtual radiation theory the chance
was only 1 in 400000 that so many coincidences should have occurred.
This result therefore is in accord with the predictions of the photon
theory, but is directly contrary to the statistical view of the scattering
process.

(4) Directional emission of scattered X-rays. — Additional information

a W. Bothe and H. Geiger, Zeits. f. Phys., 26 (1924), 44; 32 (1925), 639.
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Fig. 3. If the X-rays excite a recoil electron at an angle 6, the photon theory
predicts a secondary (-particle at an angle .

regarding the nature of scattered X-rays has been obtained by studying
the relation between the direction of ejection of the recoil electron and
the direction in which the associated photon proceeds. According to
the photon theory, we have a definite relation (equation (4))) between
the angle at which the photon is scattered and the angle at which the
recoil electron is ejected. But according to any form of spreading wave
theory, including that of Bohr, Kramers and Slater, the scattered rays
may produce effects in any direction whatever, and there should be no
correlation between the directions in which the recoil electrons proceed
and the directions in which the secondary (-rays are ejected by the
scattered X-rays.

A test to see whether such a relation exists has been madeH using
Wilson’s cloud apparatus, in the manner shown diagrammatically in
Fig. 3. Each recoil electron produces a visible track, and occasionally a
secondary track is produced by the scattered X-ray. When but one recoil

a A. H. Compton and A. W. Simon, Phys. Rev., 26 (1925), 289.
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electron appears on the same plate with the track due to the scattered
rays, it is possible to tell at once whether the angles satisfy equation ().
If two or three recoil tracks appear,** the measurements on each track
can be approximately®® weighted.

Out of 850 plates taken in the final series of readings, thirty-eight show
both recoil tracks and secondary (-ray tracks. On eighteen of these plates
the observed angle %0 is within 20 degrees of the angle calculated from
the measured value of 8, while the other twenty tracks are distributed
at random angles. This ratio 18:20 is about that to be expected for the
ratio of the rays scattered by the part of the air from which the recoil
tracks could be measured to the stray rays from various sources. There
is only about 1 chance in 250 that so many secondary S-rays should have
appeared at the theoretical angle.

If this experiment is reliable, it means that there is scattered X-ray
energy associated with each recoil electron sufficient to produce a S-ray,
and proceeding in a direction determined at the moment of ejection
of the recoil electron. In other words, the scattered X-rays proceed in
photons, that is*” in directed quanta of radiant energy.

This result, like that of Bothe and Geiger, is irreconcilable with Bohr,
Kramers and Slater’s hypothesis of the statistical production of recoil
and photoelectrons. On the other hand, both of these experiments are
in complete accord with the predictions of the photon theory.

RELIABILITY OF EXPERIMENTAL EVIDENCE

While all of the experiments that we have considered are difficult to
reconcile with the classical theory that radiation consists of electromag-
netic waves, only those dealing with the individual scattering process*®
afford crucial tests between the photon theory and the statistical theory
of virtual radiation. It becomes of especial importance, therefore, to
consider the errors to which these experiments are subject.

When two point counters are set side by side, it is very easy to obtain
coincidences from extraneous sources. Thus, for example, the apparatus
must be electrically shielded so perfectly that a spark on the high-tension
outfit that operates the X-ray tube may not produce coincident impulses
in the two counters. Then there are high-speed a- and S-rays, due to
radium emanation in the air and other radioactive impurities, which
may pass through both chambers and produce spurious coincidences.
The method which Bothe and Geiger used to detect the coincidences,
of*® recording on a photographic film the time of each pulse, makes it
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possible to estimate reliably®® the probability that the coincidences are
due to chance. Moreover, it is possible by auxiliary tests to determine
whether spurious coincidences are occurring — for example, by operating
the outfit as usual, except that the X-rays are absorbed by a sheet of lead.
It is especially worthy of note that in the fluorescence experiment the
photon theory predicted absence of coincidences, while in the scattering
experiment it predicted their presence. It is thus difficult to see how
both of these counter experiments can have been seriously affected by
systematic errors.

In the cloud expansion experiment the effect of stray radiation is to
hide the effect sought for, rather than to introduce a spurious effect. It
is possible that due to radioactive contamination and to stray scattered
X-rays (-particles may appear in different parts of the chamber, but
it will be only a matter of chance if these [-particles appear in the
position predicted from the direction of ejection of the recoil electrons.
It was in fact only by taking great care to reduce such stray radiations
to a minimum that the directional relations were clearly observed in the
photographs. It would seem that the only form of consistent error that
could vitiate the result of this experiment would be the psychological®!
one of misjudging the angles at which the S-particles appear. It hardly
seems possible, however, that errors in the measurement of these angles
could be large enough to account for the strong apparent tendency for
the angles to fit with the theoretical formula.

It is perhaps worth mentioning further that the initial publications
of the two experiments on the individual scattering process were made
simultaneously, which means that both sets of experimenters had inde-
pendently reached a conclusion opposed to the statistical theory of the
production of the (-rays.

Nevertheless,? given the difficulty of the experiments and the import-
ance of the conclusions to which they have led, it is highly desirable that
both experiments should be repeated by physicists from other laborato-
ries.

SUMMARY

The classical theory that radiation consists of electromagnetic waves
propagated in all directions through space®® is intimately connected to
the idea of the ether, which is difficult to conceive. It affords no adequate
picture of the manner in which radiation is emitted or absorbed. It is
inconsistent with the experiments on the photoelectric effect, and is
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entirely helpless to account for the change of wavelength of scattered
radiation or the production of recoil electrons.

The theory of virtual oscillators and virtual radiation which are asso-
ciated statistically with sudden jumps of atomic energy and the emission
of photoelectrons and recoil electrons, does not seem to be inconsistent
with any of these phenomena as viewed on a macroscopic scale. This
theory, however,®* retains the difficulties inherent in the conception of
the ether and seems powerless to predict the characteristics of the pho-
toelectrons and the recoil electrons. It is further difficult to reconcile
with the composite photoelectric effect and is also contrary to Bothe’s
and Bothe and Geiger’s coincidence experiments and to the ray track
experiments relating the directions of ejection of a recoil electron and of
emission of the associated scattered X-ray.

The photon theory avoids the difficulties associated with the concep-
tion of the ether.’® The production and absorption of radiation is very
simply connected with the modern idea of stationary states. It supplies
a straightforward explanation of the major characteristics of the photo-
electric effect, and it accounts in the simplest possible manner for the
change of wavelength accompanying scattering and the existence of recoil
electrons. Moreover, it predicts accurately the results of the experiments
with individual radiation quanta, where the statistical theory fails.

Unless the four®” experiments on the individual events®® are subject
to improbably large experimental errors, the conclusion is, I believe,
unescapable that radiation consists of directed quanta of energy, i.e.,
of photons, and that energy and momentum are conserved when these
photons interact with electrons or atoms.

Let me say again that this result does not mean that there is no
truth in the concept of waves of radiation. The conclusion is rather that
energy is not transmitted by such waves. The power of the wave concept
in problems of interference, refraction, etc., is too well known to require
emphasis. Whether the waves serve to guide the photons, or whether
there is some other relation between photons and waves is another and
a difficult question.



Discussion 355

Discussion of Mr Compton’s report

MR LORENTZ. — I would like to make two comments. First on the
question of the ether. Mr Compton considers it an advantage of the
photon theory that it allows us to do without the hypothesis of an ether
which leads to great difficulties. I must say that these difficulties do not
seem so great to me and that in my opinion the theory of relativity
does not necessarily rule out the concept of a universal medium. Indeed,
Maxwell’s equations are compatible with relativity, and one can well
imagine a medium for which these equations hold. One can even, as
Maxwell and other physicists have done with some success, construct
a mechanical model of such a medium. One would have to add only
the hypothesis of the permeability of ponderable matter by the ether to
have all that is required. Of course, in making these remarks, I should
not wish to return in any way to these mechanical models, from which
physics has turned away for good reasons. One can be satisfied with the
concept of a medium that can pass freely through matter and to which
Maxwell’s equations can be applied.

In the second place: it is quite certain that, in the phenomena of light,
there must yet be something other than the photons. For instqncem in a
diffraction experiment performed with very weak light, it can happen
that the number of photons present at a given instant between the
diffracting screen and the plane on which one observes the distribution
of light, is very limited. The average number can even be smaller than
one, which means that there are instants when no photon is present in
the space under consideration.

This clearly shows that the diffraction phenomena cannot be produced
by some novel action among the photons. There must be something that
guides them in their progress and it is natural to seek this something
in the electromagnetic field as determined by the classical theory. This
notion of electromagnetic field, with its waves and vibrations would bring
us back, in Mr Compton’s view, to the notion of ether.

MRr ComPTON. — It seems, indeed, difficult to avoid the idea of
waves in the discussion of optical phenomena. According to Maxwell’s
theory the electric and magnetic properties of space lead to the idea of
waves as directly as did the elastic ether imagined by Fresnel. Why the
space having such magnetic properties should bear the name of ether
is perhaps simply a matter of words. The fact that these properties of
space immediately lead to the wave equation with velocity c is a much
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more solid basis for the hypothesis of the existence of waves than the
old elastic ether. That something (E and H) propagates like a wave
with velocity ¢ seems evident. However, experiments of the kind we have
just discussed show, if they are correct, that the energy of the bundle
of X-rays propagates in the form of particles and not in the form of
extended waves. So then, not even the electromagnetic ether appears to
be satisfactory.

MR BRAGG. — In his report Mr Compton has discussed the average
momentum component of the electrons in the direction of motion of
the photon, and he has informed us of the conclusion, at which several
experimenters have arrived, that this forward average component is equal
to the momentum of the light quantum whose energy has been absorbed
and is found again in that of the photoelectron.

I would like to report in this connection some results obtained by
Mr Williamsy Monochromatic X-rays, with wavelength lying between
0.5 A and 0.7 A, enter a Wilson cloud chamber containing oxygen or
nitrogen. The trajectories of the photoelectrons are observed through a
stereoscope and their initial directions are measured. Since the speed of
the photoelectrons is exactly known (the ionisation energy being weak by
comparison to the quantity hv), a measurement of the initial direction
is equivalent to a measurement of momentum in the forward direction.
Williams finds that the average momentum component in this direction
is in all cases markedly larger than the quantity h—c” or % These results
can be summarised by a comparison with the scheme proposed by Perrin
and Auger ([P. Auger and F. Perrin|, Journ. d. Phys. [6th series, vol. 8]
(February 1927), [93]). They are in perfect agreement with the cos? 6
law, provided one assumes that the magnetic impulse 7;, is equal to
1.8% and not just % as these authors assume. One should not attach
any particular importance to this number 1.8, because the range of the
examined wavelengths is too small. I mention it only to show that it
is possible that the simple law proposed by Mr Compton might not be
exact.

I would like to point out that this method of measuring the forward
component of the momentum is more precise than an attempt made to
establish results about the most probable direction of emission.

MR WILSON says that his own observations, discussed in his Memoir

a Cf. the relevant footnote on p.[340] (eds.).
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of IQZSH (but which do not pretend to be very precise) seem to show
that in fact the forward momentum component of the photoelectrons
is, on average, much larger than what one would derive from the idea
that the absorbed quantum yields all of its momentum to the expelled
electron.

MR RICHARDSON. — When they are expelled by certain X-rays, the
electrons have a momentum in the direction of propagation of the rays
equal to 1.8%. If I have understood Mr Bragg correctly, this result is not
the effect of some specific elementary process [action], but the average
result for a great number of observations in which the electrons were
expelled in different directions. Whether or not the laws of energy and
momentum conservation apply to an elementary process, it is certain
that they apply to the average result for a great number of these pro-
cesses. Therefore, the process [processus| we are talking about must be
governed by the equations for momentum and energy. If for simplicity
we ignore the refinements introduced by relativity, these equations are

h _
g =mv+ MV
c

and

hy = %mﬁ2 + %MVQ ,
where m and M are the masses, v and V the velocities of the electrons
and of the positive residue; the overbars express that these are averages.
The experiments show that the average value of muv is 1.8% and not
h—c”. This means that MV is not zero, so that we cannot ignore this term
in the equation. If we consider, for instance, the photoelectric effect on
a hydrogen atom, we have to take the collision energy of the hydrogen
nucleus into account in the energy equation.

MR LORENTZ. — The term %MV2 will however be much smaller than
L2759

MR RICHARDSON. — It is approximately its 1850th part: that cannot
always be considered negligible.

MR BORN thinks that he is speaking also for several other members

a Referenced in footnote on p.[B36] (eds.).
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in asking Mr Compton to explain why one should expect that the mo-
mentum imparted to the electron be equal to h—c”

MR COMPTON. — When radiation of energy hv is absorbed by an
atom — which one surely has to assume in order to account for the
kinetic energy of the photoelectron — the momentum imparted to the
atom by this radiation is h—c” According to the classical electron theory,
when an atom composed of a negative charge —e of mass m and a positive
charge +e of mass M absorbs energy from an electromagnetic wave,
the momenta imparted to the two elementary charges [électrons| are
inversely proportional to their masses. This depends on the fact that
the forward momentum is due to the magnetic vector, which acts with
a force proportional to the velocity and consequently more strongly on
the charge having the smaller mass.%® Effectively, the momentum is thus
received by the charge with the smaller mass.

MR DEBYE. — Is the reason why you think that the rest of the atom
does not receive any of the forward momentum purely theoretical?

MR CoMPTON. — The photographs of the trajectories of the photo-
electrons show, in accordance with Auger’s prediction, that the forward
component of the momentum of the photoelectron is, on average, the
same as that of the photon. That means, clearly, that on average the
rest of the atom does not receive any momentum.

MR DIRAC. — I have examined the motion of an electron placed
in an arbitrary force field according to the classical theory, when it is
subject to incident radiation, and I have shown in a completely general
way that at every instant the fraction of the rate of change [vitesse de
variation] of the forward momentum of the electron due to the incident
radiation is equal to % times the fraction of the rate of change of the
energy due to the incident radiation. The nucleus and the other electrons
of the atom produce changes of momentum and of energy that at each
instant are simply added to those produced by the incident radiation.
Since the radiation must modify the electron’s orbit, it must also change
the fraction of the rate of change of the momentum and of the energy
that comes from the nucleus and the other electrons, so that it would be
necessary to integrate the motion in order to determine the total change
produced by the incident radiation in the energy and the momentum.
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MR BORN. — I would like to mention here a paper by WentzelH
which contains a rigorous treatment of the scattering of light by atoms
according to quantum mechanics. In it, the author considers also the
influence of the magnetic force, which allows him to obtain the quantum
analogue of the classical light pressure. It is only in the limiting case of
very short wavelengths that one finds that the momentum of light h—c" is
completely transmitted to the electron; in the case of large wavelengths
an influence of the binding forces appears.

MR EHRENFEST. — One can show by a very simple example where
the surplus of forward momentum, which we have just discussed, can
have its origin. Take a box whose inner walls reflect light completely,
but diffusedly, and assume that on the bottom there is a little hole.
Through the latter I shine a ray of light into the box which comes and
goes inside the box and pushes away its lid and bottom. The lid then
has a surplus of forward momentum.

MR BOHRH — With regard to the question of waves or photons dis-
cussed by Mr Compton, I would like to make a few remarks, without pre-
empting the general discussion. The radiation experiments have indeed
revealed features that are not easy to reconcile within a classical picture.
This difficulty arises particularly in the Compton effect itself. Several
aspects of this phenomenon can be described very simply with the aid of
photons, but we must not forget that the change of frequency that takes
place is measured using instruments whose functioning is interpreted
according to the wave theory. There seems to be a logical contradiction
here, since the description of the incident wave as well as that of the
scattered wave require that these waves be finitely extended [limitées]
in space and time, while the change in energy and in momentum of
the electron is considered as an instantaneous phenomenon at a given
point in spacetime. It is precisely because of such difficulties that Messrs
Kramers, Slater and myself were led to think that one should completely
reject the idea of the existence of photons and assume that the laws of
conservation of energy and momentum are true only in a statistical way.

The well-known experiments by Geiger and Bothe and by Compton
and Simon, however, have shown that this point of view is not admissible

a Born is presumably referring to Wentzel’s second paper on the photoelectric effect
(Wentzel 1927). Compare Mehra and Rechenberg (1987, pp. 835 ff.) (eds.).

a This discussion contribution by Bohr is reprinted and translated also in vol. 5 of
Bohr’s Collected Works (Bohr 1984, pp. 207-12). (eds.).
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and that the conservation laws are valid for the individual processes, in
accordance with the concept of photons. But the dilemma before which
we are placed regarding the nature of light is only a typical example
of the difficulties that one encounters when one wishes to interpret
the atomic phenomena using classical concepts. The logical difficulties
with a description in space and time have since been removed in large
part by the fact that it has been realised that one encounters a similar
paradox with respect to the nature of material particles. According to
the fundamental ideas of Mr de Broglie, which have found such perfect
confirmation in the experiments of Davisson and Germer, the concept
of waves is as indispensable in the interpretation of the properties of
material particles as in the case of light. We know thereby that it is
equally necessary to attribute to the wave field a finite extension in
space and in time, if one wishes to define the energy and the momentum
of the electron, just as one has to assume a similar finite extension in
the case of the light quantum in order to be able to talk about frequency
and wavelength.

Therefore, in the case of the scattering process, in order to describe the
two changes affecting the electron and the light we must work with four
wave fields (two for the electron, before and after the phenomenon, and
two for the quantum of light, incident and scattered), finite in extension,
which meet in the same region of spacetimeH In such a representation
all possibility of incompatibility with a description in space and time
disappears. I hope the general discussion will give me the opportunity
to enter more deeply into the details of this question, which is intimately
tied to the general problem of quantum theory.

MR BRILLOUIN. — I have had the opportunity to discuss Mr Comp-
ton’s report with Mr AugerE and wish to make a few comments on this
topic. A purely corpuscular description of radiation is not sufficient to
understand the peculiarities of the phenomena; to assume that energy
is transported by photons hv is not enough to account for all the effects
of radiation. It is essential to complete our information by giving the
direction of the electric field; we cannot do without this field, whose role
in the wave description is well known.

I shall recall in this context a simple argument, recently given by Auger

a Compare also the discussion contributions below, by Pauli, Schrodinger and others
(eds.).

b As noted in section [[4] this and other reports had been circulated among the
participants before the conference (eds.).
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Light ray

Fig. 1.

and F. Perrin, and which illustrates clearly this remark. Let us consider
the emission of electrons by an atom subject to radiation, and let us
examine the distribution of the directions of emission. This distribution
has usually been observed in a plane containing the light ray and the
direction of the electric field (the incident radiation is assumed to be
polarised); let ¢ be the angle formed by the direction of emission of the
photoelectrons and the electric field h; as long as the incident radiation is
not too hard, the distribution of the photoelectrons is symmetric around
the electric field; one can then show that the probability law necessarily
takes the form A cos? . Indeed, instead of observing the distribution
in the plane of incidence (Fig. 1), let us examine it in the plane of the
wave; the same distribution law will still be valid; and it is the only one
that would allow us to obtain, through the superposition of two waves
polarised at right angles, an entirely symmetric distribution

Acos’ p+ Asin® p = A .

Now, from the point of view of waves, one must necessarily obtain
this result, a beam [rayonnement]| of natural light having no privileged
direction in the plane of the wave. These symmetry considerations, which
any theory of radiation must respect, provide a substantial difficulty
for the structural theories of the photon (Bubb’s quantum vector, for
instance).

Summing up, the discontinuity of the radiation manifests itself just in
the most elementary way, through the laws of conservation of energy and
momentum, but the detailed analysis of the phenomena is interpreted
more naturally from the continuous point of view. For the problem of
emission of the photoelectrons, a complete theory has been given by
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Wentzel, by means of wave mechanicsH He finds the Acos?¢ law of
F. Perrin and Auger for radiation of low penetration; when the radiation
is harder, Wentzel obtains a more complex law, in which the electrons
tend to be emitted in larger numbers in the forward direction. His theory,
however, seems incomplete with regard to this point since, if I am not
mistaken, he has assumed the immobility of the atomic nucleus; now,
nothing tells us a priori how the momentum h—c” of the photon is going

to be distributed between the nucleus and the emitted electron.

MR LORENTZ. — Allow me to point out that according to the old
electron theory, when one has a nucleus and an electron on which a
beam of polarised light falls, the initial angular momentum of the system
is always conserved. The angular momentum imparted to the electron-
nucleus system will be provided at the expense of the angular momentum
of the radiation field.

MR CompTON. — The conception of the photon differs from the
classical theory in that, when a photoelectron is emitted, the photon is
completely absorbed and no radiation field is left. The motion of the
photoelectron must thus be such that the final angular momentum of
the electron-nucleus system will be the same as the initial momentum of
the photon-electron-nucleus system. This condition restricts the possible
trajectories of the emitted photoelectron.

MR KRAMERS. — In order to interpret his experiments, Mr Compton
needs to know how the absorption p is divided between a component 7,
due to the ‘true’ absorption, and a component o due to the scattering.
We do not know with certainty that, if 1 can be written in the form CA\*+
D, the constant D truly represents the scattering for large wavelengths,
where C'\* is no longer small compared to D. In general, thus, specific
measurements of o are necessary. Did you have sufficient information
regarding the values of o and 7 in your experiments?

MR CoMPTON. — The most important case in which it is necessary
to distinguish between the true absorption 7 and the absorption ¢ due to
the scattering, is that of carbon. For this case, HewlettEI has measured

a This is presumably Wentzel’s treatment from his first paper on the photoelectric
effect (Wentzel 1926). Compare again Mehra and Rechenberg (1987, pp. 835 ff.)
(eds.).

a [C. W. Hewlett, Phys. Rev., 17 (1921), 284.]
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o directly for the wavelength 0.71 A and the total absorption u over
a large range of wavelengths. The difference between p and o for the
wavelength 0.71 A corresponds to 7 for this wavelength. According to
Owen’s formula this 7 is proportional to A®; we can thus calculate 7 for
all wavelengths. The difference between this value of 7 and the measured
value of 1 corresponds to the value of o for the wavelengths considered.
Since 7 is relatively small in the case of carbon, especially for small
wavelengths, this procedure yields a value for ¢ that cannot be very
imprecise.

MR BRAGG. — When one consults the original literature on this
subject, one is struck by how much the X-ray absorption measurements
leave to be desired, both with regard to precision as well as with regard
to the extent of the scale of wavelengths for which they have been
performed.

MR PAuLl. — How large is the broadening of the modified rays?

MR COMPTON. — The experiments have shown clearly that the mo-
dified ray is broader than the unmodified ray. In the typical case of
the ray A 0.7 A scattered by carbon, the broadening is of order 0.005
angstrom. Unfortunately, the experiments concerning this point are far
from being satisfactory, and this number should be considered only as a
rough approximation.

MR PAULI. — The broadening of the modified ray can be interpreted
theoretically in two ways, which to tell the truth reduce to the same
according to quantum mechanics. First, the electron, in a given statio-
nary state of the atom, has a certain velocity distribution with regard to
magnitude and direction. That gives rise to a broadening of the frequency
of the scattered rays through the Doppler effect, a broadening whose
order of magnitude is % = ¢, where v denotes the average velocity of
the electron in the atom.

In order to convey the second means of explanation, I would like to
sketch briefly the meaning of the Compton effect in wave mechanicsH
This meaning is based first of all on the wave equation

0%  Amie oY An? [e? 9 9 9
022 " h e ey, e \@ 2k e Ju=0

a For a modern discussion, see Bjérken and Drell (1964, Chapter 9) (eds.).
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and further on the expression

o™
0xq
in which ¢ is Schrodinger’s function, ¥* the complex conjugate value
and ¢, the four-potential of the electromagnetic field. Given S, one
calculates the radiation from classical electrodynamics. If now in the
wave equation one replaces ¢, by the potential of an incident plane
wave, the terms that are proportional to the amplitude of this wave can
be considered infinitely small in the first order, and one can apply the ap-
proximation methods of perturbation theory. This now is a point where
one needs to be especially careful. It is all-important to know what one
will take as the unperturbed field v, which must correspond to a solution
of the wave equation for the free particle (corresponding to ¢, = 0).5?
One finds that in order to agree with the observations, it is necessary to
take two infinitely extended monochromatic wave trains as being already
present in the unperturbed solution, of which one corresponds to the
initial state, the other to the final state of the Compton process. In my
opinion this assumption, on which the theories of the Compton effect
by Schrodinger, Gordon and Klein are based, is unsatisfactory and this
defect is corrected only by Dirac’s quantum electrodynamicsEI But if
one makes this assumption, the current distribution of the unperturbed
solution corresponds to that of an infinitely extended diffraction grating
[un réseau infiniment étendu] that moves with a constant speed, and the
action of the radiation on this grating leads to a sharp modified ray.

If one considers a bound electron in an atom, one has to replace one
component of the solution 1 in the unperturbed charge and current
distribution by the eigenfunction of the atom in the stationary state
considered, and the other component by a solution corresponding to the
final state of the Compton process (belonging to the continuous spectrum
of the atom), which at great distance from the atom behaves more or
less as a plane wave. One thus has a moving grating that first of all
depends only on the finite extension of the atom and in the second place
has components no longer moving with the same speed at all. This gives
rise to a lack of sharpness of the shifted ray of the scattered radiation.

But one can show that, from the point of view of quantum mechanics,
this explanation for the lack of sharpness of the shifted ray is just another
form of the explanation given in the first instance and which relies on the
different directions of the initial velocities of the electrons in the atom.

iSa:d}

a Compare below Schrédinger’s contribution and the ensuing discussion (eds.).
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For according to quantum mechanics if

¥ = f(z,y,z)e

is the eigenfunction corresponding to a given stationary state of the
atom, the function®?

@(Pmapyapz):///f(:c,y,z)e_%(pm”pyy*pzz)dxdydz,

which one obtains by decomposing f in plane waves according to Fou-
rier can be interpreted in the sense that |p(p)|?dp,dp,dp. denotes the
probability that in the given stationary state the components of the
momentum of the electron lie between p.,p,,p. and p, + dp, etc.
Now, if through the resulting velocity distribution of the electrons in
the atom one calculates the broadening of the shifted line according to
the first point of view, for light of sufficiently short wavelength with
respect to which the electron can be considered free in the atom (and
it is only under these conditions that the procedure is legitimate), one
finds exactly the same result as with the other method described

MRr COMPTON. — Jauncey has calculated the broadening of the mo-
dified ray using essentially the method that Mr Pauli has just described.
Jauncey assumed, however, that the velocities of the electron are the
ones given by Bohr’s theory of orbital motions. The broadening thus
obtained is larger than that found experimentally.

MRS CURIE. — In his very interesting report, Professor Compton has
dwelt on emphasising the reasons that lead one to adopt the theory of
a collision between a quantum and a free electron. Along the same line
of thought, I think it is useful to point out the following two views:

First, the existence of collision electrons seems to play a fundamental
role in the biological effects produced on living tissues by very high-
frequency radiation, such as the most penetrating ~-rays emitted by
radioelements. If one assumes that the biological effect may be attributed
to the ionisation produced in the cells subjected to radiation, this effect
cannot depend directly on the ~-rays, but is due to the emission of
secondary (-rays that accompanies the passage of the v-rays through
matter. Before the discovery of the collision electrons, only a single
a Pauli was possibly the first to introduce the probability interpretation of the wave

function in momentum space, in a letter to Heisenberg of 19 October 1926 (Pauli,
1979, pp. 347-8). Cf. the footnote on p.[II7] (eds.).
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mechanism was known for the production of these secondary rays, that
consisting in the total absorption of a quantum of radiation by the
atom, with the emission of a photoelectron. The absorption coefficient 7
relating to this process varies with the wavelength A of the primary
~-radiation, as well as with the density [p] of the absorbing matter
and the atomic number N of the atoms composing it, according to
the well-known relation of Bragg and Peirce £ = AN3X\3, where A is
a coefficient that has a constant value for frequencies higher than that
of the K discontinuity. If this relation valid in the domain of X-rays
can be applied to high-frequency ~-rays, the resulting value of % for the
light elements is so weak that the emission of photoelectrons appears
unable to explain the biological effects of radiation on the living tissues
traversed

The issue appears altogether different if one takes into consideration
the emission of collision electrons in these tissues, following Compton’s
theory. For a collimated primary beam of y-rays, the fraction of electro-
magnetic energy converted into kinetic energy of the electrons per unit
mass of the absorbing matter is given by the coefficient

Oq - « (1)
p (1-20)2p "

where "—po is the scattering coefficient per unit mass valid for medium
frequency X-rays, according to the theory of J. J. Thomson, and is close
hv (b Planck’s constant, v

mc2
primary frequency, m rest mass of the electron, ¢ speed of light). Taking

to 0.2, while o is Compton’s parameter o =

a = 1.2, a value suitable for an important group of y-rays (equivalent
potential 610 kilovolts), one finds "—pﬂ = 0.02, that is, 2 per cent of the
primary energy is converted to energy of the electron per unit mass
of absorbing matter, whence a possibility of interpreting the observed
biological effects. To this direct production of collision electrons along
the trajectory of the primary beam is added, in an extended medium, a
supplementary production, from the fact that to each of these electrons
corresponds a scattered quantum, with a smaller value than the primary
quantum, and that this scattered quantum can in turn be subject to
the Compton effect in the medium through which it propagates, with
production of a new collision electron and of an even smaller quantum.
This process, indefinitely repeatable and called the ‘multiple Compton
effect’ seems in fact to have been observed by certain authorsH Not only
a It is true that several authors have recently contested the legitimacy of extending

the absorption law of Bragg and Peirce to X-rays.
a [B.] Rajewsky, Fortschritte auf dem Gebiet der Roentgenstrahlung, 35 (1926), 262.
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is the number of collision electrons thereby multiplied, but, further, the
primary quantum, reduced by successive collisions takes on values for
which the absorption with emission of photoelectrons becomes more and
more probable.

These facts have an important repercussion on the technique of X-ray
therapy. Certain authors had, in fact, denied the usefulness of producing
very high-voltage apparatus providing X-rays of very high frequency and
very high penetrating power, whose use is otherwise convenient owing to
the uniformity of irradiation they allow one to attain. If these rays had
been devoid of efficacy, one would have had to give up on their use. Such
is not the case if one adopts the point of view of the Compton effect,
and it is then legitimate to direct the technique towards the use of high
voltages.

Another interesting point of view to examine is that of the emission of
(B-rays by radioactive bodies. Professor Compton has pointed out that
among the f-rays of secondary origin, some could be collision electrons
produced by the scattering of the primary ~-rays on the electrons con-
tained in the matter they traverse.

It is in an effect of this type that Thibaud thinks one may find the
explanation for the appearance of the magnetic spectra of the secondary
~v-rays. These spectra are composed of lines that may be attributed to
groups of photoelectrons of the same speed, each of which is emitted by
absorption in a thin metallic envelope of a group of homogeneous y-rays
emitted by a radioelement contained in this envelope. Each line of photo-
electric origin is accompanied by a band beginning at the line itself and
extending towards the region of low velocities. Thibaud thinks that this
band could be due to photoelectrons expelled from the screen by those
~-rays that, in this same screen, had suffered the Compton effect with
reduction of frequency. This interpretation appears plausible; however,
in order to prove it, it would be necessary to study the structure of the
band and find in the same spectrum the band that may be attributed
to the collision electrons corresponding to the scattered ~y-rays.

An analogous problem arises regarding the emission of (-rays by
radioactive bodies with negligible thickness, so as to eliminate, as far
as possible, the secondary effects due to the supports and envelopes.
One then observes a magnetic spectrum that may be attributed to the
radioelement alone and consisting either of a continuous band, or of
the superposition of a continuous spectrum and a line spectrum. The
latter has received a satisfactory interpretation in some recent papers
(L. Meitner, Ellis, Thibaud, etc.).
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A line is due to a group of photoelectrons with the same speed expelled
from the levels of the radioactive atoms by a group of homogeneous
~-rays produced in their nuclei. This effect is called ‘internal conversion’,
since one assumes that the quantum emitted by an atomic nucleus is
reabsorbed in the electron cloud [enveloppe électronique] of the same
atom. The great majority of observed lines find their explanation in this
hypothesis.

The interpretation of the continuous spectrum appears to present
more difficulties. Some authors attribute it only to the primary (-rays,
while others consider the possibility of a secondary origin and invoke
the Compton effect as a possible cause of its production (L. Meitner).
This would be an ‘internal’” Compton effect, such that a vy-ray emitted
from the nucleus of an atom would experience a collision with one of
the weakly bound electrons at the periphery of the same atom. If that
were the case, the velocity distribution of the emitted collision electrons
would not be arbitrary, but would have to conform to the predictions of
Compton’s theory.

I have closely examined this problem, which has a very complex appea-
ranceld Each group of homogeneous 7-rays is accompanied by scattered
~-rays, so that in the diffraction spectrum of the y-rays, each line should
experience a broadening of 0.0485 A units. The experiments on the
diffraction of ~-rays are difficult and not very numerous; so far the
broadening effect has not been reported.

Each homogeneous group of ~-rays must correspond to a group of
collision electrons, whose velocity varies continuously from zero to an
upper limit derived from Compton’s theory and which in the magnetic
spectrum corresponds to a band bounded sharply on the side of the large
velocities. The same group of y-rays may correspond to further groups
of photoelectrons expelled from the different levels K, L, etc. of the atom
through internal absorption of the scattered v-rays. For each group of
photoelectrons, the velocity of emission lies between two well-defined
limits. The upper limit corresponds to the surplus energy of the primary
~-rays with respect to the extraction work W characteristic of the given
level; the lower limit corresponds to the surplus energy, with respect to
the same work, of the y-rays scattered in the direction opposite to that
of the primary rays, and having experienced because of that the highest
loss of frequency. In the magnetic spectrum, each group of photoelectrons
will be represented by a band equally well bounded on the side of the

a [M.] Curie, Le Journal de Physique et le Radium, 7 (1926), 97.
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large and of the small velocities, with the same difference between the
extreme energies for each band.

It is easy to see that in the same magnetic spectrum the different bands
corresponding to the same group of v-rays may partially overlap, making
it difficult to analyse the spectrum comparing the distribution of S-rays
with that predicted by theory. For substances emitting several groups of
~-rays, the difficulty must become considerable, unless there are large
differences in their relative effectiveness in producing the desired effect.
Let us also point out that the continuous spectrum due to the Compton
effect may be superposed with a continuous spectrum independent of
this effect (that may be attributed for instance to the primary [-rays).

Examination of the experimental data available so far does not yet
allow one to draw conclusions convincingly. Most of the spectra are very
complex, and their precise study with respect to the energy distributions
of the O-rays will require very detailed work. In certain simple spectra
such as that of the f-rays of RaD, one observes lines of photoelectric
origin that may be attributed to a single group of monochromatic ~-
rays. These lines form the upper edge of bands extending towards low
velocities and probably arising from photoelectrons produced by the
scattered 7y-rays. In certain magnetic spectra obtained from the (-rays
of mesothorium 2 in the region of low velocities, one notices in the
continuous spectrum a gap that might correspond, for the group of
primary v-rays with 58 kilovolts, to the separation between the band
due to the collision electrons and that due to the photoelectrons of the
scattered y-rays

MR SCHRODINGER, at the invitation of Mr Ehrenfest, draws on the
blackboard in coloured chalk the system of four wave trains by which he
has tried to represent the Compton effect in an anschaulich way [d’une
fagon intuitive% (Ann. d. Phys. 4th series, vol. 82 (1927), 257)é

MR BOHR. — The simultaneous consideration of two systems of waves
has not the aim of giving a causal theory in the classical sense, but one
can show that it leads to a symbolic analogy. This has been studied
in particular by Klein. Furthermore, it has been possible to treat the

a D. K. Yovanovitch and A. Prola, Comptes Rendus, 183 (1926), 878.

b For discussions of the notion of Anschaulichkeit, see sections and B3l
(eds.).

¢ Schrédinger (1928, p. x) later remarked on a mistake pointed out to him by
Ehrenfest in the figure as published in the original paper (eds.).



370 A. H. Compton

problem in more depth through the way Dirac has formulated Schro-
dinger’s theory. We find here an even more advanced renunciation of
Anschaulichkeit [intuitivité], a fact very characteristic of the symbolic
methods in quantum theory.

MR LORENTZ. — Mr Schrédinger has shown how one can explain the
Compton effect in wave mechanics. In this explanation one considers
the waves associated with the electron (e) and the photon (ph), before
(1) and after (2) the encounter. It is natural to think that, of these
four systems of waves e, phi, es and phs, the latter two are produced
by the encounter. But they are not determined by e; and phi, because
one can for example choose arbitrarily the direction of ey. Thus, for
the problem to be well-defined, it is not sufficient to know e; and phy;
another piece of data is necessary, just as in the case of the collision
of two elastic balls one must know not only their initial velocities but
also a parameter that determines the greater or lesser eccentricity of
the collision, for instance the angle between the relative velocity and
the common normal at the moment of the encounter. Perhaps one could
introduce into the explanation given by Mr Schrodinger something that
would play the role of this accessory parameter.

MR BORN. — I think it is easy to understand why three of the four
waves have to be given in order for the process to be determined; it
suffices to consider analogous circumstances in the classical theory. If
the motions of the two particles approaching each other are given, the
effect of the collision is not yet determined; it can be made determinate
by giving the position of closest approach or an equivalent piece of data.
But in wave mechanics such microscopic data are not available. That
is why it is necessary to prescribe the motion of one of the particles
after the collision, if one wants the motion of the second particle after
the collision to be determined. But there is nothing surprising in this,
everything being exactly as in classical mechanics. The only difference
is that in the old theory one introduces microscopic quantities, such as
the radii of the atoms that collide, which are eliminated from subsequent
calculations, while in the new theory one avoids the introduction of these
quantities.
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Notes to pp. 329-347 371

Notes to the translation

The words ‘réels ou apparents’ are present only in the French version.
The English version has only four headings (starting with ‘(1) How are
the waves produced?’), and accordingly omits the next section, on ‘The
problem of the ether’, and later references to the ether.

[d’aprés les résultats de ’étude des spectres|

The English edition distinguishes sections and subsections more
systematically than the French edition, and in this and other small
details of layout we shall mostly follow the former.

[rappeler qu’il existe une théorie dans laquelle]

The words ‘le professeur’ are present only in the French edition.
[‘élément de radiation’ ou ‘quantum de lumiére’]

This section is present only in the French version.

[énergie ondulatoire]

The original footnote gives page ‘145’.

The English edition has ‘213’.

[& part une constante]

[perfectionnée]

The second part of the footnote is printed only in the English edition.
The French edition here includes the clause ‘qui a été faite’.

Here and in several places in the following, the French edition has
‘simple’ where the English one has ‘single’.

[Paction directe du vecteur électrique de 'onde, prise dans le sens
ordinaire]

[dans la direction de propagation de ’onde]

[puisque]

This footnote is only present in the English edition.

The preceding clause is only present in the French edition.

[la période de l'électron dans son mouvement orbital]

In the English edition this reads: ‘The fact that the photoelectrons
receive the momentum of the incident photon’.

[sur les rayons X secondaires et les rayons 7|

This footnote appears only in the French edition.

[ne fournirent aucune preuve de l'existence d’un spectre de raies|
This word is missing in the French edition.

The English edition reads ‘(1 + z)’.

[prédit)

[on eut quelque confiance dans les électrons de recul]

The French edition uses p instead of 7 in the text, but uses 7 in the
discussion (where p is used for matter density). The English edition uses
t.

Footnote mark missing in the French edition.

The French edition gives ().

The French edition gives (2]).

This footnote is present only in the English edition.

This word is missing in the French edition.

The French edition reads ‘J. Waller’.

The page numbers for Wentzel appear only in the French edition.
The English edition describes only three experiments, omitting the
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61
62

section on the composite photoelectric effect as well as references to it
later.

This section is present only in the French edition.

This and the next section are of course numbered (2) and (3) in the
English edition.

[rayonnement de fluorescence]

[une expérience cruciale entre les deux points de vue a été imaginée et
brillamment réalisée]

The French edition includes also ‘en méme temps’.

[d’une fagon appropriée]

The French edition has ‘6.

The words ‘photons, c’est-a-dire’ are present only in the French edition.
[au phénomene de la diffusion par les électrons individuels|

[ou]

[avec certitude]

[physiologique]

This sentence is only printed in the French edition.

The English edition omits reference to the ether and continues directly
with ‘affords no adequate picture’.

The English edition continues directly with: ‘seems powerless’.

The English edition continues: ‘is also contrary to’.

In the English edition this reads simply: ‘According to the photon theory,
the production .... .

In the English edition: ‘three’.

[processus]|

Overbars have been added.

The French text reads ‘avec moins d’intensité sur la charge ayant la plus
petite masse’. This is evidently an error: the (transverse) velocity of the
charges stems from the electric field, which imparts the larger velocity to
the charge with the smaller mass, which therefore experiences the larger
magnetic force.

The printed text reads ‘pqow’.

Brackets in the exponent added.



The new dynamics of quanta®

By MRr Louis bDE BROGLIE

I. — PRINCIPAL POINTS OF VIEWE

1. First works of Mr Louis de Broglie [1]. — In his first works on the
Dynamics of Quanta, the author of the present report started with the
following idea: taking the existence of elementary corpuscles of matter
and radiation as an experimental fact, these corpuscles are supposed to
be endowed with a periodicity. In this way of seeing things, one no longer
conceives of the ‘material point’ as a static entity pertaining to only a
tiny region of space, but as the centre of a periodic phenomenon spread
all around it.

Let us consider, then, a completely isolated material point and, in
a system of reference attached to this point, let us attribute to the
postulated periodic phenomenon the appearance of a stationary wave
defined by the function

’U,(JIQ, Yo, <o, tO) = f(xf)a Yo, ZO) COS27TVOtO .

In another Galilean system z, y, z, ¢, the material point will have a
rectilinear and uniform motion with velocity v = Bc¢. Simple application

a Our translation of the title (‘La nouvelle dynamique des quanta’) reflects de
Broglie’s frequent use of the word ‘quantum’ to refer to a (pointlike) particle,
an association that would be lost if the title were translated as, for example, ‘The
new quantum dynamics’ (eds.).

b On beginning this exposition, it seems right to underline that Mr Marcel Brillouin
was the true precursor of wave Mechanics, as one may realise by referring to the
following works: C. R. 168 (1919), 1318; 169 (1919), 48; 171 (1920), 1000. —
Journ. Physique 3 (1922), 65.
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of the Lorentz transformation shows that, as far as the phase is concer-
ned, in the new system the periodic phenomenon has the appearance
of a plane wave propagating in the direction of motion whose frequency
and phase velocity are

) c c

Ji—@ e

The appearance of this phase propagation with a speed superior to c,
as an immediate consequence of the theory of Relativity, is quite striking.

There exists a noteworthy relation between v and V. The formulas
giving v and V allow us in fact to define a refractive index of the
vacuum, for the waves of the material point of proper frequency vy,
by the dispersion law

One then easily shows that
1 10(nv)

v ¢ Ov

)

that is, that the velocity v of the material point is equal to the group
velocity corresponding to the dispersion law.

With the free material point being thus defined by wave quantities,
the dynamical quantities must be related back to these. Now, since the
frequency v transforms like an energy, the obvious thing to do is to
assume the quantum relation

W =hv,

a relation that is valid in all systems, and from which one derives the
undulatory definition of the proper mass mg

moc? = huy .

Let us write the function representing the wave in the system z,y, z, ¢
in the form

2
u(z,y, z,t) = f(z,y, z,t) cos %cp(x,y,z,t) :

Denoting by W and p the energy and momentum, one easily shows that
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one hasﬁ’ﬁ

W:%7 P =—grad ¢ .
ot
The function ¢ is then none other than the Jacobi functionH One
deduces from this that, in the case of uniform rectilinear motion, the
principles of least action and of Fermat are identical.
To look for a generalisation of these results, let us now assume that
the material point moving in a field derived from a potential function

F(z,y, z,t) is represented by the function

2
u(x7y7z7t) = f(x7y7 Z7t) COs %Qp(x7y7z7t) )

where ¢ is the Jacobi function of the old Dynamics. This assimilation
of the phase into the Jacobi function then leads us to assume the fol-
lowing two relations, which establish a general link between mechanical
quantities and wave quantities:

Oy . hv —
W—hl/—E, P —V——gradgo.
One then deduces that, for the waves of the new Mechanics, the space
occupied by the field has a refractive index

F\> 12
”‘V(“ﬁ) Zh

Hamilton’s equations show in addition that, here again, the velocity of

the moving body is equal to the group velocity.

These conceptions lead to an interpretation of the stability conditions
introduced by quantum theory. If, indeed, one considers a closed trajec-
tory, the phase must be a single-valued function along this curve, and
as a result one is led to write the Planck condition?

?((p ~dl)y=k-h (k integer) .

The Sommerfeld conditions for quasi-periodic motions may also be de-
rived. The phenomena of quantum stability thus appear to be analogous
to phenomena of resonance, and the appearance of whole numbers here

a These are the relativistic guidance equations of de Broglie’s early pilot-wave theory
of 1923-24, for the special case of a free particle (eds.).

b The vector ‘grad ¢’ is the vector whose components are dp/dz, Op/dy, Op/0z.

a Usually called the Hamilton-Jacobi function (eds.).

b In the case of motion of a point charge in a magnetic field, space behaves like an
anisotropic medium (see Thesis, p. 39).
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becomes as natural as in the theory of vibrating strings or plates. Ne-
vertheless, as we shall see, the interpretation that has just been recalled
still constitutes only a first approximation.

The application of the new conceptions to corpuscles of light leads to
difficulties if one considers their proper mass to be finite. One avoids
these difficulties by assuming that the properties of the corpuscles of
light are deduced from those of ordinary material points by letting the
proper mass tend to zero. The two speeds v and V then both tend to c,
and in the limit one obtains the two fundamental relations of the theory
of light quanta

hv=W, —=p,

C

with the aid of which one can account for Doppler effects, radiation
pressure, the photoelectric effect and the Compton effect.

The new wave conception of Mechanics leads to a new statistical
Mechanics, which allows us to unify the kinetic theory of gases and
the theory of blackbody radiation into a single doctrine. This statistics
coincides with that proposed independently by Mr Bose [2]; Mr Einstein
[3] has shown its scope and clarified its significance. Since then, numerous
papers [4] have developed it in various directions.

Let us add a few remarks. First, the author of this report has always
assumed that the material point occupies a well-defined position in
space. As a result, the amplitude f should contain a singularity or at
the very least have abnormally high values in a very small region. But,
in fact, the form of the amplitude plays no role in the results reviewed
above. Only the phase intervenes: hence the name phase waves originally
given to the waves of the new Mechanics.

On the other hand, the author, after having reduced the old forms
of Dynamics to geometrical Optics, realised clearly that this was only
a first stage. The existence of diffraction phenomena appeared to him
to require the construction of a new Mechanics ‘which would be to
the old Mechanics (including that of Einstein) what wave Optics is to
geometrical Optics’ly It is Mr Schrodinger who has had the merit of
definitively constructing the new doctrine.

2. The work of Mr E. Schridinger [5]. — Mr Schrodinger’s fundamental
idea seems to have been the following: the new Mechanics must begin
from wave equations, these equations being constructed in such a way

a Revue Générale des Sciences, 30 November 1924, p. 633.
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that in each case the phase of their sinusoidal solutions should be a
solution of the Jacobi equation in the approximation of geometrical
Optics.

Instead of considering waves whose amplitude contains a singularity,
Mr Schrodinger systematically looks at waves of classical type, that is to
say, waves whose amplitude is a continuous function. For him, the waves
of the new Mechanics are therefore represented by functions ¥ that one
can always write in the canonical form

27
U = —
a cos hcp,

a being a continuous function and ¢ being in the first approzimation a
solution of the Jacobi equation. We may understand the words ‘in the
first approximation’ in two different ways: first, if the conditions that
legitimate the use of geometrical Optics are realised, the phase ¢ will
obey the equation called the equation of geometrical Optics, and this
equation will have to be identical to that of Jacobi; second, one must
equally recover the Jacobi equation if one makes Planck’s constant tend
to zero, because we know in advance that the old Dynamics must then
become valid.

Let us first consider the case of the motion of a single material point
in a static field derived from the potential function F(z,y,z). In his
first Memoir Schrodinger shows that the wave equation, at least in the
approximation of Newton’s Mechanics, is in this case

87r2m0

2
It is also just this equation that one arrives at beginning from the
dispersion law noted in the first section.

Having obtained this equation, Mr Schrédinger used it to study the
quantisation of motion at the atomic scale (hydrogen atom, Planck
oscillator, etc.). He made the following fundamental observation: in the
problems considered in micromechanics, the approximations of geome-
trical Optics are no longer valid at all. As a result, the interpretation of
the quantum conditions proposed by L. de Broglie shows only that the
Bohr-Sommerfeld formulas correspond to the approximation of the old
Dynamics. To resolve the problem of quantisation rigorously, one must
therefore consider the atom as the seat of stationary waves satisfying
certain conditions. Schrodinger assumed, as is very natural, that the wa-
ve functions must be finite, single-valued and continuous over all space.
These conditions define a set of fundamental functions (Eigenfunktionen)

AV +

(E—F)U =0.
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for the amplitude, which represent the various stable states of the atomic
system being considered. The results obtained have proven that this new
quantisation method, to which Messrs Léon Brillouin, G. Wentzel and
Kramers [6] have made important contributions, is the correct one.

For Mr Schrédinger, one must look at continuous waves, that is to
say, waves whose amplitude does not have any singularities. How can
one then represent the ‘material point’? Relying on the equality of
the velocity of the moving body and the group velocity, Schrodinger
sees the material point as a group of waves (Wellenpaket?) of closely
neighbouring frequencies propagating in directions contained within the
interior of a very narrow cone. The material point would then not be
really pointlike; it would occupy a region of space that would be at
least of the order of magnitude of its wavelength. Since, in intra-atomic
phenomena, the domain where motion takes place has dimensions of the
order of the wavelengths, there the material point would no longer be
defined at all; for Mr Schrodinger, the electron in the atom is in some
sense ‘smeared out’ [‘fondu’], and one can no longer speak of its position
or velocity. This manner of conceiving of material points seems to us to
raise many difficulties; if, for example, the quantum of ultraviolet light
occupies a volume whose dimensions are of the order of its wavelength,
it is quite difficult to conceive that this quantum could be absorbed by
an atom of dimensions a thousand times smaller.

Having established the wave equation for a material point in a sta-
tic field, Mr Schrédinger then turned to the Dynamics of many-body
systems [la Dynamique des systémes]. Still limiting himself to the New-
tonian? approximation, and inspired by Hamilton’s ideas, he arrived at
the following statement: Given an isolated system whose potential energy
is F(q1,q2, .-, qn), the kinetic energy is a homogeneous quadratic form
in the momenta p; and one may write

2T = Z m* prpr
Kl

the m* being functions of the ¢. If m denotes the determinant |m
and if F is the constant of energy in the classical sense, then according
to Schrodinger one must begin with the wave equation

kl‘

L1 0 _1 00 872 B

which describes the propagation of a wave in the configuration space

a That is, nonrelativistic (eds.).
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constructed by means of the variables ¢. Setting
2w
U =aqacos—¢ ,
A ¥

and letting h tend to zero, in the limit one indeed recovers the Jacobi
equation

1 i Op Op
— m'—— L +F=F.
2; Oq* Oq'

To quantise an atomic system, one will here again determine the funda-
mental functions of the corresponding wave equation.

We cannot recall here the successes obtained by this method (papers
by Messrs Schrodinger, Fues,®> Manneback [7], etc.), but we must insist
on the difficulties of a conceptual type that it raises. Indeed let us
consider, for simplicity, a system of N material points each possessing
three degrees of freedom. The configuration space is in an essential way
formed by means of the coordinates of the points and yet Mr Schrédinger
assumes that in atomic systems material points no longer have a clearly
defined position. It seems a little paradoxical to construct a configuration
space with the coordinates of points that do not exist. Furthermore, if
the propagation of a wave in space has a clear physical meaning, it is
not the same as the propagation of a wave in the abstract configuration
space, for which the number of dimensions is determined by the number
of degrees of freedom of the system. We shall therefore have to return
later to the exact meaning of the Schrodinger equation for many-body
systems.

By a transformation of admirable ingenuity, Mr Schrodinger has shown
that the quantum Mechanics invented by Mr Heisenberg and developed
by Messrs Born, Jordan, Pauli, etc., can be translated into the language
of wave Mechanics. By comparison with Heisenberg’s matrix elements,
he was able to derive the expression for the mean charge density of the
atom from the functions ¥, an expression to which we shall return later.

The Schrodinger equations are not relativistic. For the case of a sin-
gle material point, various authors [8] have given a more general wave
equation that is in accord with the_) principle of Relativity. Let e be the
electric charge of the point, V and A the two electromagnetic potentials.
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The equation that the wave ¥, written in complex form, must satisfy isH

drie |V OW oV | 4Arr [ .4 € 5
D‘I’“LTE[EE*ZA”E%]_F[’”OC eV AD =0,

rYyz

As Mr O. Klein [9] and then the author [10] have shown, the theory of
the Universe with five dimensions allows one to give the wave equation
a more elegant form in which the imaginary terms, whose presence is
somewhat shocking for the physicist, have disappeared.

We must also make a special mention of the beautiful Memoirs in
which Mr De Donder [11] has connected the formulas of wave Mechanics
to his general theory of Einsteinian Gravity.

3. The ideas of Mr Born [12]. — Mr Born was struck by the fact that
the continuous wave functions ¥ do not allow us to say where the
particle whose motion one is studying is and, rejecting the concept of
the Wellenpaket, he considers the waves ¥ as giving only a statistical
representation of the phenomena. Mr Born seems even to abandon the
idea of the determinism of individual physical phenomena: the Quantum
Dynamics, he wrote in his letter to Nature, ‘would then be a singular
fusion of mechanics and statistics .... . A knowledge of ¥ enables us
to follow the course of a physical process in so far as it is quantum
mechanically determinate: not in a causal sense, but in a statistical one’.*

These conceptions were developed in a mathematical form by their
author, in Memoirs of fundamental interest. Here, by way of example,
is how he treats the collision of an electron and an atom. He writes the
Schrodinger equation for the electron-atom system, and he remarks that
before the collision, the wave ¥ must be expressed by the product of
the fundamental functionH representing the initial state of the atom and
the plane wave function corresponding to the uniform rectilinear motion
of the electron. During the collision, there is an interaction between the
electron and the atom, an interaction that appears in the wave equation
as the mutual potential energy term. Starting from the initial form of
W, Mr Born derives by methods of successive approximation its final
form after the collision, in the case of an elastic collision, which does not
modify the internal state of the atom, as well as in the case of an inelastic
collision, where the atom passes from one stable state to another taking
energy from or yielding it to the electron. According to Mr Born, the
a This is the complex, time-dependent Klein-Gordon equation in an external

electromagnetic field (eds.).
a That is, eigenfunction (eds.).
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final form of ¥ determines the probability that the collision may produce
this or that result.

The ideas of Mr Born seem to us to contain a great deal of truth, and
the considerations that shall now be developed show a great analogy
with them.

II. — PROBABLE MEANING OF THE CONTINUOUS WAVES ¥ [13]

4. Case of a single material point in a static field. — The body of
experimental discoveries made over forty years seems to require the idea
that matter and radiation possess an atomic structure. Nevertheless,
classical optics has with immense success described the propagation of
light by means of the concept of continuous waves and, since the work of
Mr Schrodinger, also in wave Mechanics one always considers continuous
waves which, not showing any singularities, do not allow us to define
the material point. If one does not wish to adopt the hypothesis of the
‘Wellenpaket’, whose development seems to raise difficulties, how can one
reconcile the existence of pointlike elements of energy with the success
of theories that consider the waves ¥? What link must one establish
between the corpuscles and the waves? These are the chief questions
that arise in the present state of wave Mechanics.

To try to answer this, let us begin by considering the case of a single
corpuscle carrying a charge e an_<)i moving in an electromagnetic fiel
defined by the potentials V and A. Let us suppose first that the motion
is one for which the old Mechanics (in relativistic form) is sufficient. If
we write the wave ¥ in the canonical form

2
U = —
a cos W v,

the function ¢ is then, as we have seen, the Jacobi function, and the ve-
locity of the corpuscle is defined by the formula of Einsteinian Dynamics

dp+<A
T 2Pt oA (1)
a7 — eV

We propose to assume by induction that this formula is still valid
when the old Mechanics is no longer sufficient, that is to say when
¢ is no longer a solution of the Jacobi equation!] If one accepts this
hypothesis, which appears justified by its® consequences, the formula (I)
a Here we leave aside the case where there also exists a gravitational field. Besides,

the considerations that follow extend without difficulty to that case.
b Mr De Donder assumes equation (I) as we do, but denoting by ¢ not the phase of
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completely determines the motion of the corpuscle as soon as one is
given its position at an initial instant. In other words, the function ¢,
just like the Jacobi function of which it is the generalisation, determines
a whole class of motions, and to know which of these motions is actually
described it suffices to know the initial position.

Let us now consider a whole cloud of corpuscles, identical and without
interaction, whose motions, determined by (I), correspond to the same
function ¢ but differ in the initial positions. Simple reasoning shows that
if the density of the cloud at the initial moment is equal to

Ka? (g—(f —eV) ,

where K is a constant, it will subsequently remain constantly given by
this expression. We can state this result in another form. Let us suppose
there be only a single corpuscle whose initial position we ignore; from
the preceding, the probability for its presence [sa probabilité de présence]
at a given instant in a volume dr of space will be

mdr = Ka* (%—f - eV) dr . (I1)

In brief, in our hypotheses, each wave ¥ determines a ‘class of moti-
ons’, and each one of these motions is governed by equation (I) when
one knows the initial position of the corpuscle. If one ignores this initial
position, the formula (II) gives the probability for the presence of the
corpuscle in the element of volume dr at the instant ¢. The wave ¥
then appears as both a pilot wave (Fiihrungsfeld of Mr Born) and a
probability wave. Since the motion of the corpuscle seems to us to be
strictly determined by equation (I), it does not seem to us that there
is any reason to renounce believing in the determinism of individual
physical phenomenaH and it is in this that our conceptions, which are
very similar in other respects to those of Mr Born, appear nevertheless
to differ from them markedly.

Let us remark that, if one limits oneself to the Newtonian approxima-
tion, in (I) and (II) one can replace: %—f — €V by moc?, and one obtains
the simplified forms

1 (——
V= (gradcp—i—EZ) ) ()
mo C

the wave, but the classical Jacobi function. As a result his theory and ours diverge
as soon as one leaves the domain where the old relativistic Mechanics is sufficient.
a Here, that is, of the motion of individual corpuscles.
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7 = const - a” . (IT")

There is one case where the application of the preceding ideas is done
in a remarkably clear form: when the initial motion of the corpuscles is
uniform and rectilinear in a region free of all fields. In this region, the
cloud of corpuscles we have just imagined may be represented by the

homogeneous plane wave®

27 VX
Y —aCOSFW (t— §> ;

here a is a constant, and this means that a corpuscle has the same
probability to be at any point of the cloud. The question of knowing
how this homogeneous plane wave will behave when penetrating a region
where a field is present is analogous to that of determining the form of
an initially plane light wave that penetrates a refracting medium. In
his Memoir ‘Quantenmechanik der Stossvorgénge’, Mr Born has given a
general method of successive approximation to solve this problem, and
Mr Wentzel [14] has shown that one can thus recover the Rutherford
formula for the deflection of (G-rays by a charged centre.

We shall present yet another observation on the Dynamics of the
material point such as results from equation (I): for the material point
one can always write the equations of the Dynamics of Relativity even
when the approximation of the old mechanics is not valid, on condition
that one attributes to the body a variable proper mass Mj given by the

formula
/ h? Oa
_ 2
Mo =fmi = 472¢2 q

5. The interpretation of interference. — The new Dynamics allows us
to interpret the phenomena of wave Optics in exactly the way that was
foreseen, a long time ago now, by Mr Einsteinq In the case of light, the
wave W is indeed the light wave of the classical theoriesE’H If we consider
the propagation of light in a region strewn with fixed obstacles, the

propagation of the wave U will depend on the nature and arrangement
1 O¢

of these obstacles, but the frequency ;2 will not vary (no Doppler

a Cf. chapter [ (eds.).

b We then consider ¥ as the ‘light variable’ without at all specifying the physical
meaning of this quantity.

¢ By ‘classical theories’ de Broglie seems to mean scalar wave optics. In the general
discussion (p.[508])), de Broglie states that the physical nature of ¥ for photons is
unknown (eds.).
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effect). The formulas (I) and (II) will then take the form

— ? ——

v =——grad ¢; 7= consta®.
hv

The second of these formulas shows immediately that the bright and dark
fringes predicted by the new theory will coincide with those predicted by
the old. To record the fringes, for example by photography, one can do an
experiment of short duration with intense irradiation, or an experiment
of long duration with feeble irradiation (Taylor’s experiment); in the first
case one takes a mean in space, in the second case a mean in time, but
if the light quanta do not act on each other the statistical result must
evidently be the same.

Mr Bothe [15] believed he could deduce, from certain experiments on
the Compton effect in a field of interference, the inexactitude of the first
formula written above, the one giving the velocity of the quantum, but
in our opinion this conclusion can be contested.

6. The energy-momentum tensor of the waves ¥.— In one of his Memoirs
[16], Mr Schrodinger gave the expression for the energy-momentum ten-
sor in the interior of a wave ¥ [ Following the ideas expounded here, the
wave W represents the motion of a cloud of corpuscles; examining the
expression given by Schrodinger and taking into account the relations
(I) and (II), one then perceives that it decomposes into one part giving
the energy and momentum of the particles, and another that can be
interpreted as representing a state of stress existing in the wave around
the particles. These stresses are zero in the states of motion consistent
with the old Dynamics; they characterise the new states predicted by
wave Mechanics, which thus appear as ‘constrained states’ of the ma-
terial point and are intimately related to the variability of the proper
mass My. Mr De Donder has also drawn attention to this fact, and he
was led to denote the amplitude of the waves that he considered by the
name of ‘internal stress potential’.

The existence of these stresses allows one to explain how a mirror
reflecting a beam of light suffers a radiation pressure, even though ac-
cording to equation (I), because of interference, the corpuscles of light
do not ‘strike’ its surface

7. The dynamics of many-body systems. — We must now examine how
a Cf. Schrodinger’s report, section II (eds.).
b Cf. Brillouin’s example in the discussion at the end of de Broglie’s lecture (eds.).
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these conceptions may serve to interpret the wave equation proposed by
Schrodinger for the Dynamics of many-body systems. We have pointed
out above the two difficulties that this equation raises. The first, relating
to the meaning of the variables that serve to construct the configuration
space, disappears if one assumes that the material points always have
a quite definite position. The second difficulty remains. It appears to
us certain that if one wants to physically represent the evolution of a
system of N corpuscles, one must consider the propagation of NV waves
in space, each of the IV propagations being determined by the action
of the N — 1 corpuscles connected to the other wavesB Nevertheless, if
one focusses one’s attention only on the corpuscles, one can represent
their states by a point in configuration space, and one can try to relate
the motion of this representative point to the propagation of a fictitious
wave ¥ in configuration space. It appears to us very probable that the
wav

2w
‘Ij:a(qla q2, - Qn)COS Tw(ta qi, .-+ Qn) )

a solution of the Schrédinger equation, is only a fictitious wave which,
in the Newtonian approximation, plays for the representative point of
the system in configuration space the same role of pilot wave and of
probability wave that the wave ¥ plays in ordinary space in the case of
a single material point.

Let us suppose the system to be formed of N points having for rec-
tangular coordinates

1 1 1 N N N
Ty, Tg, 'r37 vy Ly, To o, IB .

In the configuration space formed by means of these coordinates, the

representative point of the system has for [velocity| components along
k

i

the axis x
1 Jy

k= ————
3

v
my (9335c ’

x

my, being the mass of the kth corpuscle. This is the relation that replaces
(I') for many-body systems. From this, one deduces that the probability
for the presence of the representative point in the element of volume dr

a Cf. section 2] (eds.).

b The amplitude a is time-independent because de Broglie is assuming the
time-independent Schrédinger equation. Later in his report, de Broglie applies
his dynamics to a non-stationary wave function as well, for the case of an atomic
transition (eds.).
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of configuration space is
7 dr = const-a® dr .

This new relation replaces relation (II') for many-body systems. It
fully accords, it seems to us, with the results obtained by Mr Born for
the collision of an electron and an atom, and by Mr Fermi [17] for the
collision of an electron and a rotator

Contrary to what happens for a single material point, it does not
appear easy to find a wave ¥ that would define the motion of the system
taking Relativity into account.

8. The waves ¥ in micromechanics. — Many authors think it is illusory
to wonder what the position or the velocity of an electron in the atom is
at a given instant. We are, on the contrary, inclined to believe that it is
possible to attribute to the corpuscles a position and a velocity even in
atomic systems, in a way that gives a precise meaning to the variables
of configuration space.

This leads to conclusions that deserve to be emphasised. Let us consi-
der a hydrogen atom in one of its stable states. According to Schrédinger,
in spherical coordinate@ the corresponding function ¥, is of the form

in 2
U,, = F(r,0)[Acos ma + Bsin ma] S %Wnt (m integer)
cos
with
212mge’
_ 2 0
Wn =mmoc” = —gpa—

If we then apply our formula (I'), we conclude that the electron is mo-
tionless in the atom, a conclusion which would evidently be inadmissible
in the old Mechanics. However, the examination of various questions
and notably of the Zeeman effect has led us to believe that, in its stable
states, the H atom must rather be represented by the function

2 h
‘Iln:F(r,H)cos—W Wnt—m—a ,
h 2

which, being a linear combination of expressions of the type written

a Cf. the remarks by Born and Brillouin in the discussion at the end of de Broglie’s
lecture, and the de Broglie-Pauli encounter in the general discussion at the end of
the conference (pp.B0J ff.) (eds.).

b r, radius vector; 0, latitude; «, longitude.
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above, is equally acceptableH If this is true the electron will have, from
(I'), a uniform circular motion of speed

1 mh
mor 2m

It will then be motionless only in states where m = 0.
Generally speaking, the states of the atom at a given instant can
always be represented by a function

U=> ", ,

the ¥,, being Schrodinger’s Eigenfunktionen. In particular, the state of
transition ¢ — j during which the atom emits the frequency v;; would
be given by (this appears to be in keeping with Schrédinger’s ideas)

U =cqV, + Cj\IJj s

c¢; and c¢; being two functions of time that change very slowly compared
with the trigonometric factors of the ¥,,, the first varying from 1 to 0
and the second from 0 to 1 during the transition. Writing the function
U in the canonical form a cos %’Tgo, which is always possible, formula (I')
will give the velocity of the electron during the transition, if one assumes
the initial position to be given. So it does not seem to be impossible to
arrive in this way at a visual representation of the transition

Let us now consider an ensemble of hydrogen atoms that are all in the
same state represented by the same function

U= ch\yn

The position of the electron in each atom is unknown to us, but if, in our
imagination, we superpose all these atoms, we obtain a mean atom where
the probability for the presence of one of the electrons in an element of
volume dr will be given by the formula (II)E K being determined by
the fact that the total probability for all the possible positions must be

a In his memoir, ‘Les moments de rotation et le magnétisme dans la mécanique
ondulatoire’ (Journal de Physique 8 (1927), 74), Mr Léon Brillouin has implicitly
assumed the hypothesis that we formulate in the text.

a In this example, de Broglie is applying his dynamics to a case where the wave
function ¥ has a time-dependent amplitude a (eds.).

b In this section on atomic physics (‘micromechanics’) de Broglie considers the
non-relativistic approximation, using the limiting formula (I') — except in this
paragraph where he reverts to the relativistic formulas (I) and (II), for the purpose
of comparison with the relativistic formulas for charge and current density obtained
by other authors (eds.).
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equal to unity. The charge density p and the current density 7 =pv
in the mean atom are then, from (I) and (II),

0
p = Kead? (a—f —eV> )
T = —Kec?a® (grad o+ EZ’)
c

and these formulas coincide, apart from notation, with those of Messrs
Gordon, Schrédinger and O. Klein [18].

Limiting ourselves to the Newtonian approximation, and for a moment
denoting by ¥ the wave written in complex form, and by ¥ the conjugate
function, it follows that

p = const-a® = const- W .

This is the formula to which Mr Schrodinger was led in reformulating
the matrix theory; it shows that the electric dipole moment of the mean
atom during the transition ¢ — j contains a term of frequency v;;, and
thus allows us to interpret Bohr’s frequency relation.

Today it appears certain that one can predict the mean energy radia-
ted by an atom by using the Maxwell-Lorentz equations, on condition
that one introduces in these equations the mean quantities p and p©
which have just been defined[3 One can thus give the correspondence
principle an entirely precise meaning, as Mr Debye [19] has in fact shown
in the particular case of motion with one degree of freedom. It seems
indeed that classical electromagnetism can from now on retain only a
statistical value; this is an important fact, whose meaning one will have
to try to explore more deeply.

To study the interaction of radiation with an ensemble of atoms, it
is rather natural to consider a ‘mean atom’, immersed in a ‘mean light’
which one defines by a homogeneous plane wave of the vector potential.
The density p of the mean atom is perturbed by the action of the
light and one deduces from this the scattered radiation. This method,
which gives good mean predictions, is related more or less directly to
the theories of scattering by Messrs Schrodinger and Klein [20], to the
theory of the Compton effect by Messrs Gordon and Schrodinger [21],
and to the Memoirs of Mr Wentzel [22] on the photoelectric effect and
the Compton effect, etc. The scope of this report does not permit us to
dwell any further on this interesting work.

a Cf. Schrodinger’s report, p.[A54] and the ensuing discussion, and section 5] (eds.).
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9. Conclusions and remarks. — So far we have considered the corpuscles
as ‘exterior’ to the wave W, their motion being only determined by the
propagation of the wave. This is, no doubt, only a provisional point
of view: a true theory of the atomic structure of matter and radiation
should, it seems to us, incorporate the corpuscles in the wave phenome-
non by considering singular solutions of the wave equations. One should
then show that there exists a correspondence between the singular waves
and the waves ¥, such that the motion of the singularities is connected
to the propagation of the waves ¥ by the relation (I)H In the case of no
[external] field, this correspondence is easily established, but it is not so
in the general case.

We have seen that the quantities p and pv" appearing in the Maxwell-
Lorentz equations must be calculated in terms of the functions ¥, but
that does not suffice to establish a deep link between the electromagnetic
quantities and those of wave Mechanics. To establish this linkfy one
should probably begin with singular waves, for Mr Schrodinger has very
rightly remarked that the potentials appearing in the wave equations are
those that result from the discontinuous structure of electricity and not
those that could be deduced from the functions W.

Finally, we point out that Messrs Uhlenbeck and Goudsmit’s hypothe-
sis of the magnetic electron, so necessary to explain a great number of
phenomena, has not yet found its place in the scope of wave Mechanics.

III. — EXPERIMENTS SHOWING PRELIMINARY DIRECT EVIDENCE FOR
THE NEW DYNAMICS OF THE ELECTRON

10. Phenomena whose existence is suggested by the new conceptions. —
The ideas that have just been presented lead one to consider the motion
of an electron as guided by the propagation of a certain wave. In ma-
ny usual cases, the old Mechanics remains entirely adequate as a first
approximation; but our new point of view, as Elsasser” [23| pointed out
already in 1925, necessarily raises the following question: ‘Could one not
observe electron motions that the old Mechanics would be incapable of
predicting, and which would therefore be characteristic of wave Mecha-
nics? In other words, for electrons, could one not find the analogue of
the phenomena of diffraction and interference?ﬁ
a Cf. section Z3T] (eds.).
a The few attempts made till now in this direction, notably by Mr Bateman (Nature
118 (1926), 839) and by the author (Ondes et mouvements, Chap. VIII, and C. R.

184 (1927), 81) can hardly be regarded as satisfactory.
b This is not a quotation: these words do not appear in the cited 1925 paper by
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These new phenomena, if they exist, must depend on the wavelength
of the wave associated with the electron motion. For an electron of speed
v, the fundamental formula

gives

p mov

Y _h I
1%

If 8 is not too close to 1, it suffices to write

A= ——.
mov

Let V be the potential difference, expressed in volts, that is capable of
imparting the speed v to the electron; numerically, for the wavelength
in centimetres, one will hav

A= 1B _125gs
v VvV

To do precise experiments, it is necessary to use electrons of at least
a few volts: from which one has an upper limit for X of a few angstroms.
One then sees that, even for slow electrons, the phenomena being sought
are analogous to those shown by X-rays and not to those of ordinary
light. As a result, it will be difficult to observe the diffraction of a
beam of electrons by a small opening, and if one wishes to have some
chance of obtaining diffraction by a grating, one must either consider
those natural three-dimensional gratings, the crystals, or use ordinary
gratings under a very grazing incidence, as has been done recently for
X-rays. On making slow electrons pass through a crystalline powder or
an amorphous substance, one could also hope to notice the appearance of
rings analogous to those that have been obtained and interpreted in the
X-ray domain by Messrs Hull, Debye and Scherrer, Debierne, Keesom
and De Smedst, etc.

The exact theoretical prediction of the phenomena to be observed

Elsasser. Further, it was de Broglie who first suggested electron diffraction, in a

paper of 1923 (see section [Z2.T]) (eds.).
a Here we have adopted the following values:

h = 6.55 x 10727 erg-seconds ,
mo=9x10"28 gr,

e=4.77T%x 109 esu. .
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along these lines is still not very advanced. Let us consider the diffraction
of a beam of electrons with the same velocity by a crystal; the wave ¥
will propagate following the general equation, in which one has to insert
the potentials created by the atoms of the crystal considered as centres of
force. One does not know the exact expression for these potentials but,
because of the regular distribution of atoms in the crystal, one easily
realises that the scattered amplitude will show maxima in the directions
predicted by Mr von Laue’s theory. Because of the role of pilot wave
played by the wave ¥, one must then observe a selective scattering of
the electrons in these directions.

Using his methods, Mr Born has studied another problem: that of the
collision of a narrow beam of electrons with an atom. According to him,
the curve giving the number of electrons that have suffered an inelastic
collision as a function of the scattering angle must show maxima and
minima; in other words, these electrons will display rings on a screen
placed normally to the continuation of the incident beam.

It would still be premature to speak of agreement between theory
and experiment; nevertheless, we shall present experiments that have
revealed phenomena showing at least broadly the predicted character.

11. Ezperiments by Mr E.G. Dymond [24]. — Without feeling obliged
to follow the chronological order, we shall first present Mr Dymond’s
experiments:

A flask of purified helium contained an ‘electron gun’, which consisted
of a brass tube containing an incandescent filament of tungsten and in
whose end a slit was cut. This gun discharged a well-collimated beam
of electrons into the gas, with a speed determined by the potential
difference (50 to 400 volts) established between the filament and the wall
of the tube. The wall of the flask had a slit through which the electrons
could enter a chamber where the pressure was kept low by pumping and
where, by curving their trajectories, a magnetic field brought them onto
a Faraday cylinder.

Mr Dymond first kept the orientation of the gun fixed and measured
the speed of the electrons thus scattered by a given angle. He noticed
that most of the scattered electrons have the same energy as the primary
electrons; they have therefore suffered an elastic collision. Quite a large
number of electrons have a lower speed corresponding to an energy loss
from about 20 to 55 volts: this shows that they made the He atom pass
from the normal state 11S to the excited state 21S. One also observes a
lower proportion of other values for the energy of the scattered electrons;
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we shall not discuss the interpretation that Mr Dymond has given them,
because what interests us most here is the variation of the number of
scattered particles with the scattering angle 6. To determine this number,
Mr Dymond varied the orientation of the gun inside the flask, and for
different scattering angles collected the electrons that suffered an energy
loss equivalent to 20 to 55 volts; he constructed a series of curves of the
angular distribution of these electrons for different values of the tension
V applied to the electron gun. The angular distribution curve shows
a very pronounced maximum for a low value of #, and this maximum
appears to approach 8 = 0 for increasing values of V.

Another, less important, maximum appears towards § = 50° for a
primary energy of about a hundred volts, and then moves for increasing
values of V towards increasing 6. Finally, a very sharp maximum appears
for a primary energy of about 200 volts at § = 30°, and then seems
independent of V. These facts are summarised in the following table
given by Dymond:®

V (volts) Positions of the maxima (°)
48.9 24 —
72.3 8 — —
97.5 ) — 30
195 <25 30 59
294 <25 30 69
400 <25 30 70

The above results must very probably be interpreted with the aid
of the new Mechanics and are to be related to Mr Born’s predictions.
Nevertheless, as Mr Dymond very rightly says, ‘the theoretical side of
the problem is however not yet sufficiently advanced to give detailed
information on the phenomena to be expected, so that the results above
reported cannot be said to substantiate the wave mechanics except in
the most general way’.”

12. Ezperiments by Messrs C. Davisson and L. H. Germer. — In 1923,
Messrs Davisson and Kunsman [25] published peculiar results on the
scattering of electrons at low speed. They directed a beam of electrons,
accelerated by a potential difference of less than 1000 volts, onto a block
of platinum at an incidence of 45° and determined the distribution
of scattered electrons by collecting them in a Faraday cylinder. For
potentials above 200 volts, one observed a steady decrease in scattering
for increasing values of the deviation angle, but for smaller voltages
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the curve of angular variation showed two maxima. By covering the
platinum with a deposit of magnesium, one obtained a single small
maximum for electrons of less than 150 volts. Messrs Davisson and
Kunsman attributed the observed phenomena to the action of various
layers of intra-atomic electrons on the incident electrons, but it seems
rather, according to Elsasser’s opinion, that the interpretation of these
phenomena is a matter for the new Mechanics.

Resuming analogous experiments with Mr Germer [26], Mr Davisson
obtained very important results this year, which appear to confirm the
general predictions and even the formulas of Wave Mechanics.

The two American physicists sent homogeneous beams of electrons
onto a crystal of nickel, cut following one of the 111 faces of the regular
octahedron (nickel is a cubic crystal). The incidence being normal, the
phenomenon necessarily had to show the ternary symmetry around the
direction of the incident beam. In a cubic crystal cut in this manner,
the face of entry is cut obliquely by three series of 111 planes, three
series of 100 planes, and six series of 110 planes. If one takes as positive
orientation of the normals to these series of planes the one forming an
acute angle with the face of entry, then these normals, together with the
direction of incidence, determine distinguished azimuths, which Messrs
Davisson and Germer call azimuths (111), (100), (110), and for which
they studied the scattering; because of the ternary symmetry, it evidently
suffices to explore a single azimuth of each type.

Let us place ourselves at one of the distinguished azimuths and let
us consider only the distribution of Ni atoms on the face of entry of
the crystal, which we assume to be perfect. These atoms form lines per-
pendicular to the azimuth being considered and whose equidistance d is
known from crystallographic data. The different directions of scattering
being identified in the azimuthal plane by the angle 6 of co-latitude, the
waves scattered by the atoms in the face of entry must be in phase in
directions such that one has

6 = arcsin (n_)\> = arcsin (E% . 108> (n integer) .
d d y
One must then expect to observe maxima in these directions, for the
scattering of the electrons by the crystal.

Now here is what Messrs Davisson and Germer observed. By gradually
varying the voltage V that accelerates the electrons one observes, in the
neighbourhood of certain values of V, very distinct scattering maxima
in directions whose co-latitude is accurately given by the above formula
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(provided one sets in general n = 1, and sometimes n = 2). There is
direct numerical confirmation of the formulas of the new Dynamics; this
is evidently a result of the highest importance.

However, the explanation of the phenomenon is not complete: one
must explain why the scattering maxima are observed only in the neigh-
bourhood of certain particular values of V, and not for all values of V.
One interpretation naturally comes to mind: we assumed above that only
the face of entry of the crystal played a role, but one can assume that
the electron wave penetrates somewhat into the crystal and, further,
in reality the face of entry will never be perfect and will be formed by
several parallel 111 planes forming steps. In these conditions, it is not
sufficient to consider the interference of the waves scattered by a single
reticular plane at the surface, one must take into account the interference
of the waves scattered by several parallel reticular planes. In order for
there to be a strong scattering in a direction 8, # and V must then satisfy
not only the relation written above, but also another relation which is
easy to find; the scattering must then be selective, that is to say, occur
with [significant] intensity only for certain values of V, as experiment
shows. Of course, the theory that has just been outlined is a special case
of Laue’s general theory.

Unfortunately, as Messrs Davisson and Germer have themselves re-
marked, in order to obtain an exact prediction of the facts in this way,
it is necessary to attribute to the separation of the 111 planes next to
the face of entry a smaller value (of about 30%) than that provided by
Crystallography and by direct measurements by means of X-rays. It is
moreover not unreasonable to assume that the very superficial reticular
planes have a spacing different from those of the deeper planes, and one
can even try to connect this idea to our current conceptions concerning
the equilibrium of crystalline gratings.

If one accepts the preceding hypothesis, the scattering must be produ-
ced by a very small number of reticular planes in the entirely superficial
layer of the crystal; the concentration of electrons in preferred directions
must then be much less pronounced than in the case of scattering by a
whole unlimited spatial grating. Is it nevertheless sufficient in order to
explain the ‘peaks’ observed by Davisson and Germer? To this question,
Mr Patterson has recently provided an affirmative answer, by showing
that the involvement of just two superficial reticular planes already
suffices to predict exactly the variations of the selective reflection of
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electrons observed in the neighbourhood of
# =50°, V¥V =>54volts.

To conclude, we can do no better than quote the conclusion of Mr
Patterson [27]: ‘The agreement of these results with calculation seems
to indicate that the phenomenon can be explained as a diffraction of
waves in the outermost layers of the crystal surface. It also appears
[....] that a complete analysis of the results of such experiments will give
valuable information as to the conditions prevailing in the actual surface,
and that a new method has been made available for the investigation of
the structure of crystals in a region which has up to the present almost

completely escaped observation’.!?

13. Experiments by Messrs G. P. Thomson and A. Reid [28]. — Very
recently, Messrs Thomson and Reid have made the following results
known: if a narrow pencil of homogeneous cathode rays passes normally
through a celluloid film, and is then received on a photographic plate
placed parallel to the film at 10 cm behind it, one observes rings around
the central spot. With rays of 13000 volts, a photometric examination
has revealed the existence of three rings. By gradually increasing the
energy of the electrons, one sees the rings appear around 2500 volts,
and they have been observed up to 16 500 volts. The radii of the rings
decrease when the energy increases and, it seems, approximately in
inverse proportion to the speed, that is, to our wavelength A.

These observations are very interesting, and again confirm the new
conceptions in broad outline. Is it a question here of an atomic pheno-
menon analogous to those observed by Dymond, or else of a phenomenon
of mutual interference falling into one of the categories studied by Debye
and Scherrer, Hull, Debierne, Keesom and De Smedt? We are unable to
say, and we limit ourselves to remarking that here the electrons used are
relatively fast; this is interesting from the experimental point of view,
because it is much easier to study electrons of a few thousand volts than
electrons of about a hundred volts.
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Discussion of Mr de Broglie’s report

MR LORENTZ. — I should like to see clearly how, in the first form of
your theory, you recovered Sommerfeld’s quantisation conditions. You
obtained a single condition, applicable only to the case where the orbit
is closed: the wave must, after travelling along the orbit, finish in phase
when it comes back to the initial point. But in most cases the trajectory
is not closed; this happens, for example, for the hydrogen atom when
one takes relativity into account; the trajectory is then a rosette, and
never comes back to its initial point.

How did you find the quantisation conditions applicable to these mul-
tiperiodic problems?

MR DE BROGLIE. — The difficulty is resolved by considering pseudo-
periods, as I pointed out in my Thesis (chap. III, p. 41). When a system
is multiperiodic, with partial periods 71, 7o, ..., T, one can prove that
one can find quasi-periods 7 that are nearly exactly whole multiples of
the partial periods:

T =M1T1 + €1 = MaTo +E2... = MpTyp +Ep

the mj, ma, ..., m, being integers and the ¢, €2, ..., €, as small as
one likes. The trajectory then never comes back to its initial point, but
at the end of a quasi-period 7 it comes back as closely as one likes to
the initial position. One will then be led to write that, at the end of a
quasi-period, the wave finishes in phase; now, there is an infinite number
of quasi-periods, corresponding to all kinds of systems of values of the
integers my, ma, ..., my. In order that the wave finishes in phase after
any one of these quasi-periods, it is necessary that one have!!

/ pidqy = nih, / p2dqe = n2h , ..., / Pndqn = nph
T1 T2 Tn

which gives exactly Sommerfeld’s conditionsH

MR BORN. — The definition of the trajectory of a particle that Mr
de Broglie has given seems to me to present difficulties in the case of
a collision between an electron and an atom. In an elastic collision, the
speed of the particle must be the same after the collision as before. I

a Darrigol (1993, pp. 342-3, 364-5) shows that this derivation is faulty: the condition
that the wave should finish in phase after any quasi-period does not imply the n
separate conditions listed above.
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should like to ask Mr de Broglie if that follows from his formula.
MR DE BROGLIE. — That follows from it, indeed.

MR BRILLOUIN. — It seems to me that no serious objection can be
made to the point of view of L. de Broglie. Mr Born can doubt the
real existence of the trajectories calculated by L. de Broglie, and assert
that one will never be able to observe them, but he cannot prove to us
that these trajectories do not exist. There is no contradiction between
the point of view of L. de Broglie and that of other authors, since, in
his report (§8, p. B8&'?2) L. de Broglie shows us that his formulad are
in exact agreement with those of Gordon, at present accepted by all
physicists.

MR PauLi. — I should like to make a small remark on what seems to
me to be the mathematical basis of Mr de Broglie’s viewpoint concerning
particles in motion on definite trajectories. His conception is based on
the principle of conservation of charge:

dp 0s1  0sa  0Oss 0sy,
Z

o T or Ty T 0 FrRi (2)

which is a consequence of the wave equation, when one sets
o™ oY  Amie

YA Sk T q>
8;1% 8;1% + h 1/)1/}

Mr de Broglie introduces, in place of the complex function ), the two
real functions a and ¢ defined by

isp =1

27 27i

v=ae ¥ Y =ae h ¥,

Substituting these expressions into the expression for sy yields:

dr o ( 0p e
P o A ¥
k= ((%ck + c k)

From this follow the expressions given by Mr de Broglie for the velocity
vector, defined by
vlzs_lv ’0228_2; U3:S_3' (b)

Now if in a field theory there exists a conservation principle of the

a That is, de Broglie’s equations for the mean charge and current density to be used
in semiclassical radiation theory (eds.).
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form (a), it is always formally possible to introduce a velocity vector
(b), depending on space and time, and to imagine furthermore corpuscles
that move following the current lines of this vector. Something similar
was already proposed in optics by Slater; according to him, light quanta
should always move following the lines of the Poynting vector. Mr de
Broglie now introduces an analogous representation for material par-
ticles.

In any case, I do not believe that this representation may be developed
in a satisfactory manner; I intend to return to this during the general
discussion

MR SCHRODINGER. — If I have properly understood Mr de Broglie,
the welocity of the particles must have its analogue in a vector field
composed of the three spatial components of the current in a four-
dimensional space, after division of these by the component with respect
to time (that is, the charge density). I should like simply to recall now
that there exist still other vector quantities of a field, which can be made
to correspond with the velocity of the particles, such as the components
of the momentum density (see Ann. d. Phys.'3 82, 265). Which of the
two analogies is the more convincing?

MR KRAMERS. — The fact that with independent particles in motion
one cannot construct an energy-momentum tensor having the properties
required by Maxwell’s theory constitutes nevertheless a difficulty.

MR PAULI. — The quotient of the momentum by the energy densi-
ty which Mr Schrodinger considers would in fact lead in a relativistic
calculation to other particle trajectories than would the quotient of the
densities of current and of charge.

MR LORENTZ. — In using his formulas for the velocity of the electron,
has Mr de Broglie not calculated this velocity in particular cases, for
example for the hydrogen atom?

MR DE BROGLIE. — When one applies the formula for the velocity

to a wave function representing a stable state of the hydrogen atom
according to Mr Schrodinger, one finds circular orbits. One does not

a See pp.[BOJ . (eds.).
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recover the elliptical orbits of the old theory (see my report, §8).

MR EHRENFEST. — Can the speed of an electron in a stationary orbit
be zero?

MR DE BROGLIE. — Yes, the speed of the electron can be zero.

MR SCHRODINGER. — Mr de Broglie says that in the case of the
hydrogen atom his hypothesis leads to circular orbits. That is true for
the particular solutions of the wave equation that one obtains when one
separates the problem in polar coordinates in space; perhaps it is still
true for the solutions that one obtains by making use of parabolic or
elliptical coordinates. But in the case of a degeneracy (as he considers
it here) it is, in reality, not at all the particular solutions which have
a significance, but only an arbitrary linear combination, with constant
coefficients, of all the particular solutions belonging to the same eigenva-
lue, because there is no means of distinguishing between them, all linear
combinations being equally justified in principle. In these conditions,
much more complicated types of orbit will certainly appear. But I do
not believe that in the atomic domain one may still speak of ‘orbits’.

MR LORENTZ. — Does one know of such more complicated orbits?

MR SCHRODINGER. — No, one does not know of them; but I simply
wanted to say that if one finds circular orbits, that is due to a fortuitous
choice of particular solutions that one considers, and this choice cannot
be motivated in a way that has no arbitrariness.

MR BRILLOUIN. — Perhaps it is not superfluous to give some examp-
les that illustrate well the meaning of Mr L. de Broglie’s formulas, and
that allow one to follow the motion of the particles guided by the phase
wave. If the wave is plane and propagates freely, the trajectories of the
particles are the rays normal to the wave surface. Let us suppose that the
wave is reflected by a plane mirror, and let 6 be the angle of incidence;
the wave motion in front of the mirror is given by a superposition of the
incident wave

t xsinf — zcosf
= op [~ 227 208
11 = aj cos 7T<T \ )
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and the reflected wave

t rsinf + zcosf
= M| == —
1/12 a1 Ccos ( \ ) R

which gives

A T A

This wave is put in L. de Broglie’s canonical form

2 0 t in6
¢:2alcoswcos27r (__:Esm ) .

27
1 = acos 4

with

27wz cos 6 t xsind
=2 _— d =h|=-— .
a a1 oS 3 and ¢ ( T 3 )
Let us then apply L. de Broglie’s formulas, in the simplified form given
on page 384 (§5);'* and let us suppose that it is a light wave guiding the
photons; the velocity of these is

02—>

= —ngadgp .

—
v

We see that the projectiles move parallel to the mirror, with a speed
vy = csinf, less than c¢. Their energy remains equal to hvr, because
their mass has undergone a variation, according to the following formula
(report by L. de Broglie, p. B83):'°

2 Ba_ b | Qa_ hm
O 4r2¢2 ¢ 27e a 2 '
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Mirror

Fig. 2.

The mass of the photons, which is zero in the case where the wave
propagates freely, is then assumed to take a non-zero value in the whole
region where there is interference or deviation of the wave.

Let us draw a diagram for the case of a limited beam of light falling on
a plane mirror; the interference is produced in the region of overlap of two
beams. The trajectory of a photon will be as follows: at first a rectilinear
path in the incident beam, then a bending at the edge of the interference
zone, then a rectilinear path parallel to the mirror, with the photon
travelling in a bright fringe and avoiding the dark interference fringes;
then, when it comes out, the photon retreats following the direction of
the reflected light beam.

No photon actually strikes the mirror, nevertheless the mirror suffers
classical radiation pressure; it is in order to explain this fact that L. de
Broglie assumes the existence of special stresses in the interference zone;
these stresses, when added to the tensor of momentum flux transported
by the photons, reproduce the classical Maxwell tensor; there is then
no difference in the mechanical effects produced by the wave during its
reflection by the mirror.

These remarks show how L. de Broglie’s system of hypotheses pre-
serves the classical formulas, and avoids a certain number of awkward
paradoxes. One thus obtains, for example, the solution to a curious
problem posed by G. N. Lewis (Proc. Nat. Acad. 12 (1926), 22 and
439), which was the subject of discussions between this author and R.
C. Tolman and S. Smith (Proc. Nat. Acad. 12 (1926), 343 and 508).

Lewis assumed that the photons always follow the path of a light
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ray of geometrical optics, but that they choose, among the different
rays, only those that lead from the luminous source to a bright fringe
situated on an absorbing body. He then considered a source S whose
light is reflected by two mirrors AA~ and BB “; the light beams overlap,
producing interference [zones| in which one places a screen CD; the
dimensions are assumed to be such that there is a bright fringe on one
of the edges D of the screen and a dark fringe on the other edge C.
Following the hypothesis of Lewis, the photons would follow only the
paths SBD and SAD, which end at the bright fringe D; no photon will
take the path SA“C or SB"C. All the photons come to strike the mirror
AA "’ on the edge A, so one could predict that this mirror would suffer a
torque; if one made it movable around an axis O, it would tend to turn
in the direction of the arrow.

This paradoxical conclusion is entirely avoided by L. de Broglie, since
his system of hypotheses preserves the values of radiation pressure.
This example shows clearly that there is a contradiction between the
hypothesis of rectilinear paths for the photons (following the light rays)
and the necessity of finding photons only where a bright interference
fringe is produced, no photon going through the regions of dark fringes.

MR LORENTZ draws attention to a case where the classical theory
and the photon hypothesis lead to different results concerning the pon-
deromotive forces produced by light. Let us consider reflection by the
hypotenuse face of a glass prism, the angle of incidence being larger than
the angle of total reflection. Let us place a'® second prism behind the
first, at a distance of the order of magnitude of the wavelength, or only
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a fraction of this length. Then, the reflection will no longer be total.
The light waves that penetrate the layer of air reach the second prism
before their intensity is too much weakened, and there give rise to a
beam transmitted in the direction of the incident rays.

If, now, one calculates the Maxwell stresses on a plane situated in
the layer of air and parallel to its surfaces, one finds that, if the angle
of incidence exceeds a certain value (60° for example), there will be an
attraction between the two prisms. Such an effect can never be produced
by the motion of corpuscles, this motion always giving rise to a [positive]
pressure as in the kinetic theory of gases.

What is more, in the classical theory one easily sees the origin of the
‘negative pressure’. One can distinguish two cases, that where the electric
oscillations are in the plane of incidence and that where this is so for the
magnetic oscillations. If the incidence is very oblique, the oscillations of
the incident beam that I have just mentioned are only slightly inclined
with respect to the normal to the hypotenuse face, and the same is true
for the corresponding oscillations in the layer of air.

One then has approximately, in the first case an electric field such as
one finds between the electrodes of a capacitor, and in the second case
a magnetic field such as exists between two opposite magnetic poles.

The effect would still remain if the second prism were replaced by a
glass plate, but it must be very difficult to demonstrate this experimen-
tally.
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Notes to the translation

The integral sign is printed as ‘fo’ in the original.

The French uses ‘Wellenpacket’ throughout.

Mis-spelt as ‘Fuess’.

We follow the original English, which is a translation by Oppenheimer,
from Born (1927, p. 355). De Broglie translates 'mechanics’ as
‘dynamique’ and includes the words ‘La Dynamique des Quanta’ in the
quotation, where Born has ‘it’ (referring to ‘quantum mechanics’).

The French reads ‘ces’ [these| rather than ‘ses’ [its].

‘v’ is misprinted as ‘V’.

Consistently mis-spelt throughout the text as ‘Elsaesser’.

For clarity, the presentation of the table has been slightly altered.

We have used the original English (Dymond 1927, p. 441).

We use here the original English text (Patterson 1927, p. 47). De Broglie
changes ‘of these results’ to ‘des résultats expérimentaux’, omits the
italics and translates ‘valuable’ by ‘exacts’.

The last equality is misprinted as ‘an Prdq = nphy’.

The original reads ‘p. 18’, which is presumably in reference to de
Broglie’s Gauthier-Villars ‘preprint’, in all likelihood circulated before the
conference (preprints of other lectures were circulated as mimeographs).
Cf. chapter [ p. 19

‘Ann. de Phys.” in the original.

This is ‘p. 117’ in the original.

Again, ‘p. 117’ in the original.

Misprinted as ‘au’ instead of ‘un’.



Quantum mechanics®

BY MESSRS MaX BORN AND WERNER HEISENBERG

INTRODUCTION

Quantum mechanics is based on the intuition that the essential difference
between atomic physics and classical physics is the occurrence of discon-
tinuities (see in particular [1,4,58*63])@ Quantum mechanics should thus
be considered a direct continuation of the quantum theory founded by
Planck, Einstein and Bohr. Bohr in particular stressed repeatedly, alrea-
dy before the birth of quantum mechanics, that the discontinuities must
lead to the introduction of new kinematical and mechanical concepts, so
that indeed classical mechanics and its corresponding conceptual scheme
should be abandoned [1,4]. Quantum mechanics tries to introduce the
new concepts through a precise analysis of what is ‘observable in princi-
ple’. In fact, this does not mean setting up the principle that a sharp di-
vision between ‘observable’ and ‘unobservable’ quantities is possible and
necessary. As soon as a conceptual scheme is given, one can infer from
the observations to other facts that are actually not observable directly,
and the boundary between ‘observable’ and ‘unobservable’! quantities
becomes altogether indeterminate. But if the conceptual scheme itself is
still unknown, it will be expedient to enquire only about the observations
themselves, without drawing conclusions from them, because otherwise
wrong concepts and prejudices taken over from before will block the way

a Our translation follows the German typescript in AHQP-RDN, document M-0309.
Discrepancies between the typescript and the published version are reported in the
endnotes. The published version is reprinted in Heisenberg (1984, ser. B, vol. 2,
pp. 58-99) (eds.).

b Numbers in square brackets refer to the bibliography at the end.

407
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to recognising the physical relationships [Zusammenhénge]. At the same
time the new conceptual scheme provides the anschaulich content of the
new theoryld From a theory that is anschaulich in this sense, one can
thus demand only that it is consistent in itself and that it allows one to
predict unambiguously the results for all experiments conceivable in its
domain. Quantum mechanics is meant as a theory that is in this sense
anschaulich and complete for the micromechanical processes [46].2

Two kinds of discontinuities are characteristic of atomic physics: the
existence of corpuscles (electrons, light quanta) on the one hand, and
the occurrence of discrete stationary states (discrete® energy values,
momentum values etc.) on the other. Both kinds of discontinuities can
be introduced in the classical theory only through artificial auxiliary as-
sumptions. For quantum mechanics, the existence of discrete stationary
states and energy values is just as natural as the existence of discrete
eigenoscillations in a classical oscillation problem [4]. The existence of
corpuscles will perhaps later turn out to be reducible just as easily to
discrete stationary states of the wave processes (quantisation of the
electromagnetic waves on the one hand, and of the de Broglie waves
on the other) [4], [54].

The discontinuities, as the notion of ‘transition probabilities’ already
shows, introduce a statistical element into atomic physics. This stati-
stical element forms an essential part of the foundations of quantum
mechanics (see in particular [4,30,38,39,46,60,61,62|);* according to the
latter, for instance, in many cases the course of an experiment is de-
terminable from the initial conditions only statistically, at least if in
fixing the initial conditions one takes into account only the experiments
conceivable in principle up to now. This consequence of quantum mecha-
nics is empirically testable. Despite its statistical character, the theory
nevertheless accounts for the apparently fully causal determination of
macroscopic® processes. In particular, the principles of conservation of
energy and momentum hold exactly also in quantum mechanics. There
seems thus to be no empirical argument against accepting fundamental
indeterminism for the microcosm.

a For the notion of Anschaulichkeit, see the comments in sections [3.4.7] and B3]
(eds.).
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I. — THE MATHEMATICAL METHODS OF QUANTUM MECHANIC@

The phenomenon for whose study the mathematical formalism of quantum
mechanics was first developed is the spontaneous radiation of an excited
atom. After innumerable attempts to explain the structure of the line
spectra with classical mechanical models had proved inadequate, one
returned to the direct description of the phenomenon on the basis of
its simplest empirical laws (Heisenberg [1]). First among these is Ritz’s
combination principle, according to which the frequency of each spectral
line of an atom appears as the difference of two terms v, = T; — Tk;
thus the set of all lines of the atom will be best described by specifying
a quadratic array [Schemal, and since each line possesses besides its
frequency also an intensity and a phase, one will write in each position
of the array an elementary oscillation function with complex amplitude:

2mivyt 627”7/1275

qi1€
g21€

q12 . N
QQ2627”V22t . . (].)

2mivayt

This array is understood as representing a coordinate g as a function of
time in a similar way as the totality of terms of the Fourier series

q(t) =D e, vy =nwy
n

in the classical theory; except that now because of the two indices the
sum no longer makes sense. The question arises of which expressions
correspond to functions of the classical coordinate, for instance to the
square ¢2. Now, such arrays ordered by two indices occur as matrices in
mathematics in the theory of quadratic forms and of linear transforma-
tions; the composition of two linear transformations,

TR = g aryl Y= g bz,
l J
to form a new one,
T = E CkjZj
J
then corresponds to the composition or multiplication of the matrices

ab = C, that iS, Z aklblj = Ckj - (2)
l

a Section [B.3] contains additional material on the less familiar aspects of the
formalisms presented here (eds.).
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This multiplication in general is not commutative. It is natural to apply
this recipe to the array of the atomic oscillations (Born and Jordan
[2], Dirac [3]); it is immediately evident that because of Ritz’s formula
vik = T; — Tk no new frequencies appear, just as in the classical theory
in the multiplication of two Fourier series, and herein lies the first ju-
stification for the procedure. By repeated application of additions and
multiplications one can define arbitrary matrix functions.

The analogy with the classical theory leads further to allowing as
representatives of real quantities only those matrices that are ‘Hermiti-
an’, that is, whose elements go over to the complex conjugate numbers
under permutation of the indices. The discontinuous nature of the ato-
mic processes here is put into the theory from the start as empirically
established. However, this does not establish yet the connection with
quantum theory and its characteristic constant k. This is also achieved,
by carrying over the content® of the Bohr-Sommerfeld quantum condi-
tions in a form given by Kuhn and Thomas, in which they are written
as relations between the Fourier coefficients of the coordinates ¢ and
momenta p. In this way one obtains the matrix equation

h
—gp= — -1
pg—ap=g5—-1, (3)

where 1 means the unit matrix. The matrix p thus does not ‘commute’
with ¢. For several degrees of freedom the commutation relation (B]) holds
for every pair of conjugate quantities, while the ¢, commute with each
other, the p; with each other, and also the py with the non-corresponding
dk-

In order to construct the new mechanics (Born, Heisenberg and Jordan
[4]), one carries over as far as possible the notions of the classical theory.
It is possible to define the differentiation of a matrix with respect to
time and that of a matrix function with respect to an argument matrix.
One can thus carry over to the matrix theory the canonical equations

dq OH dp  OH

dt— dp°  dt  dq°
where one should understand H (p, ¢) as the same function of the matri-
ces p, g that occurs in the classical theory as a function of the numbers
p,q. (To be sure,” ambiguity can occur because of the noncommutati-
vity of the multiplication; for example, p?q is different from pgp.) This
procedure was tested in simple examples (harmonic and anharmonic
oscillator). Further, one can prove the theorem of conservation of ener-
gy, which for non-degenerate systems (all terms T}, different from each
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other, or: all frequencies v;;, different from zero) here takes the form: for
the solutions p, ¢ of the canonical equations the Hamiltonian function
H(p, q) becomes a diagonal matrix W. It follows immediately that the
elements of this diagonal matrix represent the terms T, of Ritz’s formula
multiplied by h (Bohr’s frequency condition). It is particularly important
to realise that conversely the requirement

H(p,q) =W (diagonal matrix)

is a complete substitute for the canonical equations of motion, and leads
to unambiguously determined solutions even if one allows for degenera-
cies (equality of terms, vanishing frequencies).

By a matrix with elements that are harmonic functions of time, one
can of course represent only quantities (coordinates) that correspond to
time-periodic quantities of the classical theory. Therefore cyclic coordi-
nates (angles), which increase proportionally to time, cannot be treated
at presentEI Nevertheless, one easily manages to subject rotating systems
to the matrix method by representing the Cartesian components of the
angular momentum with matrices [4].% One obtains thereby expressions
for the energyﬁ that differ characteristically from the corresponding
classical ones; for instance the modulus® of the total angular momentum
is not equal to %j (j =0,1,2,...), but to % j(j + 1), in accordance
with empirical rules that Landé and others had derived from the term
splitting in the Zeeman effectE Further, one obtains for the changes
in the angular quantum numbers [Rotationsquantenzahlen] the correct
selection rules and intensity formulas, as had already been arrived at
earlier by correspondence arguments and confirmed by the Utrecht ob-
servations

Pauli [6], avoiding angular variables, even managed to work out the
hydrogen atom with matrix mechanics, at least with regard to the energy
values and some aspects of the intensities.

Asking for the most general coordinates for which the quantum me-
chanical laws are valid leads to the generalisation of the notions of cano-
nical variables and canonical transformations known from the classical
theory. Dirac [3] has noted that the content of the expressions such as

a This point is taken up again shortly after eq. ([I0). (eds.).

b Angular momentum is of course responsible for a characteristic splitting of the
energy terms (eds.).

¢ For Landé’s work on the anomalous Zeeman effect, see Mehra and Rechenberg
(1982a, sec. IV .4, esp. pp. 467-76 and 482-5) (eds.).

d For the ‘Utrecht observations’ see Mehra and Rechenberg (1982a, sec. VI.6,
pp. 647-8) and Mehra and Rechenberg (1982b, sec. IIL.4, esp. pp. 154-61) (eds.).
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%(pkql — qipk) — 01, which appear in the commutation relations of the

type @) corresponds'? to that of the Poisson brackets, whose vanishing
in classical mechanics characterises a system of variables as canonical.
Therefore also in quantum mechanics one will denote as canonical every
system of matrix pairs p, ¢ that satisfy the commutation relations, and
as a canonical transformation every transformation that leaves these
relations invariant. One can write these with the help of an arbitrary
matrix S in the for

P=S""pS, Q=5"¢5, (4)

and in a certain sense this is the most general canonical transformation.
Then for an arbitrary function one has

F(P.Q)=8""f(p,a)S .

Now one can also carry over the main idea of the Hamilton-Jacobi theory
[4]. Indeed, if the Hamiltonian function H is given as a function of any
known canonical matrices pog, gy, then the solution of the mechanical
problem defined by H reduces to finding a matrix S that satisfies the
equation

S~ H(po,q0)S =W . (5)

This is an analogue of the Hamilton-Jacobi differential equation of clas-
sical mechanics.

Exactly as there, also here perturbation theory can be treated most
clearly with the help of equation (B)). If H is given as a power series in
some small parameter

H=H0+)\H1+)\2H2+...

and the mechanical problem is solved for A = 0, that is, Hy = Wy is
known as a diagonal matrix, then the solution to (B) can be obtained
easily as a power series

S =1+MNS1 4+ A28 +...

by successive approximations. Among the numerous applications of this
procedure, only the derivation of Kramers’ dispersion formula shall be
mentioned here, which results if one assumes that the light-emitting
and the scattering systems are weakly coupled and if one calculates the
perturbation on the latter ignoring the backreaction [4]E|

a Cf. p.[@9 above (eds.).
a In other words, one considers just the scattering system under an external
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The theory of the canonical transformations leads to a deeper concep-
tion, which later became essential in understanding the physical meaning
of the formalism.

To each matrix a = (anm,) one can associate a quadratic (more preci-
sely: Hermitian) for

§ anm(pn@m

nm
of a sequence of variables @1, s ..., or also a linear transformation of
the sequence of variables 1, @5 ..., into another one 1y, 5 .. .1

U)n = Z Apm®Pm (6)

where provisionally the meaning of the variables ¢,, and 1, shall be left
unspecified; we shall return to this.
A transformation (@) is called ‘orthogonal’ if it maps the identity form

into itself

Now these orthogonal transformations of the auxiliary variables ¢, im-
mediately turn out to be essentially identical to the canonical trans-
formations of the ¢ and p matrices; the Hermitian character and the
commutation relations are preserved. Further, one can replace the matrix
equation (&) by the equivalent requirement [4]: the form

Z Hnm(q07p0)(pn¢7m

is to be transformed orthogonally into a sum of squares
n

The fundamental problem of mechanics is thus none other than the
principal axes problem for surfaces of second order in infinite-dimensional
space, occurring everywhere in pure and applied mathematics and va-
riously studied. As is well known, this is equivalent to asking for the
values of the parameter W for which the linear equations

perturbation (Born, Heisenberg and Jotrdan [4], section 2.4, in particular eq. (32)).
See also Mehra and Rechenberg (1982c, ch. III, esp. pp. 93—4 and 103-9) (eds.).
a ¢ denotes the complex number conjugate to .
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have a non-identically vanishing solution. The values W = Wi, Wa, ...
are called eigenvalues of the form H; they are the energy values (terms)
of the mechanical system. To each eigenvalue W, corresponds an eigenso-
lution p = i, A The set of these eigensolutions evidently again forms a
matrix and it is easy to see that this is identical with the transformation
matrix S appearing in (&)

The eigenvalues, as is well known, are invariant under orthogonal
transformations of the ¢,'2 and since these correspond to the canonical
substitutions of the p and ¢ matrices, one recognises immediately the
canonical invariance of the energy values W,.

While the quantum theoretical matrices do not belong to the class of
matrices (finite and bounded infinite!?) investigated by the mathemati-
cians (especially by Hilbert and his school), one can nevertheless carry
over the main aspects of the known theory to the more general case.
The precise formulation of these theorems'* has been recently given by
J. von Neumann [42] in a paper to which we shall have to return.®

The most important result that is achieved in this way is the theorem
that a form cannot always be decomposed into a sum of squares (8)), but
that there also occur invariant integral components

/ W (W))W | (10)

where the sequence of variables 11,5, ... has to be complemented by
the continuous distribution ) (W).

In this way the continuous spectra appear in the theory in the most
natural way. But this implies by no means that in this domain the
classical theory comes again into its own. Also here the characteristic dis-
continuities of quantum theory remain; also in the continuous spectrum
a (spontaneous) state transition consists of a ‘jump’ of the system from
a point W’ to another one W’ with emission of a wave q(W, W')e?ivt
with the frequency v = + (W' — W").

The main defect of matrix mechanics consists in its clumsiness, even
helplessness, in the treatment of non-periodic quantities, such as angular
variables or coordinates that attain infinitely large values (e.g. hyperbolic
trajectories). To overcome this difficulty two essentially different routes
have been taken, the operator calculus of Born and Wiener [21], and the
so-called'® g-number theory of Dirac [7].

a This is the notation used by Born and Heisenberg: the nth eigensolution is
represented by an infinite vector with components labelled by k (eds.).

b This point is made more explicit after eq. (7). See also the relevant contributions
by Dirac and by Kramers in the general discussion, pp. [@91] and [95] (eds.).
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The latter starts from the idea that a great part of the matrix relati-
ons can be obtained without an explicit representation of the matrices,
simply on the basis of the rules for operating with the matrix symbols.
These depart from the rules for numbers only in that the multiplication is
generally not commutative. Dirac therefore considers abstract quantities,
which he calls g-numbers (as opposed to the ordinary c-numbers) and
with which he operates according to the rules of the noncommutative
algebra. It is therefore a kind of hypercomplex number system. The
commutation relations are of course preserved. The theory acquires an
extraordinary resemblance to the classical one; for instance, one can
introduce angle and action variables w, J and expand any g-number into
a Fourier series with respect to the w; the coefficients are functions of the
J and turn out to be identical to the matrix elements if one replaces the J
by integer multiples of h. By his method Dirac has achieved important
results, for instance worked out the hydrogen atom independently of
Pauli [7] and determined the intensity of radiation in the Compton effect
[12]. A drawback of this formalism — apart from the quite tiresome
dealing with the noncommutative algebra — is the necessity to replace
at a certain point of the calculation certain g-numbers with ordinary
numbers (e.g. J = hn), in order to obtain results comparable with
experiment. Special ‘quantum conditions’ which had disappeared from
matrix mechanics are thus needed again.

The operator calculus differs from the g-number method in that it does
not introduce abstract hypercomplex numbers, but concrete, construc-
tible mathematical objects that obey the same laws, namely operators
or functions in the space of infinitely many variables. The method is by
Eckart [22] and was then developed further by many others following on
from Schrédinger’s wave mechanics, especially by Dirac [38] and Jordan
[39] and in an impeccable mathematical form by J. von Neumann [42];
it rests roughly on the following idea.

A sequence of variables 1, @9,... can be interpreted as a point in
an infinite-dimensional space. If the sum of squares Y, [y, |
then it represents a measure of distance, a Euclidean metric [Massbe-
stimmung], in this space; this metric space of infinitely many dimensions
is called for short a Hilbert space. The canonical transformations of
matrix mechanics correspond thus to the rotations of the Hilbert space.
Now, however, one can also fix a point in this space other than by
the specification of discrete coordinates @1, a,... . Take for instance

a complete, normalised orthogonal system of functions f1(q), f2(q),- - ,

converges,
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that is one for which!?

1 forn=m

/fn(Q)fm(q)dq = bpm = { 0 fornZm: (11)

the variable ¢ can range here over an arbitrary, also multi-dimensional
domain. If one then sets (Lanczos [23])!®

(q) = 2nenfn(@) 12)
H(qlv q”) = an Hnmfn(q/)fm (q”) )
the linear equations (@)'° turn into the integral equation?®
Wel(q') = /H(q’, q")e(q")dq" . (13)

This relation established through (I2)) means thus nothing but a change
of the coordinate system in the Hilbert space, given by the orthogonal
transformation matrix f,,(¢) with one discrete and one continuous index.

One sees thus that the preference for ‘discrete’ coordinate systems
in the original version of the matrix theory is by no means something
essential. One can just as well use ‘continuous matrices’ such as H(¢', ¢").
Indeed, the specific representation of a point in the Hilbert space by
projection onto certain orthogonal coordinate axes does not matter at
all; rather, one can summarise equations (@) and (I3) in the more general
equation

We=Hp, (14)

where H denotes a linear operator which transforms the point ¢ of the
Hilbert space into another. The equation requires to find those points
@ which under the operation H only suffer a displacement along the
line joining them to the origin.?! The points satisfying this condition
determine an orthogonal system of axes, the principal axes frame of
the operator H; the number of axes is finite or infinite, in the latter
case distributed discretely or continuously, and the eigenvalues W are
the lengths of the principal axes. The linear operators in the Hilbert
space are thus the general concept that can serve to represent a physical
quantity mathematically. The calculus with operators proceeds obvious-
ly according to the same rules as the one with Dirac’s g-numbers; they??
constitute a realisation of this abstract notion. So far we have analysed
the situation with the example of the Hamiltonian function, but the
same holds for any quantum mechanical quantity. Any coordinate ¢
can be written, instead of as a matrix with discrete indices ¢, also
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as a function of two continuous variables ¢(¢’, ¢"’) by projection onto an
orthogonal system of functions, or, more generally, can also be considered
as a linear operator in the Hilbert space; then it has eigenvalues that are
invariant, and eigensolutions with respect to each orthogonal coordinate
system. The same holds for a momentum p and every function of ¢
and p, indeed for every quantum mechanical ‘quantity’. While in the
classical theory physical quantities are represented by variables that can
take numerical values from an arbitrary value range, a physical quantity
in quantum theory is represented by a linear operator and the stock of
values that it can take by the eigenvalues of the corresponding principal
axes problem in the Hilbert space.

In this view, Schrodinger’s wave mechanics [24] appears formally as a
special case. The simplest operator whose characteristic values are all the
real numbers, is in fact the multiplication of a function F'(¢q) by the real
number ¢; one writes it simply ¢g. Then, however, the eigenfunctions are
‘improper’ functions; for according to (I4) they must have the property
of being everywhere zero except if W = ¢. Dirac [38] has introduced for
the representation of such improper functions the ‘unit function’ §(s),
which should always be zero when s # 0, but for which nonetheless
fjoo d(s)ds = 1 should hold. Then one can write down the (normalised)

o0
eigenfunctions

(g, W) = qo(W — q) (15)

belonging to the operator g.
The conjugate to the operator ¢ is the differential operator

h 0

= %8_q ) (16)

p
indeed, the commutation relation (3] holds, which means just the trivial
identity

h d dF h
(pg — qp)F(q) = i {d_q(q]:) _qd_q} = %}-(Q) .

If one now constructs a Hamiltonian function out of p,q (or out of
several such conjugate pairs), then equation ([I4) becomes a differential
equation for the quantity ¢(q):

h 0
H(q,=——=— = : 1
(4: 5 aq)w(Q) We(q) (17)

This is Schrédinger’s wave equation, which appears here as a special case
of the operator theory. The most important point about this formulation
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of the quantum laws (apart from the great advantage of connecting
to known mathematical methods) is the replacement of all ‘quantum
conditions’, such as were still necessary in Dirac’s theory of g-numbers,
by the simple requirement that the eigenfunction ¢(q) = ¢(q, W) should
be everywhere finite in the domain of definition of the variables g;
from this, in the event, a discontinuous spectrum of eigenvalues W,
(along with continuous ones) arises automatically. But Schrodinger’s
eigenfunction (g, W) is actually nothing but the transformation matrix
S of equation (&), which one can indeed also write in the form

HS =5W

analogous to (I7).

Dirac [38] has made this state of affairs even clearer by writing the
operators ¢ and p and thereby also H as integral operators, as in ([I3));
then one has to set

qaF(q) = / "0(¢ —q")F(¢")dq" = JF4),
h h dF (18)
/ _ ! /_ Vi Vi 1’ —
pF(d) = / a0 — VP =

where, however, the occurrence of the derivative of the singular function
0 has to be taken into the bargain. Then Schrédinger’s equation (I7)
takes the form (I3)).

The direct passage to the matrix representation in the strict sense
takes place by inverting the formulas ([I2), in which one identifies the
orthogonal system f,,(g) with the eigenfunctions (g, W,,) belonging to
the discrete spectrum. If T is an arbitrary operator (constructed from ¢

and p = % 8%), define the corresponding matrix 7}, by the coefficients
of the expansion
Ton(q) = Y Tumem(q) (19)
or
Tom = / em(a)Tpn(q)dg ; (19a)

then one easily sees that equation () is equivalent to ().

The further development of the formal theory has taken place in close
connection with its physical interpretation, to which we therefore turn
first.
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II. — PHYSICAL INTERPRETATION

The most noticeable defect of the original matrix mechanics consists in
the fact that at first it appears to give information not about actual
phenomena, but rather only about possible states and processes. It
allows one to calculate the possible stationary states of a system; further
it makes a statement about the nature of the harmonic oscillation that
can manifest itself as a light wave in a quantum jump. But it says nothing
about when a given state is present, or when a change is to be expected.
The reason for this is clear: matrix mechanics deals only with closed
periodic systems, and in these there are indeed no changes. In order to

23 as long as one remains in the domain of matrix

have true processes,
mechanics, one must direct one’s attention to a part of the system; this is
no longer closed and enters into interaction with the rest of the system.
The question is what matrix mechanics can tell us about this.

Imagine, for instance, two systems 1 and 2 weakly coupled to each
other (Heisenberg [35], Jordan [36])E| For the total system conservation
of energy then holds; that is, H is a diagonal matrix. But for a subsystem,
for instance 1, H) is not constant, the matrix has elements off the
diagonal.?* The energy exchange can now be interpreted in two ways: for
one, the periodic elements of the matrix of H® (or of H®) represent
a slow beating, a continuous oscillation of the energy to and fro; but
at the same time, one can also describe the process with the concepts
of the discontinuum theory and say that system 1 performs quantum
jumps and carries over the energy that is thereby freed to system 2 as
quanta, and vice versa. But one can now show that these two apparently
very different views do not contradict each other at all. This rests on a
mathematical theorem that states the following:

Let f (W,gl)) be any function of the energy values W,(Il) of the isolated
subsystem 1; if one forms the same function of the matrix H() that
represents the energy of system 1 in the presence of the coupling to
system 2, then f(H(l)) is a matrix that does not consist only of diagonal
elements f(H™),,,. But these represent the time-averaged value of the
quantity f(H™). The effect of the coupling is thus measured by the
difference®®

5 = fHM)n = F(WV) .
The first part of the said theorem now states that ¢f, can be brought

a The form of the result as given here is similar to that in Heisenberg [35]. For
further details, see the discussion in section B:4.4] (eds.).
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into the form?

This can be interpreted thus: the time average of the change in f due
to the coupling is the arithmetic mean, with certain weightings ®,,,,, of
all possible jumps of f for the isolated system.

These ®,,.,, will have to be called ‘transition probabilities’. The second
part of the theorem determines the ®,,,, through the features of the
coupling. Namely, if p{, ¢?, pJ, ¢3 are coordinates satisfying the evolution
equations of the uncoupled systems, for which therefore H®) and H®
on their own are diagonal matrices, one can then think of the energy,
including the interaction, as expressed as a function of these quantities.
Then the solution of the mechanical problem according to (&)%7 reduces
to constructing a matrix S that satisfies the equation

S_IH(p(l)uq?upgqu)S = W :

Denoting the states of system 1 by nq, those of system 2 by no, a state of
the total system is given by n; 12,28 and to each transition niny — mims
corresponds an element of S, Sy, n, mims- Then the result is:?9

Prym, = Z |Sn1n2,m1m2|2 : (21)

namsa

The squares of the elements of the S-matrix thus determine the tran-
sition probabilities. The individual sum term |Sy,n, mym,|> in ZI) ob-
viously means that component of the transition probability for the jump
n1 — my of system 1 that is induced by the jump ny — msy of system 2.

By means of these results the contradiction between the two views
from which we started is removed. Indeed, for the mean values, which
alone may be observed, the conception of continuous beating always
leads to the same result as the conception of quantum jumps.

If one asks the question when a quantum jump occurs, the theory
provides no answer. At first it seemed as if there were a gap here which
might be filled with further probing. But soon it became apparent that
this is not so, rather, that it is a failure of principle, which is deeply
anchored in the nature of the possibility of physical knowledge [physi-
kalisches Erkenntnisvermogen)].

One sees that quantum mechanics yields mean values correctly, but
cannot predict the occurrence of an individual event. Thus determinism,
held so far to be the foundation of the exact natural sciences, appears
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here to go no longer unchallenged. Each further advance in the interpre-
tation of the formulas has shown that the system of quantum mechanical
formulas can be interpreted consistently only from the point of view of a
fundamental indeterminism, but also, at the same time, that the totality
of empirically ascertainable facts can be reproduced by the system of the
theory.

In fact, almost all observations in the field of atomic physics have a
statistical character; they are countings, for instance of atoms in a certain
state. While the determinateness of an individual process is assumed
by classical physics, in fact it plays practically no role, because the
microcoordinates that exactly determine an atomic process can never all
be given; therefore by averaging they are eliminated from the formulas,
which thereby become statistical statements. It has become apparent
that quantum mechanics represents a merging of mechanics and stati-
stics, in which the unobservable microcoordinates are eliminated.

The clumsiness of the matrix theory in the description of processes
developing in time can be avoided by making use of the more general
30 we have described above. In the general equation (I4)
one can easily introduce time explicitly by invoking the theorem of
classical mechanics that energy W and time t behave as canonically
conjugate quantities; in quantum mechanics it corresponds to having a

formalisms

commutation relation

h
Wt—tW =—.
27
Thus for W one can posit the operator %%. Equation ([I4) then reads
h Op
— T _H 22
2mi Ot v (22)

and here one can consider H as depending explicitly on time. A special
case of this is the equation

h 0 h 0
{05 0) ~ 37 | 900 =0 (222)

given by Schrédinger [24],3! which stands to (I7) in the same relation
as (22)) to (I4)), as well as the form:

h 8@(‘]/) 7/ ron AW
5o = | H(dd)eld")dd" (22b)

much used by Dirac, which relates to the integral formula (I3]). Essential-
ly, the introduction of time as a numerical variable reduces to thinking of
the system under consideration as coupled to another one and neglecting
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the reaction on the latter. But this formalism is very convenient and leads

to a further development of the statistical viewH namely, if one considers

the case where an explicitly time-dependent perturbation V' (¢) is added

to a time-independent energy function HY, so that one has the equation

h O¢

2mi Ot

(Dirac [37], Born [34]).32 Now if ¥ are the eigenfunctions of the operator

HPY, which for the sake of simplicity we assume to be discrete, the desired
quantity ¢ can be expanded in terms of these:

ot) = 3 calt)h (24)

n

={H " +V({t)}¢ (23)

The ¢, (t) are then the coordinates of ¢ in the Hilbert space with respect
to the orthogonal system ¢?; they can be calculated from the differential
equation (23), if their initial values ¢, (0) are given. The result can be
expressed as:

n(t) =3 Snm(t)em(0) (25)

where S,,,,,(t) is an orthogonal matrix depending® on ¢ and determined
by V (¢).

The temporal process is thus represented by a rotation of the Hilbert
space or by a canonical transformation () with the time-dependent
matrix S.

Now how is one to interpret this?

From the point of view of Bohr’s theory a system can always be
in only one quantum state. To each of these belongs an eigensolution
©% of the unperturbed system. If now one wishes to calculate what
happens to a system that is initially in a certain state, say the kth,
one has to choose p = ¢} as the initial condition for equation (23, i.e.
cn(0) = 0 for n # k, and ¢;(0) = 1. But then, after the perturbation is
over, ¢, (t) will have become equal to S, (t), and the solution consists
of a superposition of eigensolutions. According to Bohr’s principles it
makes no sense to say a system is simultaneously in several states. The
only possible interpretation seems to be statistical: the superposition
of several eigensolutions expresses that through the perturbation the
initial state can go over to any other quantum state, and it is clear that
as measure for the transition probability one has to take the quantity

(I)nk = |Snk(t)|2 ;

a See the discussion in section B4 (eds.).
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because then one obtains again equation (20) for the average change of
any state function.

This interpretation is supported by the fact that one establishes the
validity of Ehrenfest’s adiabatic theorem (Born [34]); one can show that
under an infinitely slow action, one has

D — 1, D, — 0 (n7£k)7

that is, the probability of a jump tends to zero.

But this assumption also leads immediately to an interpretation of the
cn(t) themselves: the |c,(¢)|*> must be the state probabilities [Zustands-
wahrscheinlichkeiten].

Here, however, one runs into a difficulty of principle that is of great
importance, as soon as one starts from an initial state for which not all
the ¢,(0) except one vanish. Physically, this case occurs if a system is
given for which one does not know exactly the quantum state in which
it is, but knows only the probability |c,(0)[?
As a matter of fact, the phases [Arcus] of the complex quantities ¢, (0)
still remain indefinite; if one sets ¢, (0) = |c,(0)[e?", then the 7,, denote
some phases whose meaning needs to be established. The probability
distribution at the end of the perturbation according to (25)) is then

for each quantum state.

2

ea® = | S Sum(B)enm(0) (26)

and not

Z|Snm(t)|2|cm(0)|2 ’ (27)

as one might suppose from the usual probability calculus.

Formula (28], following Pauli, can be called the theorem of the in-
terference of probabilities; its deeper meaning has become clear only
through the wave mechanics of de Broglie and Schrodinger, which we
shall presently discuss. Before this, however, it should be noted that
this ‘interference’ does not represent a contradiction with the rules of
the probability calculus, that is, with the assumption that the |S,|?
are quite usual probabilitiesH In fact, the composition rule (27) follows
from the concept of probability for the problem treated here when and
only when the relative number, that is, the probability |c,|? of the atoms
in the state n, has been established beforehand experimentally.®* In this

a The notation |Snm|? would probably be clearer, at least according to the reading
of this passage proposed in section [3:4.6] (eds.).
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case the phases ,, are unknown in principle,® so that (28] then naturally
goes over to (27) 46

It should be noted further that the formula (28) goes over to the
expression (27) if the perturbation function proceeds totally irregularly
as a function of time. That is for instance the case when the perturbation
is produced by ‘white light’H Then, on average, the surplus terms in
26) drop out and one obtains (27). In this way it is easy to derive
the Einstein coefficient B,,, for the probability per unit radiation of the
quantum jumps induced by light absorption (Dirac [37], Born [30]). But,
in general, according to (26) the knowledge of the probabilities |c,(0)|?
is by no means sufficient to calculate the course of the perturbation,
rather one has to know also the phases ~,,.

This circumstance recalls vividly the behaviour of light in interference
phenomena. The intensity of illumination on a screen is by no means
always equal to the sum of the light intensities of the individual beams
of rays that impinge on the screen, or, as one can well say, it is by no
means equal to the sum of the light quanta that move in the individual
beams; instead it depends essentially on the phases of the waves. Thus
at this point an analogy between the quantum mechanics of corpuscles
and the wave theory of light becomes apparent.

As a matter of fact this connection was found by de Broglie in a
quite different way. It is not our purpose to discuss this. It is enough
to formulate the result of de Broglie’s considerations, and their further
development by Schrédinger, and to put it in relation to quantum me-
chanics.

The dual nature of light — waves, light quanta — corresponds to
the analogous dual nature of material particles; these also behave in a
certain respect like waves. Schrédinger has set up the laws of propagation
of these waves [24] and has arrived at equation |(I7)],% here derived in a
different way. His view, however, that these waves exhaust the essence of
matter and that particles are nothing but wave packets, not only stands
in contradiction with the principles of Bohr’s empirically very well-
founded theory, but also leads to impossible conclusions; here therefore
it shall be left to one side. Instead we attribute a dual nature to matter
also: its description requires both corpuscles (discontinuities) and waves
(continuous processes). From the viewpoint of the statistical approach to
quantum mechanics it is now clear why these can be reconciled: the waves
are probability waves. Indeed, it is not the probabilities themselves,

a Compare also Born’s discussion in Born (1926¢ [34]) (eds.).



Quantum mechanics 425

rather certain ‘probability amplitudes’ that propagate continuously and
obey differential or integral equations, as in classical continuum physics;
but additionally there are discontinuities, corpuscles whose frequency is
governed by the square of these amplitudes.

The most definite support for this conception is given by collision phe-
nomena for material particles (Born [30]). Already Einstein [16], when he
deduced from de Broglie’s daring theory the possibility of ‘diffraction’
of material particlesﬁ tacitly assumed that it is the particle number
that is determined by the intensity of the waves. The same occurs in
the interpretation given by Elsasser [17] of the experiments by Davisson
and Kunsman [18,19] on the reflection of electrons by crystals; also here
one assumes directly that the number of electrons is a maximum in the
diffraction maxima. The same holds for Dymond’s [20] experiments on
the diffraction of electrons by helium atoms.

The application of wave mechanics to the calculation of collision pro-
cesses takes a form quite analogous to the theory of diffraction of light
by small particles. One has to find the solution to Schrédinger’s wave
equation (I7) that goes over at infinity to a given incident plane wave;
this solution behaves everywhere at infinity like an outgoing®” spherical
wave. The intensity of this spherical wave in any direction compared to
the intensity of the incoming wave determines the relative number of
particles deflected in this direction from a parallel ray. As a measure of
the intensity one has to take a ‘current vector’>® which can be construc-
ted from the solution (g, W), and which is formed quite analogously
to the Poynting vector of the electromagnetic theory of light, and which
measures the number of particles crossing a unit surface in unit time.

In this way Wentzel [31] and Oppenheimer [32] have derived wave
mechanically the famous Rutherford law for the scattering of a-particles
by heavy nuclei

If one wishes to calculate the probabilities of excitation and ionisation
of atoms [30], then one must introduce the coordinates of the atomic
electrons as variables on an equal footing with those of the colliding
electron. The waves then propagate no longer in three-dimensional space
but in multi-dimensional configuration space. From this one sees that the
quantum mechanical waves are indeed something quite different from the
light waves of the classical theory.

a Note that the first prediction of such diffraction appears in fact to have been made
by de Broglie in 1923; cf. section 2.2.1] (eds.).
b Cf. Born (1969, Appendix XX). The current vector, as defined there, is the usual

= o g (W VY — YY) (eds.).
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If one constructs the current vector just defined for a solution of the
generalised Schrodinger equation (22), which describes time evolution,
one sees that the time derivative of the integral

/lequ’ :

ranging over an arbitrary domain of the independent numerical variables
q', can be transformed into the surface integral of the current vector over
the boundary of that domain. From this it emerges that

lop|?

has to be interpreted as particle density or, better, as probability density.
The solution ¢ itself is called ‘probability amplitude’.

The amplitude p(q’, W’) belonging to a stationary state thus yields via
lo(q', W")|? the probability that for given energy W’ the coordinate ¢’ is
in some given element dq’.3° But this can be generalised immediately. In
fact, ©(q¢’, W') is the projection of the principal axis W' of the operator
H onto the principal axis ¢ of the operator ¢. One can therefore say
in general (Jordan [39]): if two physical quantities are given by the
operators ¢ and @ and if one knows the principal axes of the former, for
instance, according to magnitude and direction,*® then from the equation

Qe(d, Q") =Q'v(d, Q)
one can determine the principal axes Q' of Q' and their projections
©(q', Q") on the axes of . Then |¢(¢, Q")|?dq’ is the probability that for
given @’ the value of ¢’ falls in a given interval dq’.

If conversely one imagines the principal axes of @ as given, then
those of ¢ are obtained*? through the inverse rotation; from this one
easily recognises that ¢(Q’, ¢’) is the corresponding amplitude,*? so that
lo(Q',q')|?dQ" means the probability, given ¢/, to find the value of Q’

in dQ@’. If for instance one takes for () the operator p = %8%’ then one
has the equation

h ey

2mi Oq’ ’
thus

o=Cetar (28)

This is therefore the probability amplitude for a pair of conjugate quan-
tities. For the probability density one obtains |p|? = C, that is, for given
q' every value p’ is equally probable.
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This is an important result, since it allows one to retain the concept
of ‘conjugate quantity’ even in the case where the differential definition
fails, namely when the quantity ¢ has only a discrete spectrum or even
when it is only capable of taking finitely many values. The latter for
instance is the case for angles with quantised direction [richtungsgequan-
telte Winkel]H say for the magnetic electron, or in the Stern-Gerlach
experiments. One can then, as Jordan does, call by definition a quantity
p conjugate to ¢, if the corresponding probability amplitude has the
expression (28)).

As the amplitudes are the elements of the rotation matrix of one
orthogonal system into another, they are composed according to the
matrix rule:

o(d, Q) = / b B Q)dp (20)

in the case of discrete spectra, instead of the integral one has finite
or infinite sums. This is the general formulation of the theorem of the
interference of probabilities. As an application, let us look again at
formula (24). Here c¢,(t) was the amplitude for the probability that
the system at time t has energy W,; ¢V (¢') is the amplitude for the
probability that for given energy W, the coordinate ¢’ has a given value.
Thus

o(d' 1) = en(t)oh(q)

expresses the amplitude for the probability that ¢’ at time ¢ has a given
value.

Alongside the concept of the relative state probability |o(¢’, Q")|?, the-
re also occurs the concept of the transition probability,** namely, every
time one considers a system as depending on an external parameter,
be it time or any property of a weakly coupled external system. Then
the system of principal axes of any quantity becomes dependent on this
parameter; it experiences a rotation, represented by an orthogonal trans-
formation S(¢’, ¢""), in which the parameter enters (as in formula (25]).
The quantities |S(q’, ¢"")|? are the ‘transition probabilities’;*® in general,
however, they are not independent, instead the ‘transition amplitudes’
are composed according to the interference rule.

a This was a standard term referring to the fact that in the presence of an external
magnetic field, the projection of the angular momentum in the direction of the
field has to be quantised (quantum number m). Therefore, the direction of the
angular momentum with respect to the magnetic field can be said to be quantised.
Cf. Born (1969, p. 121) (eds.).
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III. — FORMULATION OF THE PRINCIPLES AND DELIMITATION OF
THEIR SCOPE

After the general concepts of the theory have been developed through
analysis of empirical findings, the dual task arises, first of giving a
system of principles as simple as possible and connected directly to
the observations, from which the entire theory can be deduced as from
a mathematical system of axioms, and second of critically scrutinising
experience to assure oneself that no observation conceivable by today’s
means stands in contradiction to the principles.

Jordan [39] has formulated such a ‘system of axioms’, which takes the
following statements as fundamental:46

1) One requires for each pair of quantum mechanical quantities ¢, @ the
existence of a probability amplitude ¢(q’,Q’), such that |¢|? gives the
probability*” that for given Q' the value of ¢’ falls in a given infinitesimal
interval.

2) Upon permutation of ¢ and @, the corresponding amplitude should

be o(Q', ).
3) The theorem (29) of the composition of probability amplitudes.

4) To each quantity ¢ there should belong a canonically conjugate one p,
defined by the amplitude (28)). This is the only place where the quantum

constant h appears.*®

Finally one also takes as obvious that, if the quantities ¢ and @ are
identical, the amplitude ¢(¢’,¢") becomes equal to the ‘unit matrix’
0(q¢' —¢"), that is, always to zero, except when ¢’ = ¢”. This assumption
and the multiplication theorem 3) together characterise the amplitudes
thus defined as the coefficients of an orthogonal transformation; one
obtains the orthogonality conditions simply by stating that the compo-
sition of the amplitude belonging to ¢, @ with that belonging to @, q
must yield the identity.

One can then reduce all given quantities, including the operators, to
amplitudes by writing them as integral operators as in formula (I3]).
The noncommutative operator multiplication is then a consequence of
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the axioms and loses all the strangeness attached to it in the original
matrix theory.

Dirac’s method [38] is completely equivalent to Jordan’s formulation,
except in that he does not arrange the principles in axiomatic form

This theory now indeed summarises all of quantum mechanics in a
system in which the simple concept of the calculable probability [bere-
chenbare Wahrscheinlichkeit]* for a given event plays the main role.*°
It also has some shortcomings, however. One formal shortcoming is the
occurrence of improper functions, like the Dirac §, which one needs for
the representation of the unit matrix for continuous ranges of variables.
More serious is the circumstance that the amplitudes are not directly
measurable quantities, rather, only the squares of their moduli; the phase
factors are indeed essential for how different phenomena are connected
[fiir den Zusammenhang der verschiedenen Erscheinungen wesentlich],
but are only indirectly determinable, exactly as phases in optics are
deduced indirectly by combining measurements of intensity. It is, howe-
ver, a tried and proven principle, particularly in quantum mechanics,
that one should introduce as far as possible only directly observable
quantities as fundamental concepts of a theory. This defect®!
mathematically to the fact that the definition of probability in terms
of the amplitudes does not express the invariance under orthogonal
transformations of the Hilbert space (canonical transformations).

These gaps in the theory have been filled by von Neumann [41,42].
There is°? an invariant definition of the eigenvalue spectrum for arbitrary
operators, and of the relative probabilities, without presupposing the
existence of eigenfunctions or indeed using improper functions. Even
though this theory has not yet been elaborated in all directions, one
can however say with certainty that a mathematically irreproachable
grounding of quantum mechanics is possible.

Now the second question has to be answered: is this theory in accord
with the totality of our experience? In particular, given that the indivi-
dual process is only statistically determined, how can the usual determi-
nistic order be preserved in the composite macroscopic phenomena?°?

is related

The most important step in testing the new conceptual system in
this direction consists in the determination of the boundaries within
which the application of the old (classical) words and concepts is allowed,
such as ‘position, velocity, momentum, energy of a particle (electron)’
(Heisenberg [46]). It now turns out that all these quantities can be

a There are nevertheless some differences between the approaches of Dirac and
Jordan. Cf. Darrigol (1992, pp. 343—4) (eds.).



430 M. Born and W. Heisenberg

individually exactly measured and defined, as in the classical theory, but
that for simultaneous measurements of canonically conjugate quantities
(more generally: quantities whose operators do not commute) one cannot
get below a characteristic limit of indeterminacy [Unbestimmtheit]H To
determine this, according to Bohr [47]? one can start quite generally
from the empirically given dualism between waves and corpuscles. One
has essentially the same phenomenon already in every diffraction of light
by a slit. If a wave impinges perpendicularly on an (infinitely long) slit
of width g1, then the light distribution as a function of the deviation
angle ¢ is given according to Kirchhoff by the square of the modulus of
the quantity

e A —_——
a1 Tq1 .
_a ——=siny

" : (wa : )
+5 ) S | —— S
a/ 2mi sinapqdq = %2a A
: A

and thus ranges over a domain whose order of magnitude is given by®®
sinp, = q% and gets ever larger with decreasing slit width ¢;. If one
considers this process from the point of view of the corpuscular theory,
and if the association given by de Broglie of frequency and wavelength

with energy and momentum of the light quantum is valid,

h
Z=-p
A b

then the momentum component perpendicular to the direction of the
slit is

hv =W,

h
p=Psinp = Xsimp .

One sees thus that after the passage through the slit the light quanta
have a distribution whose amplitude is given by

2mi 2mi

e A singq — g

)

precisely as quantum mechanics requires for two canonically conjugate
variables; further, the width of the domain of the variable p that contains
the greatest number of light quanta is

P\ h
p1=Psinp; = — = — .
q1 q1

a Here and in the following, the choice of translation reflects the characteristic
terminology of the original. Born and Heisenberg use the terms ‘Unbestimmtheit’
(indeterminacy) and ‘Ungenauigkeit’ (imprecision), while the standard German
terms today are ‘Unbestimmtheit’ and ‘Unschérfe’ (unsharpness) (eds.).
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By general considerations of this kind one arrives at the insight that
the imprecisions (average errors) of two canonically conjugate variables
p and ¢ always stand in the relation

pig1 = h. (30)

The narrowing of the range of one variable, which forms the essence of a
measurement, widens unfailingly the range of the other. The same follows
immediately from the mathematical formalism of quantum mechanics on
the basis of formula (28). The actual meaning of Planck’s constant h is
thus that it is the universal measure of the indeterminacy that enters
the laws of nature through the dualism of waves and corpuscles.

That quantum mechanics is a mixture of strictly mechanical and stati-
stical principles can be considered a consequence of this indeterminacy.
Indeed, in the classical theory one may fix the state of a mechanical
system by, for instance, measuring the initial values of p and ¢ at a
certain instant. In quantum mechanics such a measurement of the initial
state is possible only with the accuracy (B0). Thus the values of p and ¢
are known also at later times only statistically.

The relation between the old and the new theory can therefore be
described thus:

In classical mechanics one assumes the possibility of determining ex-
actly the initial state; the further development is then determined by
the laws themselves.

In quantum mechanics, because of the imprecision relation, the result
of each measurement can be expressed by the choice of appropriate initial
values for probability functions; the quantum mechanical laws determine
the change (wave-like propagation) of these probability functions. The
result of future experiments however remains in general indeterminate
and only the expectation®® of the result is statistically constrained. Each
new experiment replaces the probability functions valid until now with
new ones, which correspond to the result of the observation; it separates
the physical quantities into known and unknown (more precisely and less
precisely known) quantities in a way characteristic of the experiment.

That in this view certain laws, like the principles of conservation of
energy and momentum, are strictly valid, follows from the fact that they
are relations between commuting quantities (all quantities of the kind ¢
or all quantities of the kind p)H

a A similar but more explicit phrasing is used by Born (1926e, lecture 15): assuming
that H(p,q) = H(p) + H(q), the time derivatives not only of H but also of all
components of momentum and of angular momentum have the form f(q) + g(p)
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The transition from micro- to macromechanics results naturally from
the imprecision relation because of the smallness of Planck’s constant h.
The fact of the propagation,® the ‘melting away’ of a ‘wave or probabi-
lity packet’ is crucial to this. For some simple mechanical systems (free
electron in a magnetic or electric field (Kennard [50]), harmonic oscillator
(Schrodinger [25])), the quantum mechanical propagation of the wave
packet agrees with the propagation of the system trajectories that would
occur in the classical theory if the initial conditions were known only with
the precision restriction ([B0). Here the purely classical treatment of «
and [ particles, for instance in the discussion of Wilson’s photographs,
immediately finds its justification. But in general the statistical laws of
the propagation of a ‘packet’ for the classical and the quantum theory
are different; one has particularly extreme examples of this in the cases of
‘diffraction’ or ‘interference’ of material rays, as in the already mentioned
experiments of Davisson, Kunsman and Germer [18,19] on the reflection
of electrons by metallic crystals.

That the totality of experience can be fitted into the system of this
theory can of course be established only by calculation and discussion of
all the experimentally accessible cases. Individual experimental setups,®®
in which the suspicion of a contradiction with the precision limit (30)
might arise, have been discussed [46,47]; every time the reason for the
impossibility of fixing exactly all determining data could be exhibited
intuitively [anschaulich aufgewiesen)].

There remains only to survey the most important consequences of the
theory and their experimental verification.

IV. — APPLICATIONS OF QUANTUM MECHANICS

In this section we shall briefly discuss those applications of quantum
mechanics that stand in close relation to questions of principle. Here the
Uhlenbeck-Goudsmit theory of the magnetic electron shall be mentio-
ned first. Its formulation and the treatment of the anomalous Zeeman
effects with the matrix calculus raise no difficulties [11]; the treatment
with the method of eigenoscillations succeeds only with the help of the
general Dirac-Jordan theory (Pauli [45]). Here, two three-dimensional
wave functions are associated with each electron. It becomes natural
thereby to look for an analogy between matter waves and polarised

with suitable functions f and g. Born states that since all ¢ commute with one

another and all p commute with one another, the expressions f(q)+g(p) will vanish
under the same circumstances as in classical mechanics (eds.).
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light waves, which in fact can be carried through to a certain extent
(Darwin [49], Jordan [53]). What is common to both phenomena is that
the number of terms is finite, so the representative matrix is also finite
(two arrangements [Einstellungen] for the electron, two directions of
polarisation for light). Here the definition of the conjugate quantity by
means of differentiation thus fails; one must resort to Jordan’s definition
by means of the probability amplitudes (formula (28)).

From among the other applications, the quantum mechanics of many-
body problems shall be mentioned [28,29,40]. In a system that contains
a number of similar particles [gleicher Partikel],%? there occurs between
them a kind of ‘resonance’ and from that results a decomposition of
the system of terms into subsystems that do not combine (Heisenberg,
Dirac [28,37]). Wigner has systematically investigated this phenomenon
by resorting to group theoretic methods, and has set up the totality of
the non-combining systems of terms [40]; Hund has managed to derive
the majority of these results by comparatively elementary means [48]. A
special role is played by the ‘symmetric’ and ‘antisymmetric’ subsystems
of terms; in the former every eigenfunction remains unchanged under
permutation of arbitrary similar particles, in the latter it changes sign
under permutation of any two particles. In applying this theory to the
spectra of atoms with several electrons it turns out that the Pauli equi-
valence ruleH allows only the antisymmetric subsystem.5° On the basis
of this insight one can establish quantum mechanically the systematics
of the line spectra and of the electron grouping throughout the whole
periodic system of elements.

If one has a large number of similar particles, which are to be gi-
ven a statistical treatment (gas theory), one obtains different statistics
depending on whether one chooses the corresponding wave function
according to the one or the other subsystem. The symmetric system is
characterised by the fact that no new state arises under permutation of
the particles from®! a state described by a symmetric eigenfunction; thus
all permutations that belong to the same set of quantum numbers (lie in
the same ‘cell’) together always have the weight 1. This corresponds to
the Bose-Einstein statistics [56,16]. In the antisymmetric term system
two quantum numbers may never become equal, because otherwise the
eigenfunction vanishes; a set of quantum numbers corresponds therefore
either to no proper function at all or at most to one, thus the weight of
a state is 0 or 1. This is the Fermi-Dirac statistics [57,37].

a That is, the Pauli principle applied to electrons that are ‘equivalent’ in the sense
of having the same quantum numbers n and I; cf. Born (1969, p. 178). (eds.).
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Bose-Einstein statistics holds for light quanta, as emerges from the
validity of Planck’s radiation formula. Fermi-Dirac statistics certainly
holds for (negative) electrons, as emerges from the above-mentioned
systematics of the spectra on the basis of Pauli’s equivalence rule, and
with great likelihood also for the positive elementary particles (protons);
one can infer this from observations of band spectra [28,43] and in
particular from the specific heat of hydrogen at low temperatures [55].52
The assumption of Fermi-Dirac statistics for the positive and negative
elementary particles of matter has the consequence that Bose-Einstein
statistics holds for all neutral structures, e.g. molecules (symmetry of
the eigenfunctions under permutation of an even number%® of particles
of matter). Within quantum mechanics, in which a many-body problem
is treated in configuration space, the new statistics of Bose-Einstein and
Fermi-Dirac has a perfectly legitimate place, unlike in the classical theo-
ry, where an arbitrary modification of the usual statistics is impossible;
nevertheless the restrictions made on the form of the eigenfunctions
appear as an arbitrary additional assumption. In particular, the example
of light quanta indicates that the new statistics is related in an essential
way to the wave-like properties of matter and light. If one decomposes
the electromagnetic oscillations of a cavity into spatial harmonic com-
ponents, each of these behaves like a harmonic oscillator as regards time
evolution; it now turns out that under quantisation of this system of
oscillators a solution results that behaves exactly like a system of light
quanta obeying Bose-Einstein statistics [4]. Dirac has used this fact for
a consistent treatment of electrodynamical problems [51,52], to which
we shall return briefly.

The corpuscular structure of light thus appears here as quantisation
of light waves, such as vice versa the wave nature of matter manifests
itself in the ‘quantisation’ of the corpuscular motion. Jordan has shown
[54] that one can proceed analogously with electrons; one has then to
decompose the Schrédinger function of a cavity into fundamental and
harmonics and to quantise each of these as a harmonic oscillator, in
such a way in fact that Fermi-Dirac statistics is obtained. The new
quantum numbers, which express the ‘weights’ in the usual many-body
theory, have thus only the values 0 and 1. Therefore one has again here a
case of finite matrices, which can be treated only with Jordan’s general
theory. The existence of electrons thus plays the same role in the formal
elaboration of the theory as that of light quanta; both are discontinuities
no different in kind from the stationary states of a quantised system.
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However, if the material particles stand in interaction with each other,
the development of this idea might run into difficulties of a deep nature.

The results of Dirac’s investigations [51,52] of quantum electrodyna-
mics consist above all in a rigorous derivation of Einstein’s transition
probabilities for spontaneous emissionH Here the electromagnetic field
(resolved into quantised harmonic oscillations) and the atom are consi-
dered as a coupled system and quantum mechanics is applied in the form
of the integral equation (I3). The interaction energy appearing therein
is obtained by carrying over classical formulas. In this connection, the
nature of absorption and scattering of light by atoms is clarified. Finally,
Dirac [52] has managed to derive a dispersion formula with damping
term; this includes also the quantum mechanical interpretation of Wien’s
experiments on the decay in luminescence of canal rastH His method
consists in considering the process of the scattering of light by atoms
as a collision of light quanta. However, since one can indeed attribute
energy and momentum to the light quantum but not easily a spatial
position, there is a failure of the wave mechanical collision theory (Born
[30]), in which one presupposes knowledge of the interaction between
the collision partners as a function of the relative position. It is thus
necessary to use the momenta as independent variables, and an operator
equation of matrix character instead of Schrodinger’s wave equation.
Here one has a case where the use of the general points of view which
we have emphasised in this report cannot be avoided. At the same time,
the theory of Dirac reveals anew the deep analogy between electrons and
light quanta.

CONCLUSION

By way of summary, we wish to emphasise that while we consider the
last-mentioned enquiries, which relate to a quantum mechanical treat-
ment of the electromagnetic field, as not yet completed [unabgeschlos-
sen], we consider quantum mechanics to be a closed theory [geschlossene
Theorie], whose fundamental physical and mathematical assumptions
are no longer susceptible of any modification. Assumptions about the
physical meaning of quantum mechanical quantities that contradict Jor-
dan’s or equivalent postulates will in our opinion also contradict ex-
perience. (Such contradictions can arise for example if the square of

a As opposed to the induced emission discussed on p. (eds.).
b See above, p.[[43] (eds.).
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the modulus of the eigenfunction is interpreted as charge densityH)
On the question of the ‘validity of the law of causality’ we have this
opinion: as long as one takes into account only experiments that lie in
the domain of our currently acquired physical and quantum mechanical
experience, the assumption of indeterminism in principle, here taken as
fundamental, agrees with experience. The further development of the
theory of radiation will change nothing in this state of affairs, because
the dualism between corpuscles and waves, which in quantum mechanics
appears as part of a contradiction-free, closed theory [abgeschlossene
Theorie], holds in quite a similar way for radiation. The relation between
light quanta and electromagnetic waves must be just as statistical as that
between de Broglie waves and electrons. The difficulties still standing at
present in the way of a complete theory of radiation thus do not lie
in the dualism between light quanta and waves — which is entirely
intelligible — instead they appear only when one attempts to arrive
at a relativistically invariant, closed formulation of the electromagnetic
laws; all questions for which such a formulation is unnecessary can be
treated by Dirac’s method [51,52]. However, the first steps also towards
overcoming these relativistic difficulties have already been made.

a See Schrodinger’s report, especially his section I, and section above (eds.).



Quantum mechanics 437

BibliographyH

[1] W. Heisenberg, Uber quanten|theoretische] Umdeutung kinemati-
scher und mechanischer Beziehungen, Z. f. Phys., 33 (1925), 879.

[2] M. Born and P. Jordan, Zur Quantenmechanik, I, Z. f. Phys., 34
(1925), 858.

[3] P. Dirac, The fundamental equations of quantum mechanics, Proc.
Roy. Soc. A, 109 (1925), 642.

[4] M. Born, W. Heisenberg and P. Jordan, Zur Quantenmechanik, II,
Z. f. Phys., 35 (1926), 557.

[5] N. Bohr, Atomtheorie und Mechanik, Naturwiss., 14 (1926), 1.

[6] W. Pauli, Uber das Wasserstoffspektrum vom Standpunkt der neuen
Quantenmechanik, Z. f. Phys., 36 (1926), 336.

[7] P. Dirac, Quantum mechanics and a preliminary investigation of the
hydrogen atom, Proc. Roy. Soc. A, 110 (1926), 561.

[8] G. E. Uhlenbeck and S. Goudsmit, Ersetzung der Hypothese vom
unmechanischen Zwang durch eine Forderung beziiglich des inneren Ver-
haltens jedes einzelnen Elektrons, Naturw., 13 (1925), 953.64

[9] L. H. Thomas, The motion of the spinning electron, Nature, 117
(1926), 514.

[10] J. Frenkel, Die Elektrodynamik des rotierenden Elektrons, Z. f.
Phys., 37 (1926), 243.

[11] W. Heisenberg and P. Jordan, Anwendung der Quantenmechanik
auf das Problem der anomalen Zeemaneffekte, Z. f. Phys., 37 (1926),
263.

[12] P. Dirac, Relativity quantum mechanics with an application to
Compton scattering, Proc. Roy. Soc. [A], 111 (1926), 405.

[13] P. Dirac, The elimination of the nodes in quantum mechanics, Proc.
Roy. Soc. [A], 111 (1926), 281.

[14] P. Dirac, On quantum algebra, Proc. Cambridge Phil. Soc., 23
(1926), 412.

[15] P. Dirac, The Compton effect in wave mechanics, Proc. Cambridge
Phil. Soc., 23 (1926), 500.

a The style of the bibliography has been both modernised and uniformised.
Amendments and fuller details (when missing) are given in square brackets,
mostly without commentary. Amendments in the French edition of mistakes in
the typescript (wrong initials, spelling of names etc.) are taken over also mostly
without commentary. Mistakes occurring only in the French edition are endnoted
(eds.).



438 M. Born and W. Heisenberg

[16] A. Einstein, Quantentheorie des einatomigen idealen Gases, 11, Berl.
Ber. (1925), [3].°

[17] W. Elsasser, Bemerkungen zur Quanten|mechanik| freier Elektro-
nen, Naturw., 13 (1925), 711.

[18] C. Davisson and [C.] Kunsman, [The s]cattering of low speed
electrons by [Platinum| and [Magnesium|, Phys. Rev., 22 (1923), [242].5¢
[19] C. Davisson and L. Germer, The scattering of electrons by a single
crystal of Nickel, Nature, 119 (1927), 558.

[20] E. G. Dymond, On electron scattering in Helium, Phys. Rev., 29
(1927), 433.

[21] M. Born and N. Wiener, Eine neue Formulierung der Quanten-
gesetze fiir periodische und [nichtperiodische] Vorgange, Z. f. Phys., 36
(1926), 174.

[22] C. Eckart, Operator calculus and the solution of the equation[s] of
quantum dynamics, Phys. Rev., 28 (1926), 711.

[23] K. Lanczos, Uber eine feldmiissige Darstellung der neuen Quanten-
mechanik, Z. f. Phys., 35 (1926), 812.

[24] E. Schrodinger, Quantisierung als Eigenwertproblem, I to IV, Ann.
d. Phys., 79 (1926), 361; ibid., 489; ibid., 80 (1926), 437; ibid., 81 (1926),
109.

[25] E. Schrodinger, Der stetige Ubergang von der Mikro- zur Makro-
mechanik, Naturw., 14 (1926), 664.

[26] E. Schrédinger, Uber das Verhiltnis der Heisenberg-Born-Jordan-
schen Quantenmechanik zu der meinen, Ann. d. Phys., 79 (1926), 734.
[27] P. Jordan, Bemerkung iiber einen Zusammenhang zwischen Duanes
Quantentheorie der Interferenz und den de Broglieschen Wellen, Z. f.
Phys., 37 (1926), 376.

[28] W. Heisenberg, Mehrkorperproblem und Resonanz in der Quanten-
mechanik, I and II, Z. f. Phys., 38 (1926), 411; Ibid. 41 (1927), 239.
[29] W. Heisenberg, Uber die Spektren von Atomsystemen mit zwei
Elektronen, Z. f. Phys., 39 (1926), 499.67

[30] M. Born, Zur Quantenmechanik der Stossvorgénge, Z. f. Phys., 37
(1926), 863; [Quantenmechanik der Stossvorgénge], ibid., 38 (1926), 803.
[31] G. Wentzel, Zwei Bemerkungen iiber die Zerstreuung korpuskularer
Strahlen als Beugungserscheinung, Z. f. Phys., 40 (1926), 590.

[32] J. R. Oppenheimer, Bemerkung zur Zerstreuung der a-Teilchen, Z.
f. Phys., 43 (1927), 413.

[33] W. Elsasser, Diss. Gottingen, [Zur Theorie der Stossprozesse bei
Wasserstoff]|, Z. f. Phys., [45 (1927), 522].%%



Quantum mechanics 439

[34] M. Born, Das Adiabatenprinzip in der Quantenmechanik, Z. f.
Phys., 40 ([1926]), 167.%°

[35] W. Heisenberg, Schwankungserscheinungen und Quantenmechanik,
Z. f. Phys., 40 (1926), 501.

[36] P. Jordan, Uber quantenmechanische Darstellung von Quanten-
spriingen, Z. f. Phys., 40 ([1927]), 661.

[37] P. Dirac, On the theory of quantum mechanics, Proc. Roy. Soc. A,
112 (1926), 661.

[38] P. Dirac, The physical interpretation of quantum dynamics, Proc.
Roy. Soc. A, 113 ([1927]), 621.

[39] P. Jordan, Uber eine neue Begriindung der Quantenmechanik, Z.
f. Phys., 40 ([1927]), [809]; Second Part, ibid., 44 (1927), 1.

[40] E. Wigner, Uber nichtkombinierende Terme in der neueren Quan-
tentheorie, First Part, Z. f. Phys., 40 (1926), 492; Second Part, ibid., 40
(1927), 883.

[41] D. Hilbert, [J.]. v. Neumann and L. Nordheim, [Uber die Grund-
lagen der Quantenmechanik,| Mathem. Ann., 98 [1928], 1.

[42] [J.] v. Neumann, [Mathematische Begriindung der Quantenmecha-
nik,| Géte. Nachr., 20 May 1927, [1].

[43] F. Hund, Zur Deutung der Molekelspektr|en], Z. f. Phys., 40 ([1927]),
742; ibid., 42 (1927), 93; ibid., 43 (1927), 805.

[44] W. Pauli, Uber Gasentartung und Paramagnetismus, Z. f. Phys.,
41 (1927), 81.

[45] W. Pauli, Zur Quantenmechanik des magnetischen Elektrons, Z. f.
Phys., 43 (1927), 601.

[46] W. Heisenberg, Uber den anschaulichen Inhalt der quantentheore-
tischen Kinematik und Mechanik, Z. f. Phys., 43 (1927), 172.7°

[47] N. Bohr, Uber den begrifflichen Aufbau der Quantentheorie, forth-
coming [im Erscheinen].

[48] F. Hund, Symmetriecharaktere von Termen bei Systemen mit glei-
chen Partikeln in der Quantenmechanik, Z. f. Phys., 43 (1927), 788.
[49] [C. G.] Darwin, The electron as a vector wave, Nature, 119 (1927),
282.

[50] E. Kennard, Zur Quantenmechanik einfacher Bewegungstypen, Z.
f. Phys., 44 (1927), 326.

[51] P. Dirac, The quantum theory of emission and absorption of radi-
ation, Proc. Roy. Soc. A, 114 (1927), 243.

[52] P. Dirac, The quantum theory of dispersion, Proc. Roy. Soc. A,
114 (1927), 710.



440 M. Born and W. Heisenberg

[53] P. Jordan, Uber die Polarisation der Lichtquanten, Z. f. Phys., 44
(1927), 292.

[54] P. Jordan, Zur Quantenmechanik der Gasentartung, Z. f. Phys.,
forthcoming [im Erscheinen] [44 (1927), 473].

[55] D. Dennison, A note on the specific heat of [the] Hydrogen [mole-
cule], Proc. Roy. Soc. A, [115] (1927), 483.

On statistics also:

[56] N.S. Bose, Plancks Gesetz und Lichtquantenhypothese, Z. f. Phys.,
26 (1924), 178.

[57] E. Fermi, [Sulla quantizzazione del gas perfetto monatomico], Lincei
Rend., 3 (1926), 145.

General surveys:

[58] M. Born (Theorie des Atombaus?) [Probleme der Atomdynamik],
Lectures given at the Massachusetts Institute of Technology (Springer,
[1926]).7

[59] W. Heisenberg, [Uber qJuantentheoretische Kinematik und Mecha-
nik, Mathem. Ann., 95 (1926), 683.

[60] W. Heisenberg, Quantenmechanik, Naturw., 14 (1926), [989].

[61] M. Born, Quantenmechanik und Statistik, Naturw., 15 (1927),
238.7

[62] P. Jordan, Kausalitdt und Statistik in der modernen Physik, Na-
turw., 15 (1927), 105.

[63] P. Jordan, Die Entwicklung der neuen Quantenmechanik, Naturw.,
15 (1927), 614, 636.73



Discussion 441

Discussion of Messrs Born and Heisenberg’s reportH

MR DIrAC. — I should like to point out the exact nature of the corre-
spondence between the matrix mechanics and the classical mechanics. In
classical mechanics one can work out a problem by two methods: (1) by
taking all the variables to be numbers and working out the motion, e.g.
by Newton’s laws, which means one is calculating the motion resulting
from one particular set of numerical values for the initial coordinates
and momenta, and (2) by considering the variables to be functions of
the J’s (action variables)™ and using the general transformation theory
of dynamics and thus determining simultaneously the motion resulting
from all possible initial conditions.” The matrix theory corresponds to
this second classical method. It gives information about all the states
of the system simultaneously. A difference between the matrix method
and the second classical method arises since in the latter one requires to
treat simultaneously only states having nearly the same J’s (one uses,
for instance, the operators %), while in the matrix theory one must
treat simultaneously states whose J’s differ by finite amounts.

To get results comparable with experiment when one uses the second
classical method,”® one must substitute numerical values for the J’s in
the functions of the J’s obtained from the general treatment. One has to
do the same in the matrix theory. This gives rise to a difficulty since the
results of the general treatment are now matrix elements, each referring
in general to two different sets of J’s. It is only the diagonal elements,
for which these two sets of J’s coincide, that have a direct physical
interpretation.

MR LORENTZ. — I was very surprised to see that the matrices satisfy
equations of motion. In theory that is very beautiful, but to me it
is a great mystery, which, I hope, will be clarified. I am told that
by all these considerations one has come to construct matrices that
represent what one can observe in the atom, for instance the frequencies
of the emitted radiation. Nevertheless, the fact that the coordinates, the
potential energy, and so on, are now represented by matrices indicates
that the quantities have lost their original meaning and that one has
made a huge step in the direction of abstraction.

Allow me to draw attention to another point that has struck me. Let

a The two discussion contributions by Dirac follow his manuscript in AHQP,
microfilm 36, section 10. Deviations in the French edition (which may or may
not be due to Dirac) are reported in endnote, as well as interesting variants or
cancellations in the manuscript, and punctuation has been slightly altered (eds.).
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us consider the elements of the matrices representing the coordinates of
a particle in an atom, a hydrogen atom for instance, and satisfying the
equations of motion. One can then change the phase of each element of
the matrices without these ceasing to satisfy the equations of motion;
one can, for instance, change the time. But one can go even further and
change the phases, not arbitrarily, but by multiplying each element by
a factor of the form e*(°»—%) and this is quite different from a change
of time origin

Now these matrix elements ought to represent emitted radiation. If
the emitted radiation were what is at the basis of all this, one could
expect to be able to change all phases in an arbitrary way. The above-
mentioned fact then leads us very naturally to the idea that it is not the
radiation that is the fundamental thing: it leads us to think that behind
the emitted oscillations are hidden some true oscillations, of which the
emitted oscillations are difference oscillations.

In this way then, in the end there would be oscillations of which the
emitted oscillations are differences, as in Schrédinger’s theoryH and it
seems to me that this is contained in the matrices. This circumstance
indicates the existence of a simpler wave substrate.

MR BORN. — Mr Lorentz is surprised that the matrices satisfy the
equations of motion; with regard to this I would like to note the analogy
with complex numbers. Also here we have a case where in an extension
of the number system the formal laws are preserved almost completely.
Matrices are some kind of hypercomplex numbers, which are distinguis-
hed from the ordinary numbers by the fact that the law of commutativity
no longer holds.

MR DirAc. — The arbitrary phases occurring in the matrix method
correspond exactly”” to the arbitrary phases in the second classical
method, where the variables are functions of the J’s and w’s (action
and angle variables). There are arbitrary”® phases in the w’s, which may
have different values for each different set of values for the J’s. This is
completely analogous”™ to the matrix theory, in which each arbitrary
phase is associated with a row and column, and therefore with a set of

a This corresponds of course to the choice of a phase factor e?®n for each stationary
state. This point (among others) had been raised in the correspondence between
Lorentz and Ehrenfest in the months preceding the conference. See Lorentz to
Ehrenfest, 4 July 1927, AHQP-EHR-23 (in Dutch) (eds.).

a See section (eds.).
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values for the J’s.

MR BORN. — The phases a,, which Mr Lorentz has just mentioned
are associated with the different energy levels, quite like in classical
mechanics. I do not think there is anything mysterious hiding behind
this.

MR BOHR. — The issue of the meaning of the arbitrary phases, raised
by Mr Lorentz, is of very great importance, I think, in the discussion
of the consistency of the methods of quantum theory. Although the
concept, of phase is indispensable in the calculations, it hardly enters
the interpretation of the observations.
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Notes to the translation

Here and in a number of places in the following, the French edition omits
quotation marks present in the German typescript. They are tacitly
restored in this edition.

The French edition gives ‘[47].

[diskrete] — [déterminées]

The French edition omits ‘[60].

[makroskopische] — [microscopiques]

|durch sinngemésse Ubertragung|] — [par une extension logique]

In the French edition, the parenthetical remark is given as a footnote.
The typescript does not give the reference number, only the brackets.
The French edition omits the reference entirely. The mentioned results
are to be found in section 4.1 of Born, Heisenberg and Jordan (1926 [4]).
Word omitted in the French edition.

[sind sinngemésse Ubertragungen| — [sont des extensions logiques|
Misprint in the French edition: summation index ‘n’ in the equation.
[orthogonale Transformationen der ¢j] — [transformations orthogonales
ox|

[beschrankte unendliche] — [partiellement infinies]

[Satze] — [principes]

[noch zuriickzukommen haben| — [n’avons pas a revenir|

Word omitted in the French edition.

The overbar is missing in the original typescript (only here), but is
included in the French edition.

The typescript reads: ‘Lanczos [ |’, the reference number is added in the
French edition.

The typescript consistently gives this reference as ‘(q)’, the French
edition as ‘(@)’.

Equation number missing in the French edition.

[eine Verschiebung langs ihrer Verbindungslinie mit dem Nullpunkt] —
[un déplacement de leur droite de jonction avec lorigine]

[sie] — [ces regles]

[Vorgange] — [phénomeénes|

Both the manuscript and the French edition read ‘H:’ and ‘Hs’ in this
paragraph and two paragraphs later, and ‘H™) in the intervening
paragraph. We have uniformised the notation.

The French edition consistently reads ‘0 fy,’.

The right-hand side of this equation reads Y {f(Wn) — f(Wn)}Pnm’
in both the typescript and the French edition, but it should be as shown
(see above, p. [I15).

The French edition gives ‘(2])’.

Both the typescript and the French edition read (only here) ‘ni,n2’.
Both the typescript and the French edition read ‘®,,,’ .

Singular in the French edition.

The typescript includes the square brackets but no reference number.
The French edition omits the reference entirely.

Only brackets in the typescript, references omitted in the French edition.
[abhangige] — [indépendante]

The French edition reads ‘(c,x)?’ instead of ‘|c,|*’ and ‘nk’ instead of ‘n’.
The French edition reads ‘p,x’ instead of ‘v, .
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Both the typescript and the French edition give ‘(II)’, but this should
evidently be either ‘(I7)’ or ‘([22a))’.

The adjective is omitted in the French edition.

[‘Strahlvektor’] — [‘vecteur radiant’]

The absolute square is missing in the German typescript, but is added in
the French edition.

[des einen, etwa, nach Grosse und Richtung] — [de 'un, par exemple en
grandeur et en direction|

[von Q] — [et Q]

The French edition has a prime on ‘g’.

The overbar is missing in the German typescript, but is added in the
French edition.

Throughout this paragraph, the French edition translates ‘Ubergang’ as
‘transformation’ instead of ‘transition’.

‘S’ missing in the French edition.

[das folgende Sétze zugrunde legt] — [qui est & la base des théorémes
suivants]. Note that ‘Satz’ can indeed mean both ‘statement’ and
‘theorem’.

The French edition omits absolute bars.

The ‘A’ is present in the French edition but not in the typescript.

In the typescript, this is typed over an (illegible) previous alternative.
Jordan in his habilitation lecture (1927f [62]) uses the term ‘angebbare
Wahrscheinlichkeit’ (‘assignable probability’ in Oppenheimer’s
translation (Jordan 1927g)).

[in dem der einfache Begriff der berechenbaren Wahrscheinlichkeit fiir ein
bestimmtes Ereignis die Hauptrolle spielt] — [dans lequel la simple
notion de la probabilité calculable joue le réle principale pour un
événement déterminé]

[Uberstand| — [défaut|. The word ‘Uberstand’ may be characterising the
phases as some kind of surplus structure, but it is quite likely a mistyping
of ‘Ubelstand’, which can indeed be translated as ‘defect’, as in the
French version.

[Es gibt] — [Cet auteur donne]

[Wie kann insbesondere bei der nur statistischen Bestimmtheit des
Einzelvorgangs in den zusammengesetzten makroskopischen
Erscheinungen die gewohnte deterministische Ordnung aufrecht erhalten
werden?| — [En particulier comment, vu la détermination uniquement
statistique des processus individuels dans les phénoménes macroscopiques
compliqués, 'ordre déterministe auquel nous sommes accoutumés peut-il
étre conserveé?|

This reference is to a supposedly forthcoming ‘Uber den begrifflichen
Aufbau der Quantentheorie’. Yet, no such published or unpublished work
by Bohr is extant. Some pages titled ‘Zur Frage des begrifflichen Aufbaus
der Quantentheorie’ are contained in the folder ‘Como lecture II’ in the
Niels Bohr archive, microfilmed in AHQP-BMSS-11, section 4. See also
Bohr (1985, p. 478). We wish to thank Felicity Pors, of the Niels Bohr
archive, for correspondence on this point.

The French edition incorrectly reads ‘sin¢; = 417,

[Erwartung] — [attente]

[Ausbreitung] — [extension]

[einzelne Versuchsanordnungen| — [des essais isolés]
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Again, the terminology has changed both in German and in English. The
term ‘similar particles’ for ‘identical particles’ is used for instance by
Dirac (1927a [37]).

[nur das antisymmetrische Teilsystem zuldsst] — [ne permet pas le
systéme antisymétrique]

[aus] — [dans]

The French edition gives ‘[56].

Both the German version followed here and the French version (‘a whole
number of particles’) seem rather infelicitous.

Both the typescript and the French edition add ‘(Magnetelektron)’. The
French edition reads ‘Nature’.

Both the typescript and the French edition read ‘p. 5’.

Typescript and published volume read ‘Pt’ and ‘Mg’, as well as ‘243’.
In the French edition: ‘409’.

This is indeed the (abridged) published version of Elsasser’s Gottingen
dissertation.

In the French edition: ‘Das Adiabatenprinzip in den Quanten’, as well as
1927’ (the latter as in the typescript).

In both the typescript and the French edition the title of the paper is
given as ‘Uber den anschaulichen Inhalt der Quantenmechanik’.

Date given as ‘1927’ in typescript and volume.

In the French edition: ‘288’.

The French edition omits ‘614’.

The manuscript includes also ‘and w’s’ and ‘and angle’, both cancelled.
The French edition breaks up and rearranges this sentence.

The French edition omits the temporal clause.

The French edition reads ‘trouvent une analogie’.

In the manuscript this replaces the cancelled word ‘unknown’.

In the manuscript this replaces ‘corresponds exactly’.



Wave mechanics®

By Mr E. SCHRODINGER

INTRODUCTION

Under this name at present two theories are being carried on, which
are indeed closely related but not identical. The first, which follows on
directly from the famous doctoral thesis by L. de Broglie, concerns waves
in three-dimensional space. Because of the strictly relativistic treatment
that is adopted in this version from the outset, we shall refer to it as the
four-dimensional wave mechanics. The other theory is more remote from
Mr de Broglie’s original ideas, insofar as it is based on a wave-like process
in the space of position coordinates (g-space) of an arbitrary mechanical
system.! We shall therefore call it the multi-dimensional wave mechanics.
Of course this use of the g-space is to be seen only as a mathematical tool,
as it is often applied also in the old mechanics; ultimately, in this version
also, the process to be described is one in space and time. In truth,
however, a complete unification of the two conceptions has not yet been
achieved. Anything over and above the motion of a single electron could
be treated so far only in the multi-dimensional version; also, this is the
one that provides the mathematical solution to the problems posed by
the Heisenberg-Born matrix mechanics. For these reasons I shall place

a Our translation follows Schrédinger’s German typescript in AHQP-RDN,
document M-1354. Discrepancies between the typescript and the French edition
are endnoted. Interspersed in the German text, Schrédinger provided his own
summary of the paper (in French). We translate this in the footnotes. The French
version of this report is also reprinted in Schrédinger (1984, vol. 3, pp. 302-23)
(eds.).
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it first, hoping in this way also to illustrate better the characteristic
difficulties of the as such more beautiful four-dimensional version

I. — MULTI-DIMENSIONAL THEORY

Given a system whose configuration is described by the generalised
position coordinates q1, go, - . ., qn, classical mechanics considers its task
as being that of determining the g; as functions of time, that is, of
exhibiting all systems of functions ¢1(t), g2(t), . .., ¢,(t) that correspond
to a dynamically possible motion of the system. Instead, according to
wave mechanics the solution to the problem of motion is not given by a
system of n functions of the single variable ¢, but by a single function
¥ of the n variables ¢i1,qo,...,q, and perhaps of time (see below).
This is determined by a partial differential equation with ¢1,qo,...,qn
(and perhaps t) as independent variables. This change of role of the
qk, which from dependent become independent variables, appears to be
the crucial point. More later on the meaning of the function v, which
is still controversial. We first describe how it is determined, thus what
corresponds to the equations of motion of the old mechanics.

First let the system be a conservative one. We start from its Hamil-
tonian function

H=T+V,

that is, from the total energy expressed as a function of the g and
the canonically-conjugate momenta p;. We take H to be a homogeneous
quadratic function of the ¢; and of unity and replace in it each pi by
%%ﬁ and unity by ¢. We call the function of the g, g—;i and v thus
obtained L (because in wave mechanics it plays the role of a Lagrange

function). Thus

h o )
L=T —_—— Va© . 1
(1 g ) v )
Now we determine 1(q1,qa, - .-, qn) by the requirement that under va-

riation of 1,
5/Lmzo with /@%Tzl. (2)

a Summary of the introduction: Currently there are in fact two [theories of]
wave mechanics, very closely related to each other but not identical, that is,
the relativistic or four-dimensional theory, which concerns waves in ordinary
space, and the multi-dimensional theory, which originally concerns waves in the
configuration space of an arbitrary system. The former, until now, is able to deal
only with the case of a single electron, while the latter, which provides the solution
to the matrix problems of Heisenberg-Born, comes up against the difficulty of being
put in relativistic form. We start with the latter.



Wave mechanics 449

The integration is to be performed over the whole of g-space (on whose
perhaps infinitely distant boundary, d¢» must disappear). However, dr
is not simply the product of the dgi, rather the ‘rationally measured’

volume element in g-space:

82T 1

s I (3)
8p1 “e (9pk

dr = dqidqs . .. dq,

(it is the volume element of a Riemannian g-space, whose metric, as
for instance also in Hertz’s mechanicsfl is determined by the kinetic
energy). — Performing the variation, taking the normalisation constraint
with the multiplier [Factor| —F), yields the Euler equation

82
h?
(A stands for the analogue of the Laplace operator in the generalised
Riemannian sense). As is well known,

/LdT:E

for a function that satisfies the Euler equation (@) and the constraint in
@.

Now, it turns out that equation (@) in general does not have, for
every F-value, a solution 1 that is single-valued and always finite and
continuous together with its first and second derivatives; instead, in all
special cases examined so far, this is the case precisely for the F-values
that Bohr’s theory would describe as stationary energy levels of the
system (in the case of discrepancies, the recalculated values explain the
facts of experience better than the old ones). The word ‘stationary’ used
by Bohr is thus given a very pregnant meaning by the variation problem
@.

We shall refer to these values as eigenvalues, Ej, and to the corre-
sponding solutions ¥y as eigenfunctionsﬁ We shall number the eigenva-
lues always in increasing order and shall number repeatedly those with
multiple eigensolutions. The v, form a normalised complete orthogonal
system in the g-space, with respect to which every well-behaved function
of the ¢i can be expanded in a series. Of course this does not mean that
every well-behaved function solves the homogeneous equation (@) and

Ap+ > (E-V)p=0 (4)

a For Schrédinger’s interest in Hertz’s work on mechanics, see Mehra and Rechenberg
(1987, pp. 522-32) (eds.).

b As a rule, in certain domains of the energy axis?® the eigenvalue spectrum is
continuous, so that the index k is replaced by a continuous parameter. In the
notation we shall generally not take this into account.
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thus the variation problem, because () is indeed an equation system,
each single eigensolution vy, satisfying a different element of the system,
namely the one with F = Ej,

One can take the view that one should be content in principle with
what has been said so far and its very diverse special applications.
The single stationary states of Bohr’s theory would then in a way be
described by the eigenfunctions v, which do not contain time at all
One would find that one can derive much more from them that is worth
knowing, in particular, one can form from them, by fixed general rules,
quantities that can be aptly taken to be jump probabilities between the
single stationary states. Indeed, it can be shown for instance that the
integral

/ g dr | (5)

extended to the whole of g-space, yields precisely the matrix element
bearing the indices k and k' of the ‘matrix ¢’ in the Heisenberg-Born
theory; similarly, the elements of all matrices occurring there can be
calculated from the wave mechanical eigenfunctions.

The theory as it stands, restricted to conservative systems, could treat
already even the interaction between two or more systems, by conside-
ring these as one single system, with the addition of a suitable term
in the potential energy depending on the coordinates of all subsystems.
Even the interaction of a material system with the radiation field is
not out of reach, if one imagines the system together with certain ether
oscillators (eigenoscillations of a cavity) as a single conservative system,
positing suitable interaction terms.

On this view the time wvariable would play absolutely no role in an
isolated system — a possibility to which N. Campbell (Phil. Mag., [1]
(1926), [1106]) has recently pointed. Limiting our attention to an isolated
system, we would not perceive the passage of time in it any more than
a Summary of the above: Wave mechanics demands that events in a mechanical

system that is in motion be described not by giving n generalised coordinates

q1,9q2 - .. qn as functions of the time ¢, but by giving a single function [¢]| of the n

variables q1,q2 ... gn and maybe of the time t. The system of equations of motion

of classical mechanics corresponds in wave mechanics to a single partial differential
equation, eq. (@), which can be obtained by a certain variational procedure. E is

a Lagrange multiplier, V' is the potential energy, a function of the coordinates;

h is Planck’s constant, A denotes the Laplacian in g-space, generalised in the

sense of Riemann. One finds in specific cases that finite and continuous solutions,

‘eigenfunctions’ ¢y, of eq. (@), exist only for certain ‘eigenvalues’ Ey of E. The set

of these functions forms a complete orthogonal system in the coordinate space.

The eigenvalues are precisely the ‘stationary energy levels’ of Bohr’s theory.
a Cf. section Bl (eds.).
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we can notice its possible progress in space, an assimilation of time
to the spatial coordinates that is very much in the spirit of relativity.
What we would notice would be merely a sequence of discontinuous
transitions, so to speak a cinematic image, but without the possibility of
comparing the time intervals between the transitions. Only secondarily,
and in fact with increasing precision the more extended the system,
would a statistical definition of time result from counting the transitions
taking place (Campbell’s ‘radioactive clock’). Of course then one cannot
understand the jump probability in the usual way as the probability
of a transition calculated relative to unit time. Rather, a single jump
probability is then utterly meaningless; only with two possibilities for
jumps, the probability that the one may happen before the other is equal
to its jump probability divided by the sum of the two.

I consider this view the only one that would make it possible to hold
on to ‘quantum jumps’ in a coherent way. Either all changes in nature
are discontinuous or not a single one. The first view may have many
attractions; for the time being however, it still poses great difficulties.
If one does not wish to be so radical and give up in principle the use
of the time variable also for the single atomistic system, then it is very
natural to assume that it is contained hidden also in equation (). One
will conjecture that equation system (@) is the amplitude equation of an
oscillation equation, from which time has been eliminated by settin

¢ ~ e27ri1/t . (6)

FE must then be proportional to a power of v, and it is natural to set
E = hv. Then the following is the oscillation equation that leads to (@)
with the ansatz (]EI)E

872 4mi O
A= Gr V=5 5 =0 @

Now this is satisfied not just by a single3

1/’]6627”%)5 (Vk ; ) ,

a Schrodinger introduces the time-dependent equation in his fourth paper on
quatisation (1926g). There (p. 112), Schrodinger leaves the sign of time
undetermined, settling on the same convention as in (6] — the opposite of today’s
convention — on pp. 114-15. As late as Schrodinger (1926h, p. 1065), one reads
that ‘the most general solution of the wave-problem will be (the real part of)
[eq. (27) of that paper]’. Instead the wave function is characterised as ‘essentially
complex’ in Schrédinger (1927c, fn. 3 on p. 957) (eds.).

b Recall that Schrodinger does not in fact set m = 1, but absorbs the mass in the
definition of A (eds.).
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but by an arbitrary linear combination

w — Z ckwke%riukt (8)
k=1

with arbitrary (even complex) constants ¢ . If one considers this 1 as
the description* of a certain sequence of phenomena in the system, then
this is now given by a (complex) function of the ¢1,¢2,...,q, and of
time, a function which can even be given arbitrarily at ¢ = 0 (because of
the completeness® and orthogonality of the 1y ); the oscillation equation
(@, or its solution (&) with suitably chosen ¢, then governs the temporal
development. Bohr’s stationary states correspond to the eigenoscillations
of the structure (one ¢, = 1, all others = 0).

There now seems to be no obstacle to assuming that equation (@) is
valid immediately also for non-conservative systems (that is, V' may
contain time explicitly). Then, however,® the solution no longer has
the simple form (8). A particularly interesting application hereof is the
perturbation of an atomic system by an electric alternating field. This
leads to a theory of dispersion, but we must forgo here a more detailed
description of the same. — From (@) there always follows

d .

(An asterisk shall always denote the complex conjugate.”) Instead of the
earlier normalisation condition (2], one can thus require

[arvwr =1, (10)
which in the conservative case, equation (8], means

Y ;=10 (11)

k=1

a Summary of the above: Even limiting oneself to what has been said up to now, it
would be possible to derive much of interest from these results, for instance the
transition probabilities, formula (B]) yielding precisely the matrix element g¢;(k, k")
for the same mechanical problem formulated according to the Heisenberg-Born
theory. Although we have restricted ourselves so far to conservative systems, it
would be possible to treat in this way also the mutual action between several
systems and even between a material system and the radiation field; one would
only have to add all relevant systems to the system under consideration. Twme
does not appear at all in our considerations and one could imagine that the only
events that occur are sudden transitions from one quantum state of the total
system to another quantum state, as Mr N. Campbell has recently thought. Time
would be defined only statistically by counting the quantum jumps (Mr Campbell’s
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What does the t-function mean now, that is, how does the system
described by it really look like in three dimensions? Many physicists
today are of the opinion that it does not describe® the occurrences in an
individual system,” but only the processes in an ensemble of very many
like constituted systems that do not sensibly influence one another!'°
and are all under the very same conditions. I shall skip this point of
view, since others are presenting itEI I myself have so far found useful
the following perhaps somewhat naive but quite concrete idea [dafiir
recht greifbare Vorstellung]. The classical system of material points does
not really exist, instead there exists something that continuously fills
the entire space and of which one would obtain a ‘snapshot’ if one
dragged the classical system, with the camera shutter open, through
all its configurations, the representative point in g-space spending in
each volume element dr a time that is proportional to the instantaneous
value of ¥9p*. (The value of ¥p* for only one value of the argument ¢ is
thus in question.) Otherwise stated: the real system is a superposition of
the classical one in all its possible states, using 11" as ‘weight function’.

The systems to which the theory is applied consist classically of several'?
charged point masses. In the interpretation just discussed!?® the charge
of every single one of these is distributed continuously across space,
the individual point mass with charge e yielding to the charge in the
three-dimensional volume element dx dy dz the contribution'*

e// Pyrdr . (12)

The prime on the integration sign means: one has to integrate only over
the part of the g-space corresponding to a position of the distinguished
point mass within dzdydz. — Since ¥9* in general depends on time,
these charges fluctuate; only in the special case of a conservative system

‘radioactive clock’). — Another, less radical, point of view is to assume that time
is hidden already in the family of equations () parametrised by E, this family
being the amplitude equation of an oscillation equation, from which time has been
eliminated by the ansatz (B). Assuming hv = E one arrives at eq. (7)), which,
because it no longer contains the frequency v, is solved by the series (B), where
the ¢ are arbitrary, generally complex, constants. Now % is a function of the
q1,q2 - - - qn as well as of time ¢ and, by a suitable choice of the ¢y, it can be adjusted
to an arbitrary initial state. Nothing prevents us now from making the time appear
also in the function V' — this is the theory of non-conservative systems, one of
whose most important applications is the theory of dispersion. — The important
relation (@), which follows from eq. (7)), allows one in all cases to normalise
according to eq. (0.
a See the report by Messrs Born and Heisenberg.!!
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oscillating with a single eigenoscillation are they distributed permanent-
ly, so to speak statically.

It must now be emphasised that by the claim that there are'® these
charge densities (and the current densities arising from their fluctuation),
we can mean at best half of what classical electrodynamics would mean
by that. Classically, charge and current densities are (1) application
points, (2) source points of the electromagnetic field. As application
points they are completely out of the question here; the assumption
that these charges and currents act, say, according to Coulomb’s or
Biot-Savart’s law directly on one another, or are directly affected in
such a way by external fields, this assumption is either superfluous or
wrong (N.B. de facto wrong), because the changes in the v function
and thereby in the charges are indeed to be determined through the
oscillation equation () — thus we must not think of them as determined
also in another way, by forces acting on them. An external electric field
is to be taken account of in ([7) in the potential function V', an external
magnetic field in a similar way to be discussed below, — this is the way
their application to the charge distribution is expressed in the present
theory.

Instead, our spatially distributed charges prove themselves excellently
as source points of the field, at least for the external action of the
system, in particular with respect to its radiation. Considered as source
points in the sense of the usual electrodynamics, they yield largely'6
correct information about its frequency, intensity and polarisationld In
most cases, the charge is in practice confined to a region that is small
compared to the wavelengths of the emitted light. The radiation is then
determined by the resulting dipole moment |elektrisches Moment] of the
charge distribution. According to the principles determined above, this is
calculated from the classical dipole moment of an arbitrary configuration
by performing an average using y*

My, = /Mclw@/}*dT . (13)

A glance at (8) shows that in My, the differences of the v, will appear as
emission frequencies; since the vy are the spectroscopic term values, our
picture provides an understanding'” of Bohr’s frequency condition. The
integrals that appear as amplitudes of the different partial oscillations
of the dipole moment represent according to the remarks on (Bl) the
elements of Born and Heisenberg’s ‘dipole moment matrix’. By evalua-

a See the discussion after the report, as well as section 4] (eds.).



Wave mechanics 455

ting these integrals one obtained the correct polarisations and intensities
of the emitted light in many special cases, in particular intensity zero
in all cases where a line allowed by the frequency condition is missing
according to experience (understanding'® of the selection principle). —
Even though all these results, if one so wishes, can be detached from the
picture of the fluctuating charges and be represented in a more abstract
form, yet they put quite beyond doubt that the picture is tremendously
useful for one who has the need for Anschaulichkeit!'9H

In no way should one claim that the provisional attempt of a classical-
electrodynamic coupling of the field to the charges generating the field
is already the last word on this issue. There are internal® reasons for
doubting this. First, there is a serious difficulty in the question of the
reaction of the emitted radiation on the emitting system, which is not yet
expressed by the wave equation (7)), according to which also such wave
forms of the system that continuously emit radiation could and would in
fact always persist unabated. Further, one should consider the following.
We always observe the radiation emitted by an atom only through its
action on another atom or molecule. Now, from the wave mechanical
standpoint we can consider two charged point masses that belong to the
same atom, neither as acting directly on each other in their pointlike
form (standpoint of classical mechanics), nor are we allowed to think this
of their ‘smeared out’ wave mechanical charge distributions (the wrong
move taunted above). Rather, we have to take account of their classical
potential energy, considered as a function in g-space, in the coefficient V'
of the wave equation (7). But then, when we have two different atoms,
it will surely not be correct in principle to insert the fields generated by
the spread-out charges of the first at the position of the second in the

a Summary of the above: The physical meaning of the function ¢ appears to be that
the system of charged point particles imagined by classical mechanics does not
in fact exist, but that there is a continuous distribution of electric charge, whose
density can be calculated at each point of ordinary space using 1 or rather yYy*,
the square of the absolute value of 1. According to this idea, the quantum (or: real)
system is a superposition of all the possible configurations of the classical system,
the real function ¥* in g-space occurring as ‘weighting function’. Since ¥¢* in
general contains time, fluctuations of charge must occur. What we mean by the
existence of these continuous and fluctuating charges is not at all that they should
act on each other according to Coulomb’s or Biot-Savart’s law — the motion of
these charges is already completely governed by eq. (7). But what we mean is
that they are the sources of the electric fields and magnetic fields proceeding from
the atom, above all the sources of the observed radiation. In many a case one
has obtained wonderful agreement with experiment by calculating the radiation
of these fluctuating charges using classical electrodynamics. In particular, they
yield a complete and general explanation of Bohr’s ‘frequency condition’ and of
the spectral ‘polarisation and selection rules’.
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wave equation for the latter. And yet we do this when we calculate the
radiation of an atom in the way described above and now treat wave
mechanically the behaviour of another atom in this radiation field. I say
this way of calculating the interaction between the charges of different
atoms can be at most approximate, but not correct in principle. For
within one system it is certainly wrong. But if we bring the two atoms
closer together, then the distinction between the charges of one and
those of the other gradually disappears, it is actually never a distinction
of principle.?! — The coherent wave mechanical route would surely be
to combine both the emitting and the receiving system into a single one
and to describe them through a single wave equation with appropriate
coupling terms, however large the distance between emitter and receiver
may be. Then one could be completely silent about the processes in
the radiation field. But what would be the correct coupling terms? Of
course not the usual Coulomb potentials, as soon as the distance is equal
to several wavelengths!?? (One realises from here that without important
amendments the entire theory in reality can only be applied to very small
systems.) Perhaps one should use the retarded potentials. But these are
not functions in the (common) g-space, instead they are something much
more complicated. Evidently we encounter here the provisional limits of
the theory and must be happy to possess in the procedure depicted above
an approximate treatment that appears to be very useful

II. — FOUR-DIMENSIONAL THEORY

If one applies the multi-dimensional version of wave mechanics to a single
electron of mass m and charge e moving in a space with the electrostatic
potential ¢ and to be described by the three rectangular coordinates

a Summary of the above: However, there are reasons to believe that our fluctuating
and purely classically radiating charges do not provide the last word on this
question. Since we observe the radiation of an atom only by its effect on another
atom or molecule (which we shall thus also treat quite naturally by the methods of
wave mechanics), our procedure reduces to substituting into the wave equation of
one system the potentials that would be produced according to the classical laws
by the extended charges of another system. This way of accounting for the mutual
action of the charges belonging to two different systems cannot be absolutely
correct, since for the charges belonging to the same system it is not. The correct
method of calculating the influence of a radiating atom on another atom would
be perhaps to treat them as one total system according to the methods of wave
mechanics. But that does not seem at all possible, since the retarded potentials,
which should no doubt occur, are not simply functions of the configuration of the
systems, but something much more complicated. Evidently, at present these are
the limits of the method!
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x,y, z, then the wave equation () becomes

1 <a2¢+a2_¢+a2_¢) st dmioy

m\az "o ter) w0 W

(N.B. The factor % derives from the fact that, given the way of determi-
ning the metric of the g-space through the kinetic energy, xv/m, yv/m,
zy/m should be used as coordinates rather than z,y, z.23) It now turns
out that the present equation is nothing else but the ordinary three-
dimensional wave equation for de Broglie’s ‘phase waves’ of the electron,
except that the equation in the above form is shortened or truncated in
a way that one can call ‘neglecting the influence of relativity’.

In fact, in the electrostatic field de Broglie gives the following ex-
pressiorﬁ for the wave velocity u of his phase waves, depending on the
potential ¢ (i.e. on position) and on the frequency v:?*

h 2
u=-c v (VO = E) . (15)
Vv = e =1 h
If one inserts this into the ordinary three-dimensional wave equation
Oy P P 10
0x2 oy 022 w2 otz

and uses (@) to eliminate the frequency v from the equation, one has?®

92 92 >
(A=gm + a2 +522)

1 92 4diep O Am? [ e2p?
v L (hf —ug)wzo. (16)

T he2 Ot @ 2

At

Now if one considers that in the case of ‘slow electron motion’ (a) the
occurring frequencies are always very nearly equal to the rest frequency
Vg, so that in order of magnitude the derivative with respect to time in
(@6) is equal to a multiplication by 2mivg, and that (b) 2 in this case®®
is always small with respect to vp; and if one then sets in equation (I6))

b=ty (17)

and disregarding squares of small quantities, one obtains for ¥ exactly
equation (I4)) derived from the multi-dimensional version of wave mecha-
nics. As claimed, this is thus indeed the ‘classical approximation’ of the
wave equation holding for de Broglie’s phase waves!] The transformation
(@) here shows us that, considered from de Broglie’s point of view, the

a Cf. the formula for the refractive index on p.[B75 of de Broglie’s report (eds.).
b That is, the nonrelativistic approximation (eds.).
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multi-dimensional theory is committed to a so to speak truncated view
of the frequency, in that it subtracts once and for all from all frequencies
the rest frequency vy (N.B. In calculating the charge density from 1v* 27
the additional factor is of course irrelevant since it has modulus?® 1.29)H

Let us now keep to the form (I6]) of the wave equation. It still requires
an important generalisation. In order to be truly relativistic it must
be invariant with respect to Lorentz transformations. But if we perform
such a transformation on our electric field, hitherto assumed to be static,
then it loses this feature and a magnetic field appears by itself next to
it. In this way one derives almost unavoidably the form of the wave
equation in an arbitrary electromagnetic field. The result can be put in
the following transparent form, which makes the complete equivalence
[Gleichberechtigung] of time and the three spatial coordinates fully ex-
plicit :

2+2m'e 2+ g+2m'e 2
ox he Jy he M

18
0 2mie 2 19 2mie. \° 4218 (18)
o+ 5 ) + too) ——a |v=0.

0z he icot hc
(N.B. a is the vector potential.>® In evaluating the squares one has
to take account of the order of the factors, since one is dealing with
operators, and further of Maxwell’s relation:

Oa, n day n da, .i(’?(igp)

ox Jy dz ic Ot

This wave equation is of very manifold interest. First, as shown by
Gordonfd it can be derived in a way very similar to what we have
seen above for the amplitude equation of conservative systems, from a
variational principle, which now obtains in four dimensions, and where
time plays a perfectly symmetrical role with respect to the three spatial
coordinates. Further: if one adds to the Lagrange function of Gordon’s
variational principle the well-known Lagrange function of the Maxwell

=0 (19)

a Summary of the above: The three-dimensional wave equation, eq. (Id]), obtained
by applying the multi-dimensional theory to a single electron in an electrostatic
potential field ¢, is none other than the nonrelativistic approximation of the
wave equation that results from Mr L. [d]e Broglie’s ideas for his ‘phase waves’.
The latter, eq. (I6), is obtained by substituting into the ordinary wave equation
expression (I5)), which Mr |d|e Broglie has derived for the phase velocity u as a
function of the frequency v and of the potential ¢ (that is, of the coordinates
z, 9y, z, on which ¢ will depend) and by eliminating from the resulting formula the
frequency v by means of (@).

a W. Gordon, Zeitschr. f. Phys., 40 (1926), 117.
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field in vacuo (that is, the half-difference of the squares of the magnetic
and the electric field strenghts) and varies in the spacetime integral of the
new Lagrange function thus obtained not only ¢, but also the potential
components ¢, a,, ay, a., one obtains as the five Euler equations along
with the wave eguation ([I8) also the four retarded potential equations
for ¢, az,ay, a4 (One could also say: Maxwell’s second quadruple of
equations, while the first, as is well-known, holds identically in the
potentials.3?) It contains as charge and current density quadratic forms
in v and its first derivatives®® that agree completely with the rule which
we had given in the multi-dimensional theory for calculating the true
charge distribution from the ¢-function. Second, one can further defin

a stress-energy-momentum tensor of the charges, whose ten components
are also quadratic forms of ¢ and its first derivatives, and which together
with the well-known Maxwell tensor obeys the laws of conservation of
energy and of momentum (that is, the sum of the two tensors has a
vanishing divergence)

But I shall not bother you here with the rather complex mathema-
tical development of these issues, since the view still contains a serious
inconsistency. Indeed, according to it, it would be the same potential
components ¢, az, Gy, a, which on the one hand act to modify the wave
equation (I8) (one could say: they act on the charges as movers®®)
and which on the other hand are determined in turn, via the retarded
potential equations, by these same charges, which occur as sources in
the latter equations. (That is: the wave equation (I8) determines the 1)
function, from the latter one derives the charge and current densities,
which as sources determine the potential components.) — In reality,
however, one operates otherwise in the application of the wave equation
(I8) to the hydrogen electron, and one must operate otherwise to obtain
the correct result: one substitutes in the wave equation (I8)) the already
a E. Schrodinger, Ann. d. Phys., 82 (1927), [265].3!

b E. Schrédinger, loc. cit.3*

¢ Summary of the above: In order to generalise equation (I€]) so that it may apply
to an arbitrary electromagnetic field, one subjects it to a Lorentz transformation,
which automatically makes a magnetic field appear. One arrives at eq. (8], in
which time enters in a perfectly symmetrical way with the spatial coordinates.

Gordon has shown that this equation derives from a four-dimensional variational

principle. By adding to Gordon’s Lagrangian the well-known Lagrangian of the

free field and by varying along with ¢ also the four components of the potential,
one derives from a single variational principle besides eq. ([I8]) also the laws of
electromagnetism with certain homogeneous quadratic functions of ¢ and its first
derivatives as charge and current densities. These agree well with what was said
in the previous chapter regarding the calculation of the fluctuating charges using

the ¢ function. — One finds a definition of the stress-energy-momentum tensor,
which, added to Maxwell’s tensor, satisfies the conservation laws.
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given potentials of the nucleus and of possible external fields (Stark and
Zeeman effect). From the solution for ¢ thus obtained one derives the
fluctuating charge densities discussed above, which one in fact3¢ has to
use for the determination from sources of the emitted radiation; but one
must not add a posteriori to the field of the nucleus and the possible
external fields also the fields produced by these charges at the position
of the atom itself in equation (&) —>7 something totally wrong would
result.

Clearly this is a painful lacuna. The pure field theory is not enough,
it has to be supplemented by performing a kind of individualisation
of the charge densities coming from the single point charges of the
classical model, where however each single ‘individual’ may be spread
over the whole of space, so that they overlap. In the wave equation
for the single individual one would have to take into account only the
fields produced by the other individuals but not its self-field. These
remarks, however, are only meant to characterise the general nature
of the required supplement, not to constitute a programme to be taken
completely literally.

We wish to present also the remarkable special result yielded by the
relativistic form (I8) of the wave equation for the hydrogen atom. One
would at first expect and hope to find the well-known Sommerfeld for-
mula for the fine structure of terms. Indeed one does obtain a fine
structure and one does obtain Sommerfeld’s formula, however the result
contradicts experience, because it is exactly what one would find in
the Bohr-Sommerfeld theory, if one were to posit the radial as well as
the azimuthal quantum number as half-integers [halbzahlig], that is,
half of an odd integer. — Today this result is not as disquieting as
when it was first encounteredﬁ In fact, it is well-known that the ex-
tension of Bohr’s theory through the Uhlenbeck-Goudsmit electron spin
[Elektronendrall], required by many other facts of experience, has to be
supplemented in turn by the move to secondary quantum ‘half’-numbers
[‘halbe’ Nebenquantenzahlen] in order to obtain good results. How the

a Summary of the above: However, these last developments run into a great difficulty.
From their direct application would follow the logical necessity of taking into
account in the wave equation, for instance in the case of the hydrogen atom,
not only the potential arising from the nucleus, but also the potentials arising
from the fluctuating charges; which, apart from the enormous mathematical
complications that would arise, would give completely wrong results. The field
theory (‘Feldtheorie’) appears thus inadequate; it should be supplemented by a
kind of individualisation of the electrons, despite these being extended over the
whole of space.

b E. Schrodinger, Ann. d. Phys., 79 (1926), [361], p. 372.
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spin is represented in wave mechanics is still uncertain. Very promising
suggestiondd point in the direction that instead of the scalar i a vector
should be introduced. We cannot discuss here this latest turn in the
theoryﬁ

III. — THE MANY-ELECTRON PROBLEM

The attemptsH to derive numerical results by means of approximation
methods for the atom with several electrons, whose amplitude equa-
tion @) or wave equation (7)) cannot be solved directly, have led to
the remarkable result that actually, despite the multi-dimensionality of
the original equation, in this procedure one always needs to calculate
only with the well-known three-dimensional eigenfunctions of hydrogen;
indeed one has to calculate certain three-dimensional charge distributions
that result from the hydrogen eigenfunctions according to the principles
presented above, and one has to calculate according the principles of
classical electrostatics the self-potentials and interaction potentials of
these charge distributions; these constants then enter as coefficients in
a system of equations that in a simple way determines in principle the
behaviour of the many-electron atom. Herein, I think, lies a hint that
with the furthering of our understanding ‘in the end everything will
indeed become intelligible in three dimensions again’.?® For this reason
I want to elaborate a little on what has just been said.
Let

Yr(x,y,2) and Ep; (k=1,2,3,...)

be the normalised eigenfunctions (for simplicity assumed as real) and
corresponding eigenvalues of the one-electron atom with Z-fold positive
nucleus, which for brevity we shall call the hydrogen problem. They sa-

a C. G. Darwin, Nature, 119 (1927), 282, Proc. Roy. Soc. A, 116 (1927), 227.

b Summary of the above: For the hydrogen atom the relativistic equation (I8]) yields
a result that, although disagreeing with experience, is rather remarkable, that
is: one obtains the same fine structure as the one that would result from the
Bohr-Sommerfeld theory by assuming the radial and azimuthal quantum numbers
to be ‘integral and a half’, that is, half an odd integer. The theory has evidently
to be completed by taking into account what in Bohr’s theory is called the spin
of the electron. In wave mechanics this is perhaps expressed (C. G. Darwin) by a
polarisation of the i waves, this quantity having to be modified from a scalar to
a vector.

a See in particular A. Unsold, Ann. d. Phys., 82 (1927), 355.
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tisfy the three-dimensional amplitude equation (compare equation (H)):

1 (0% 0% 0% 872 Ze?
w3t ) Vo (B 5w = 0

(r=+x2+y>+22).

If only one eigenoscillation is present, one has the static charge distribu-

tion3?

PEkk = —61/1;% : (21)
If one imagines two being excited with maximal strength, one adds to

prk + pu a charge distribution oscillating with frequency |Ey — E;|/h,
whose amplitude distribution is given by

201 = —2epiy . (22)

The spatial integral of py; vanishes when k # [ (because of the orthogo-
nality of the ¢;) and it is —e for k = [. The charge distribution resulting
from the presence of two eigenoscillations together has thus at every

instant the sum zero. — One can now form the electrostatic potential
energies
x,y, 2)prr (2, Yy, 2
Dh k17 = /.../d:cdydzdz/dy/dz’ Pl . )P:Il @y, %) , (23)

where 7' = /(z —2/)2 4+ (y — y')2 + (z — /)2 and the indices k,[, k', I’
may exhibit arbitrary degeneracies (to be sure, in the case k = k', 1 =1,
p is twice the potential self-energy of the charge distribution pg;; but
that is of no importance). It is the constants p that control also the
many-electron atom.

Let us sketch this. Let the classical model now consist of n electrons
and a Z-fold positively charged nucleus at the origin. We shall use the
wave equation in the form (7). It becomes 3n-dimensional,*® say thus

1 872 47 O
E(A1+A2++An)¢—?(Vn+%)¢—T§—O (24)
Here
2 2 2
Ay 4 +8_+ 0 c=1,2,3,...,n. (25)

T 0a2 " oy2 T 022

We have considered the potential energy function as decomposed in two
parts, V,, + V¢; V,, should correspond to the interaction of all n electrons
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with the nucleus, V, to their interaction with one another, thereforeH

"1
V,=—-Ze*2y — 2
602217”0 (26)

11
Ve = +¢? — (27)

(o,7)

[TU =VaZ+ys+z2, Ter = \/(Io —2r)? + (Yo — yr)? + (26 — 21)?

As the starting point for an approximation procedure we choose now the
eigensolutions of equation (24) with V, = 0, that is with the interaction
between the electrons disregarded. The eigenfunctions are then products
of hydrogen eigenfunctions, and the eigenvalues are sums of the corre-
sponding eigenvalues of hydrogen. As a matter of fact, one easily shows
that*!

Uhyon = Vb (€191 21) « Wk, (T Yo 20 )€ Erateet B (28)
always satisfies equation (24)) (with V. = 0). And if one takes all possible
sequences of numbers [Zahlenkombinationen] for the k1, k2, . . ., ky, then
these products of v form a complete orthogonal system in the 3n-
dimensional g-space — one has thus integrated the approximate equation
completely.

One now aims to solve the full*? equation 24) (with V. # 0) by
ezpansion with respect to this complete orthogonal system, that is one
makes this ansatz:

Y= Z Z Ay ko Vhy o - (29)

ki1=1 kn=1

But of course the coefficients a cannot be constants, otherwise the above
sum would again be only a solution of the truncated equation with V, =
0. It turns out, however, that it is enough to consider the a as functions
of time alone (‘method of the variation of constants’)EI Substituting (29)
into ([24)) one finds that the following conditions on the time dependence

a Analogously to eq. (I2)), the prime on the summation sign should be interpreted
as meaning that the sum is to be taken over all pairs with o # 7 (eds.).
a P. A. M. Dirac, Proc. Roy. Soc. A, 112 (1926), [661] p. 674.
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of the a must hold;*3-44

da 211 > > it _
% — T Z Z Ukl...kn,ll...lnall...znezh (Biy.oin—FErky . kp)
h=1 1I,=1
k... kn=1,2,3...]. (30)
Here we have set for brevity
B + ...+ Ey, = Ep, ok, - (31)

The v are constants, indeed they are prima facie 3n-tuple integrals
ranging over the whole of g-space (Additional explanation:*> Where do
these 3n-tuple integrals come from? They derive from the fact that
after substituting (29) into (24) one replaces the latter equation by
the mathematically equivalent condition that its left-hand side shall be
orthogonal to all functions of the complete orthogonal system in Rs,.
The system (B0) expresses this condition.) Writing this out one has

vkl...kn,ll...ln -

3n-fold
/ . /dwl e dzn Vebp, (21,91, 21) « - Wk, (T Yy Zn) (32)

1/)11($1a Y1, Zl) cee 1/}ln (In; Yn, Zn) .

If one now considers the simple structure of V. given in (27), one recog-
nises that the v can be reduced to sextuple integrals, in fact each of them
is a finite sum of some of the Coulomb potential energies defined in (23)).
Indeed, if in the finite sum representing V., we focus on an individual
term, for example e? /7., this contains only the six variables x,, ..., 2.
One can thus immediately perform in ([82) precisely 3n — 6 integrations
on this term, yielding (because of the orthogonality and normalisation
of the ;) the factor 1, if k, = I, for all indices p that coincide neither
with ¢ nor with 7, and yielding instead the factor 0 if even just for a
single p different from o and 7 one has: k, # [,. (One sees thus that
very many terms disappear.) For the non-vanishing terms, it is easy to
see that they coincide with one of the p defined in 23). QE

a Summary of the above: Calling ¢ and Ej the eigenfunctions and eigenvalues
of the problem for one electron, charge —e, in the field of a nucleus +Ze
(hydrogen problem), let us form the charge distributions (ZI) and (22)), the
former corresponding to the existence of a single normal mode, the latter to the
cooperation of two of them. Taken as charge densities in ordinary electrostatics,
each of these would have a certain potential energy and there would even be a
certain mutual potential energy between two of them, assumed to coexist. These
are the constants py.// in (23). — With these givens, let us attack the problem
of the n-electron atom. Dividing the potential energy in the wave equation (24)
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Let us now have a somewhat closer look at the equation system
(B0), whose coefficients, as we have just seen, have such a relatively
simple structure, and which determines the varying amplitudes of our
ansatz*® (29) as functions of time. We can allow ourselves to introduce
a somewhat simpler symbolic notation, by letting the string of indi-

ces ki,ka,...,k, be represented by the single index k, and similarly
l1,l2,...,1, by l. One then has

d 2 R it

% - % > vgage T EED (33)

=1

(One must not confuse, however, E;, Ej, with the single?” eigenvalues of
the hydrogen problem, which were earlier denoted in the same way.*®)
This is now a system of infinitely many differential equations, which
we cannot solve directly: so, practically nothing seems to have been
gained. In turn, however, we have as yet also neglected nothing: with
ezact solutions ar of [B3), (9 would be an ezact solution of [24).
This is precisely where I want to place the main emphasis, greater than
on the practical implementation of the approximation procedure, which
shall be sketched below only for the sake of completeness. In principle
the equations (B3]) determine the solution of the many-electron problem
exactly;* — and they no longer contain anything multi-dimensional;
their coefficients are simple Coulomb energies of charge distributions
that already occur in the hydrogen problem. Further, the equations
B3) determine the solutions of the many-electron problem according
to ([Z9) as a combination of products of the hydrogen eigenfunctions.
While these products (denoted above by vk, k,.. k) are still functions
on the 3n-dimensional g-space, any two of them yield in the calculation
of the three-dimensional charge distributions in the many-electron atom,
as is easily seen, a charge distribution which if it is not identically zero
corresponds again to a hydrogen distribution (denoted above by pgi or
Pki)-
These considerations are the analogue of the construction of the higher
atoms from hydrogen trajectories in Bohr’s theory. They reinforce the
for this problem into two terms and neglecting at first the term Ve, due to the
mutual action between the electrons, the eigensolutions would be given by (28],
that is, by the products of n hydrogen functions. From these products, taken in all
combinations, form the series (29), which will yield the ezact solution of equation
@4), provided that the coefficients aj, ,...x, are functions of time satisfying the
equations (30); (see the abbreviation ). The coefficients v in ([B0) are constants,

defined originally by the 3n-tuple integrals (B2]), which however, thanks to the
simple form of Ve (see (21))), reduce to sextuple integrals, namely precisely to the

constants py ;.5 1/ (see (23).
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hope that by delving more deeply one will be able to interpret and under-
stand the results of the multi-dimensional theory in three dimensions

Now, as far as the approximation method is concerned, it consists
in fact of considering the contribution V., made to the potential energy
function V' by the interaction of the electrons with one another, to be as
far as possible small as compared to the action of the nucleus. The v
are then considered small compared to the eigenvalue differences E;— E},
except if E; = Ej. The q; will then vary slowly by comparison to the
powers of e appearing on the right-hand side of equation (33), as long as
the latter are not equal to 1, and all those terms on the right-hand side for
which this is not the case will yield only small fluctuations of short period
of the a; and can be neglected in the approximation.®! Thereby, first,
the sums on the right become finite, because in fact always only a finite
number of eigenvalues coincide. Second, the infinitely many equations
separate into groups; each group contains only a finite number of a; and
can be integrated very easily.®? This is the first step of the approximation
procedure, which in theory can be continued indefinitely, but becomes
more and more cumbersome. We shall not enter into details.

One can also transform the untruncated system of differential equa-
tions (B3] at a single stroke into a system of ordinary linear equations
(with infinitely many unknowns!) by setting

ap = ¢ w (E—E1) (34)

)

where the quantity F and the quantities ¢; are unknown constants.
Substituting into B3] one finds

(E—Ek)ck szklcl 3 (kZ 1,2,3,...) . (35)
=1

This equation system coincides with the Heisenberg-Born ‘principal axes
problem’. If the vy; are very small quantities, then, if not all ¢; are to
be very small, F must be close to one of the Ej, let us say to Ej.
In the first approximation then only cg, and all those ¢; for which

a Summary of the above: Although the system of egs. ([B0) (abbreviated to (33)))
does not admit a direct solution, the number of equations as well as the number of
unknown functions being infinite, it seems to me very interesting that the solution
to the multi-dimensional problem is provided in principle by a system of equations
whose coefficients have such simple meanings in three dimensions. Further, one
realises that the charge distribution that corresponds to the solution (23] of the
n-electron problem turns out to be the superposition of the distributions pgp
and pg; that occur already in the hydrogen problem. The hope of interpreting
and of understanding the multi-dimensional theory in three dimensions is thus
strengthened.
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E; = E}, are different from zero. The problem thus separates in the first
approximation into a denumerable set of finite principal axes problems

a Summary of the above: One can embark on the solution of the system of equations
B3) by an approximation method. Positing ([34), the constants E and ¢; have to
satisfy the system (BE]) of ordinary linear homogeneous equations, whose number as
well as that of the unknown constants, however, is infinite. It is only by assuming
all coefficients vg; to be small that one can conclude that E has to be very close
to one of the values Ej, for instance Ej, and that [¢;] approximately vanishes,
unless E; is equal to Ey. Since there is only a finite number of E; that coincide
with Fy, the problem reduces in the first approximation to a problem of a finite
number of ‘principal axes’, or rather to an infinity of such finite problems. — As a
matter of fact, the equations (35]) coincide with the problem of an infinite number
of principal axes, which the Heisenberg-Born mechanics reduces to.
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Discussion of Mr Schrodinger’s report

MR SCHRODINGER. — It would seem that my description in terms of
a snapshot was not very fortunate, since it has been misunderstood.
Perhaps the following explanation is clearer. The interpretation of Born
is well-known, who takes 9 *dr to be the probability for the system
being in the volume element dr of the configuration space. Distribute
a very large number N of systems in the configuration space, taking
the above probability as ‘frequency function’. Imagine these systems as
superposed in real space, dividing however by N the charge of each point
mass in each system. In this way, in the limiting case where N = co one
obtains the wave mechanical picture of the system.

MR BOHR. — You have said that from the charge distribution ¢y *dr
and the classical laws you obtain the frequency and intensity of light,
but do the remarks about difficulties you made later indicate that what
you had obtained was not correct?

MR SCHRODINGER. — The difficulty I mentioned is the following.
If one expands the general solution as a series with respect to the

eigenfunctions
Y= Z Crtbk
k

and if one calculates the intensity of the radiation resulting from v and
1y together, one finds that it becomes proportional to cic?. However,
according to the old theory, only the square of the amplitude correspon-
ding to the ‘initial level’ should appear here; that of the ‘final level’
should be replaced by 1.

MR BOHR. — Has Dirac not found the solution to the difficulty?

MR SCHRODINGER. — Dirac’s results are certainly very interesting
and point the way toward a solution, if they do not contain it already.
Only, we should first come to an understanding in physical terms [nous
devrions d’abord nous entendre en langage physique]. I find it still im-
possible, for the time being, to see an answer to a physical question in
the assertion that certain quantities obey a noncommutative algebra,
especially when these quantities are meant to represent numbers of
atoms. The relation between the continuous spatial densities, described
earlier, and the observed intensities and polarisations of the spectral
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rays is [too naturalﬁ for me to deny all meaning to these densities only
because some difficulties appear that are not yet resolved.

MR BORN. — It seems to me that interpreting the quantity ¥y* as
a charge density leads to difficulties in the case of quadrupole moments.
The latter in fact need to be taken into account in order to obtain the
radiation, not only for theoretical reasons, but also for experimental
reasons.

For brevity let us set

U U
and let us consider, for example, the case of two particles; ¥ becomes a
function of 1 and 2, where for brevity x; stands for all the coordinates

of the first particle; x5 has a similar meaning. The electric density is
then, according to Schrédinger,

p(x) :/\Il(;axz)dxz—i—/\lf(xl,x)d:vl .

In wave mechanics the quadrupole moment

// ,’ElfL'g\I’(CL'l, ,’Ez)dxldxz

cannot, as far as I can tell, be expressed using the function p(z). I
would like to know how one can, in this case, reduce the radiation of
the quadrupole to the motion of a charge distribution p(z) in the usual
three-dimensional space.

MR SCHRODINGER. — I can assure you that the calculation of the
dipole moments is perfecly correct and rigorous and that this objection
by Mr Born is unfounded. Does the agreement between wave mechanics
and matrix mechanics extend to the possible radiation of a quadrupole?
That is a question I have not examined. Besides, we do not possess obser-
vations on this point that could allow us to use a possible disagreement
between the two approaches to decide between them.

MR FOWLER asks for explanations regarding the method for solving
the equations in the case of the many-electron problem.

MR DE DONDER. — Equation ([24) of Mr Schrédinger’s report can be

a The French here reads ‘trop peu naturelle’, which has the exact opposite meaning.
The context would seem, however, to justify the amendment (eds.).
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extended to the case in which the n charged particles are different and
where the external actions as well as the interactions can be described,
in spacetime, by a gravitational field [champ graviﬁque]E The quantum
equation thus obtained is the sum of the quantum equations for the
n particles taken separately, each of the equations being divided by
the (rest) mass of the corresponding particle. Thus, for instance, the
quantum equation for the nucleus will not enter if one assumes, as a
first approximation, that the mass of the nucleus is infinitely large with
respect to that of an electron.

When there is interaction, the problem is much more complex. One
can, as Mr Schrodinger indicates, consider the action of the nucleus as
an external action acting on the electrons of the cloud [couronne], and
the (electrostatic) actions between the electrons in this cloud as a per-
turbation; but that is only a first approximation. In order to account for
relativistic and electromagnetic effects I have assumed that the molecular
systems have an additive characterEI One can thus recover, as a special
case, the above-mentioned method of quantisation by Schrédinger.

MR BORN. — In Gottingen we have embarked on a systematic calcu-
lation of the matrix elements that appear in perturbation theory, with
the aim of collecting them in tables up to the principal quantum number
10. Part of these calculations, which are very extended, has already been
done. My coworker Mr Biemiiller has used them to calculate the lower
terms of the helium atom according to the usual perturbation method
up to perturbations of the second order. The agreement of the ground
term with the empirical value, despite the defects of the procedure, is
hardly worse than in the recently published paper by Kellner [Zeitschr.
f. Phys., 44 (1927), 91], who has applied a more precise method (Ritz’s
procedure).

MR LORENTZ. — Do you see the outcome of this long labour as
satisfactory?

MR BORN. — The calculation has not attained yet the precision of
the measurements. The calculations we have done applying the ordinary

a Th. De Donder, L’équation fondamentale de la Chimie quantique, Comptes Rendus
Acad. Sci. Paris, session of 10 October 1927, pp. 698-700. See esp. eq. (10).

a For more details, one can consult our note: ‘L’équation de quantification des
molécules comprenant n particules électrisées’, published after this meeting, in
the Bull. Ac. R. Belg., Cl. des Sciences, session of 5 November 1927.
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perturbation method [méthode des perturbations ordinaires| consist of
a series expansion with respect to the inverse of the nuclear charge Z,
of the form

b c
E=7 -4+ =+4+...] .
<a—|— Zt ot >
The three terms shown have been calculated. Nevertheless, in the case
of helium (Z = 2) the precision is not yet as good as in the calculations

done by Kellner using Ritz’s approximation method.
MR LORENTZ. — But you hope however to improve your results.
MR BORN. — Yes, only the convergence of the series is very slow.

MR HEISENBERG. — On the subject of this approximation method,
Mr Schrodinger says at the end of his report that the discussion he
has given reinforces the hope that when our knowledge will be deeper
it will be possible to explain and to understand in three dimensions
the results provided by the multi-dimensional theory. I see nothing in
Mr Schrodinger’s calculations that would justify this hope. What Mr
Schrodinger does in his very beautiful approximation method, is to
replace the n-dimensional differential equations by an infinity of linear
equations. That reduces the problem, as Mr Schrodinger himself states,
to a problem with ordinary matrices, in which the coefficients can be
interpreted in three-dimensional space. The equations are thus ‘three-
dimensional’ exactly in the same sense as in the usual matrix theory.
It thus seems to me that, in the classical sense, we are just as far from
understanding the theory in three dimensions as we are in the matrix
theory.

MR SCHRODINGER. — I would not know how to express more precisely
my hope of a possible formulation in a three-dimensional space. Besides,
I do not believe that one would obtain simpler calculational methods in
this way, and it is probable that one will always do calculations using
the multi-dimensional wave equation. But then one will be able to grasp
its physical meaning better. I am not precisely searching for a three-
dimensional partial differential equation. Such a simple formulation is
surely impossible. If I am not satisfied with the current state of the
problem, it is because I do not understand yet the physical meaning of
its solution.
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What Mr Heisenberg has said is mathematically unexceptionable,
but the point in question is that of the physical interpretation. This
is indispensable for the further development of the theory. Now, this
development is necessary. For one must agree that all current ways of
formulating the results of the new quantum mechanics only correspond
to the classical mechanics of actions at a distance. As soon as light
crossing times become relevant in the system, the new mechanics fails,
because the classical potential energy function no longer exists.

Allow me, to show that my hope of achieving a three-dimensional
conception is not quite utopian, to recall what Mr Fowler has told
us on the topic of Mr Hartree’s approximation methodH It is true
that this method abstracts from what one calls the ‘exchange terms’
(which correspond, for instance, to the distance between the ortho and
para terms of neutral helium). But, abstracting from that, it already
achieves the three-dimensional aim I tend to. Should one declare a priori
impossible that Hartree’s method might be modified or developed in such
a way as to take into account the exchange terms while working with a
satisfactory three-dimensional model?

MR BORN. — Regarding the question of knowing whether it is possible
to describe a many-electron problem by a field equation in three dimen-
sions, I would like to point out the following. The number of quantum
numbers of an atom rises by three with each additional electron; it is thus
equal to 3n for n electrons. It seems doubtful that there should be an
ordinary, three-dimensional eigenvalue problem, whose eigenvalues have
a range of size 00®" [dont la valeur caractéristique ait une multitude de
003" dimensions]ﬁ Instead, it follows from recent papers by Dirac and
JordanH that one can build on a three-dimensional oscillation equation if
one considers the eigenfunction itself not as an ordinary number, but as
one of Dirac’s g-numbers, that is, if one quantises again its amplitude as a
function of time. An n-quanta oscillation with this amplitude then yields
together with the three spatial quantum numbers the necessary range
[multitude] of quantum numbers. From this point of view the number of
electrons in a system appears itself as a quantum number, that is, the
electrons themselves appear as discontinuities of the same nature as the

a See the discussion after Bragg’s report, p.[BI8] (eds.).

b The French text here appears to make little sense, but Born is possibly referring
to the dimension of the space of solutions (eds.).

¢ Cf. section IV of Born and Heisenberg’s report (eds.).
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stationary states.

MR SCHRODINGER. — Precisely the structure of the periodic system
is already contained in the physics [mécanique| of the three-dimensional
hydrogen problem. The degrees of degeneracy 1, 4, 9, 16, etc., multiplied
by 2, yield precisely the periodic numbers [nombres de périodes]. The
factor 2 that I have just mentioned derives from the spin [giration (spin)].
From the point of view of wave mechanics, the apparently mysterious
‘Pauli action’ of the first two electrons on the third (which they prevent
from also following an orbit with quantum number 1) means strictly
speaking nothing other than the non-existence of a third eigenfunction
with principal quantum number 1. This non-existence is precisely a
property of the three-dimensional model, or of the three-dimensional
equation. The multi-dimensional equation has too many eigenfunctions;
it is this [elle] that makes the ‘Pauli exclusion’ (Pauliverbot) necessary
to eliminate this defect

a The French text refers to the four-dimensional equation (‘I’équation a quatre
dimensions’) as having too many solutions. This reading could be correct, in
the sense that the exclusion principle was first introduced in the context of the
relativistic (four-dimensional) Bohr-Sommerfeld theory of the atom, but the above
reading seems much more natural in context. Note that Schréodinger throughout his
report uses ‘vierdimensional’ and ‘vieldimensional’, which could be easily confused,
for ‘four-dimensional’ and ‘many-dimensional’, respectively (eds.).
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Notes to the translation

Here and in the following, the French edition omits some italics, which
are quite characteristic of Schréodinger’s writing style and which we
tacitly restore.

[Energiegerade] — [série des énergies]

Bracket added in the French edition.

[als Beschreibung|] — [comme la définition|

[Vollsténdigkeit] — [perfection]

[freilich] — [évidemment)]

Printed as a footnote in the French edition.

[sie nicht .... beschreibe] — [qu’ils ne décrivent pas]

[Einzelsystem] — [systéme déterminé]

This clause is omitted in the French edition.

[von anderer Seite vertreten] — [défendue par d’autres]. Footnote only in
the French edition.

[aus einer Anzahl] — [d’un grand nombre]

[Durch die eben besprochene Deutung] — [Ainsi que nous venons de le
voir|

The equation number is missing in the French edition, and the following
sentence is printed as a footnote.

[es gebe] — [sont données]

[weitgehend] — [tout & fait]

[ Verstindnis| — [interprétation]

[ Verstdndnis| — [signification]

No exclamation mark in the French edition.

[innere] — [intimes]

[eine prinzipielle] — [essentielle]

No exclamation mark in the French edition.

Printed as a footnote in the French edition.

In the French edition this equation number is given to the following
equation (unnumbered in the typescript).

Bracket printed as a footnote in the French edition, with the addition: ‘A
stands for the Laplacian’.

[F2] — [e57]

[die Ladungsdichte aus 11*] — [la densité de charge ¥y*|

[Betrag] — [valeur]

Bracket printed as a footnote in the French edition.

The rest of the bracket is printed as a footnote in the French edition.
Both typescript and French edition give ‘365’ as page number.

The French edition adds this to the footnote.

[treten darin in ¢ und seinen ersten Ableitungen quadratische Formen
auf] — [y figurent dans v et ses premiéres dérivées des formes
quadratiques]

Footnote only in the French edition.

[bewegend] — [par le mouvement]

[allerdings] — [certainement]

[(@8)] — (@]

The French edition omits the inverted commas.

The equation number is missing in the printed volume.
[3n-dimensional] — [tridimensionelle]
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Misprint in the French edition: the Ej are not in the exponent.
[komplet[t]e] — [complexe]

[dass fiir die Abhéngigkeit der a von der Zeit folgende Forderungen
bestehen] — [que pour que a dépende du temps les conditions suivantes
doivent étre satisfaites|

Two misprints in the French edition: the E} are not in the exponent, and
the k; run to n.

Printed as a footnote in the French edition.

[unseres Ansatzes| — [de notre expression fondamentale]

[den einzelnen] — [les diverses]

Bracket printed as footnote in the French edition.

[bestimmen die Losung exact] — [déterminent la solution]

Misprint in the French edition: ‘¢ (k1, k2, ..., kn)".

Both the typescript and the French edition read ‘c;” and ‘ci’ instead of
‘a;” and ‘ar’.

Again, both the typescript and the French edition read ‘cy’ instead of

Lak)'



GGeneral discussion of the new ideas
presented®

CAUSALITY, DETERMINISM, PROBABILITY

MR LORENTZ. — I should like to draw attention to the difficulties one
encounters in the old theories.

We wish to make a representation of the phenomena, to form an image
of them in our minds. Until now, we have always wanted to form these
images by means of the ordinary notions of time and space. These notions
are perhaps innate; in any case, they have developed from our personal
experience, by our daily observations. For me, these notions are clear
and I confess that I should be unable to imagine physics without these
notions. The image that I wish to form of phenomena must be absolutely
sharp and definite, and it seems to me that we can form such an image
only in the framework of space and time.

For me, an electron is a corpuscle that, at a given instant, is present at
a definite point in space, and if I had the idea that at a following moment
the corpuscle is present somewhere else, I must think of its trajectory,
which is a line in space. And if the electron encounters an atom and
penetrates it, and after several incidents leaves the atom, I make up a
theory in which the electron preserves its individuality; that is to say,
I imagine a line following which the electron passes through the atom.

a As mentioned in section [[B, the Bohr archives contain a copy of the galley
proofs of the general discussion, dated 1 June 1928.1A few of the contributions
in these proofs seem to have been still largely unedited: they contain some gaps
and incomplete sentences, some more colloquial formulations, and in at least one
case a sentence that was dropped from the published volume. We reproduce in
endnotes the most substantial examples of these alternative versions. For most of
the discussion contributions by Dirac, we have followed his manuscript version.2For
Bohr’s discussion contributions, we have used material from Bohr (1985) and from
notes taken by Richardson? (also mentioned in section[[.8)). See our notes for further
details (eds.).

476
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Obviously, such a theory may be very difficult to develop, but a priori
it does not seem to me impossible.

Timagine that, in the new theory, one still has electrons. It is of course
possible that in the new theory, once it is well-developed, one will have to
suppose that the electrons undergo transformations. I happily concede
that the electron may dissolve into a cloud. But then I would try to
discover on which occasion this transformation occurs. If one wished to
forbid me such an enquiry by invoking a principle, that would trouble
me very much. It seems to me that one may always hope one will do later
that which we cannot yet do at the moment. Even if one abandons the old
ideas, one may always preserve the old classifications [dénominations]. I
should like to preserve this ideal of the past, to describe everything that
happens in the world with distinct images. I am ready to accept other
theories, on condition that one is able to re-express them in terms of
clear and distinct images.

For my part, despite not having yet become familiar with the new
ideas that I now hear expressed|d I could visualise these ideas thus. Let
us take the case of an electron that encounters an atom; let us suppose
that the electron leaves the atom and that at the same time there is
emission of a light quantum. One must consider, in the first place, the
systems of waves that correspond to the electron and to the atom before
the collision. After the collision, we will have new systems of waves.
These systems of waves can be described by a function ¢ defined in a
space with a large number of dimensions and satisfying a differential
equation. The new wave mechanics will work with this equation and will
determine the function 1 before and after the collision.

Now, there are phenomena that teach us that there is something
else in addition to the waves, namely corpuscles; one can, for example,
perform an experiment with a Faraday cylinder; one must then take
into account the individuality of the electrons and also of the photons. I
think I would find that, to explain the phenomena, it suffices to assume
that the expression ¥i* gives the probability that the electrons and
the photons exist in a given volume; that would suffice to explain the
experiments. But the examples given by Mr Heisenberg teach me that I
will have thus attained everything that experiment allows me to attain.
However, I think that this notion of probability should be placed at

a In fact, Lorentz had followed the recent developments rather closely. In particular,
he had corresponded extensively with Ehrenfest and with Schrédinger, and had
even delivered seminars and lectures on wave mechanics and on matrix mechanics
at Leiden, Cornell and Caltech. See section [[3 (eds.).
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the end, and as a conclusion, of theoretical considerations, and not as
an a priori axiom, though I may well admit that this indeterminacy
corresponds to experimental possibilities. I would always be able to keep
my deterministic faith for the fundamental phenomena, of which I have
not spoken. Could a deeper mind not be aware of the motions of these
electrons? Could one not keep determinism by making it an object of
belief? Must one necessarily elevate indeterminism to a principle?

MR BOHR expounds his point of view with respect to the problems
of quantum theory.

The original published proceedings add ‘(see the preceding article)’. In the
proceedings, the article preceding the general discussion is a French translation
of the German version of Bohr's Como lecture (Bohr 1928) (published in
Naturwissenschaften). As described in section [[.6] this article was included
at Bohr’s request, to replace his remarks made at this point in the general
discussion. (In our translation of the proceedings, we have omitted this well-
known article.)

The extant notes relating to Bohr’s remarks at this point are particularly
fragmentary. Kalckar’s introduction to volume 6 of Bohr’s Collected Works
(Bohr 1985) describes the corresponding part of notes (taken by Kramers and
by Verschaffelt) in the Bohr archives as too incomplete to warrant reproduction
in that volume, but provides the following summary and comparison with the
printed versions of the Como lecture: ‘The notes cover the wave-corpuscle
aspects of light and matter (corresponding to the first sections of the printed
lecture). The -ray microscope is analysed, although the notes are somewhat
incomplete here (as in many other places), and the role of the finite wave
trains is discussed in connection with the momentum measurement through
the Doppler effect (as in the printed versions). After some questions .... Bohr
continues by discussing the significance of the phase and comments on the
Stern-Gerlach experiment and the inobservability of the phase in a stationary
state ... (Bohr 1985, p. 37).

Further details of what Bohr said at this point may be obtained from notes
on the general discussion taken by Richardson.* Below, we reproduce the
relevant parts of these notes, and comment on their relation to Bohr’s paper
translated in the proceedings.

The first part of Richardson’s notes relating to Bohr reads as follows:

E = hy ei27'r(‘rz:c+‘ryy+7'zz7ut)
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Fig. A.

This corresponds to part of section 2 of Bohr’s paper translated in the proceed-
ings. There Bohr introduces the concepts of energy and momentum for plane
waves, and the idea that waves of limited extent in spacetime are obtained
through the ‘interference’ (that is, superposition) of different plane waves, the
resulting waves satisfying (at best) the given relations. (As a consequence, a
group of waves has no well-defined phase, a point Bohr takes up again below.)
This is used to justify Bohr’s idea of complementarity between a causal picture
(in the sense of energy-momentum conservation for elementary processes) and
a spacetime picture.

Richardson’s notes then continue as shown in Fig. A. The «-ray microscope
is discussed in section 3 of Bohr (1928) (the section on measurement, which
also discusses momentum measurements based on the Doppler effect). Bohr
appears to have inserted a discussion of these experiments as an illustration
of the uncertainty-type relations above.

The next part of Richardson’s notes returns to section 2 of the paper, and is
reproduced in Fig. B. This corresponds in fact to the subsequent paragraphs
of section 2, in which Bohr applies the notion of complementarity to resolve
the perceived paradoxes related to the scattering of radiation by free electrons
(note the extended — as opposed to pointlike — region of scattering in the
diagram, and see Bohr’s contribution to the discussion of Compton’s report,
p.[60) as well as the perceived paradoxes related to collisions (cf. section B-4.2]).
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Possibly, Z stands for ‘Impuls’ (that is, momentum), R for radiation, ¢ for
charge.

The next part of Richardson’s notes, shown in Fig. C, instead relates to part
of section 6 of Bohr’s paper (sections 4 and 5 of the paper are, respectively,
a review of the correspondence principle and of matrix mechanics, and a
discussion and critique of wave mechanics). In section 6 of the published
paper, Bohr raises the following puzzle. According to Bohr, in any observation
that distinguishes between different stationary states one has to disregard the
past history of the atom, but, paradoxically, the theory assigns a phase to a
stationary state. However, since the system will not be strictly isolated, one
will work with a group of waves, which (as mentioned in section 2) has no
well-defined phase. Bohr then illustrates this with the Stern-Gerlach experi-
ment. The condition for distinguishability of the eigenstates of the hydrogen
atom is that the angular spreading of the beam should be greater than that
given by diffraction at the slit (¢ > «), which translates into the time-energy
uncertainty relation. As Bohr mentions, Heisenberg (1927) uses this as an
illustration of the uncertainty relation, while Bohr uses it as an illustration of
how knowledge of the phase is lost. (This section also discusses the limit of
high quantum numbers.)

The final section 7 of the paper (‘The problem of elementary particles’) has
no parallel in Richardson’s notes. The part of the notes relating to Bohr’s
remarks at this point concludes instead with the following (explicitly labelled
‘Bohr’):
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MR BRILLOUIN. — Mr Bohr insists on the uncertainty of simultaneous
measurements of position and momentum; his point of view is closely
connected to the notion of cells in phase space introduced by Planck a
very long time ago. Planck assumed that if the representative point of
a system is in a cell (of size ApAg = h) one cannot distinguish it from
another point in the same cell. The examples brought by Mr Bohr aptly
make precise the physical meaning of this quite abstract notion.

MR DE DONDER. — The considerations that Mr Bohr has just de-
veloped are, I think, in close relation with the following fact: in the
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Einsteinian GravitationH of a continuous system or of a pointlike system,
there appear not the masses and charges of the particles, but entities
7(M) and 7(¢) in four dimensions; note that these generalised masses and
charges, localised in spacetime, are conserved along their worldlines.

MR BORN. — Mr Einstein has considered the following problem: A
radioactive sample emits a-particles in all directions; these are made vi-
sible by the method of the Wilson cloud [chamber]. Now, if one associates
a spherical wave with each emission process, how can one understand
that the track of each « particle appears as a (very nearly) straight line?
In other words: how can the corpuscular character of the phenomenon
be reconciled here with the representation by waves?

To do this, one must appeal to the notion of ‘reduction of the proba-
bility packet’ developed by HeisenbergH The description of the emission
by a spherical wave is valid only for as long as one does not observe
ionisation; as soon as such ionisation is shown by the appearance of
cloud droplets, in order to describe what happens afterwards one must
‘reduce’ the wave packet in the immediate vicinity of the drops. One
thus obtains a wave packet in the form of a ray, which corresponds to
the corpuscular character of the phenomenon.

Mr Paulﬂ has asked me if it is not possible to describe the process wi-
thout the reduction of wave packets, by resorting to a multi-dimensional
space, whose number of dimensions is three times the number of all the
particles present (a-particles and atoms hit by the radiation).

This is in fact possible and can even be represented in a very anschau-
lich manner [d’une maniére fort intuitive] by means of an appropriate
simplification, but this does not lead us further as regards the fundamen-
tal questions. Nevertheless, I should like to present this case here as an
example of the multi-dimensional treatment of such problems. I assume,
for simplicity, that there are only two atoms that may be hit. One then
has to distinguish two cases: either the two atoms 1 and 2 lie on the
same ray starting from the origin (the place where the preparation is),

a Th. De Donder, Théorie des champs gravifigues (Mémorial des sciences
mathématiques, part 14, Paris, 1926). See esp. equations (184), (184°) and
(188), (1887). One can also consult our lectures: The Mathematical Theory of
Relativity (Massachusetts Institute of Technology), Cambridge, Mass., 1927. See
esp. equations (23), (24) and (28), (29).

a Born is referring here in particular to Heisenberg’s uncertainty paper (Heisenberg
1927) (eds.).

b Cf. Pauli’s letter to Bohr, 17 October 1927, discussed in section 211 (eds.).
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Fig. 1.

or they do not lie on the same ray. If we represent by € the probability
that an atom will be hit, we have the following probability diagram

I. The points 1 and 2 are located on the same ray starting from the
origin.

Number of particles hit Probability

0 1—¢
1 0
2 €

a In the following tables, the probability for the number of particles hit to equal 1
should be read as the probability for each case in which the number of particles
hit equals 1 (eds.).
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II. The points 1 and 2 are not on the same ray.

Number of particles hit  Probability

0 1-2¢
1 €
2 0

This is how one should express the probability of events in the case of
rectilinear propagation.

To make possible a graphical representation of the phenomenon, we
will simplify it further by assuming that all the motions take place
following only a single straight line, the axis . We must then distinguish
the two cases where the atoms lie on the same side and on either side of
the origin. The corresponding probabilities are the following:

I. The points 1 and 2 are located on the same side.

Number of particles hit Probability

1
0 2
1 0
1
2 2

II. The points 1 and 2 are located on different sides.

Number of particles hit Probability

0 0

1
1 2
9 0

Now, these relations can be represented by the motion of a wave packet
in a space with three dimensions xg, 1, 5. To the initial state there
corresponds:

In case I, the point 20 =0, 1 =a x2=0"5
In case I, the point z9g =0, 1 =a x2=-b

where a and b are positive numbers. The wave packet at first fills the
space surrounding these points and subsequently moves parallel to the
axis xg, dividing itself into two packets of the same size going in opposite
directions. Collisions are produced when xy = x1 or zg = x2, that is to
say, on two planes of which one, Py, is parallel to the axis x2 and cuts
the plane zgz; following the bisector of the positive quadrant, while the
second, P, is parallel to the axis z; and cuts the plane xzgzs following
the bisector of the positive quadrant. As soon as the wave packet strikes
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the plane Py, its trajectory receives a small kink in the direction x1; as
soon as it strikes Po the trajectory receives a kink in the direction zo
(Fig. 1).

Now, one immediately sees in the figure that the upper part of the
wave packet, which corresponds to case I, strikes the planes Py, P2 on
the same side of the plane z;zo, while the lower part strikes them?®
on different sides. The figure then gives an anschaulich representation
of the cases indicated in the above diagram. It allows us to recognise
immediately whether, for a given size of wave packet, a given state, that
is to say a given point g, x1, 2, can be hit or not.

To the ‘reduction’ of the wave packet corresponds the choice of one
of the two directions of propagation +xy, —xg, which one must take as
soon as it is established that one of the two points 1 and 2 is hit, that
is to say, that the trajectory of the packet has received a kink.

This example serves only to make clear that a complete description of
the processes taking place in a system composed of several molecules is
possible only in a space of several dimensions.

MR EINSTEINH — Despite being conscious of the fact that I have not
entered deeply enough into the essence of quantum mechanics, nevert-
heless I want to present here some general remarks

One can take two positions towards the theory with respect to its
postulated domain of validity, which I wish to characterise with the aid
of a simple example.

Let S be a screen provided with a small opening O (Fig. 2), and P a
hemispherical photographic film of large radius. Electrons impinge on S
in the direction of the arrows. Some of these go through O, and because of
the smallness of O and the speed of the particles, are dispersed uniformly
over the directions of the hemisphere, and act on the film.

Both ways of conceiving the theory now have the following in common.
There are de Broglie waves, which impinge approximately normally on S
and are diffracted at O. Behind S there are spherical waves, which reach
the screen P and whose intensity at P is responsible [massgebend] for
what happens at PE

a The extant manuscript in the Einstein archives®consists of the first four paragraphs
only, which we have translated here (footnoting significant differences from the
published French) (eds.).

b The published French has: ‘I must apologise for not having gone deeply into
quantum mechanics. I should nevertheless want to make some general remarks’
(eds.).

¢ In the published French, the German expression ‘ist massgebend’ is misrendered
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Fig. 2.

We can now characterise the two points of view as follows.

1. Conception I. — The de Broglie-Schrédinger waves do not correspond
to a single electron, but to a cloud of electrons extended in space. The
theory gives no information about individual processes, but only about
the ensemble of an infinity of elementary processes.

2. Conception II. — The theory claims to be a complete theory of
individual processes. Each particle directed towards the screen, as far
as can be determined by its position and speed, is described by a packet
of de Broglie-Schrodinger waves of short wavelength and small angular
width. This wave packet is diffracted and, after diffraction, partly reaches
the film P in a state of resolution [un état de résolution].

According to the first, purely statistical, point of view |z/1|2 expresses
the probability that there exists at the point considered a particular
particle of the cloud, for example at a given point on the screen.

According to the second, [1)|* expresses the probability that at a given
instant the samne particle is present at a given point (for example on the
screen). Here, the theory refers to an individual process and claims to
describe everything that is governed by laws.

as ‘donne la mesure’ [gives the measure| instead of as ‘is responsible’. This is of
some significance for the interpretation of Einstein’s remarks as a form of the later
EPR argument; see section [T1] (eds.).
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The second conception goes further than the first, in the sense that all
the information resulting from I results also from the theory by virtue
of II, but the converse is not trueH It is only by virtue of II that the
theory contains the consequence that the conservation laws are valid for
the elementary process; it is only from II that the theory can derive
the result of the experiment of Geiger and Bothe, and can explain the
fact that in the Wilson [cloud] chamber the droplets stemming from an
a-particle are situated very nearly on continuous lines.

But on the other hand, I have objections to make to conception II.
The scattered wave directed towards P does not show any privileged
direction. If |1)|* were simply regarded as the probability that at a certain
point a given particle is found at a given time, it could happen that the
same elementary process produces an action in two or several places
on the screen. But the interpretation, according to which |1/)|2 expresses
the probability that this particle is found at a given point, assumes an
entirely peculiar mechanism of action at a distance, which prevents the
wave continuously distributed in space from producing an action in two
places on the screen.

In my opinion, one can remove this objection only in the following
way, that one does not describe the process solely by the Schrodinger
wave, but that at the same time one localises the particle during the
propagation. I think that Mr de Broglie is right to search in this directi-
on. If one works solely with the Schrodinger waves, interpretation II of
|w|2 implies to my mind a contradiction with the postulate of relativity.

I should also like to point out briefly two arguments which seem to me
to speak against the point of view II. This [view] is essentially tied to a
multi-dimensional representation (configuration space), since only this
mode of representation makes possible the interpretation of |¢|2 peculiar
to conception II. Now, it seems to me that objections of principle are
opposed to this multi-dimensional representation. In this representation,
indeed, two configurations of a system that are distinguished only by the
permutation of two particles of the same species are represented by two
different points (in configuration space), which is not in accord with the
new results in statistics. Furthermore, the feature of forces of acting only
at small spatial distances finds a less natural expression in configuration
space than in the space of three or four dimensions.

MR BOHRE — I feel myself in a very difficult position because I don’t

a The French has ‘I’ and ‘II’ exchanged in this sentence, which is illogical (eds.).
a These remarks by Bohr do not appear in the published French. We have reproduced
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understand what precisely is the point which Einstein wants to [make].
No doubt it is my fault.

As regards general problem I feel its difficulties. I would put problem
in other way. I do not know what quantum mechanics is. I think we
are dealing with some mathematical methods which are adequate for
description of our experiments. Using a rigorous wave theory we are
claiming something which the theory cannot possibly give. [We must
realise] that we are away from that state where we could hope of de-
scribing things on classical theories. Understand same view is held by
Born and Heisenberg. I think that we actually just try to meet, as in
all other theories, some requirements of nature, but difficulty is that we
must use words which remind of older theories. The whole foundation for
causal spacetime description is taken away by quantum theory, for it is
based on assumption of observations without interference. .... excluding
interference means exclusion of experiment and the whole meaning of
space and time observation .... because we [have| interaction [between
object and measuring instrument| and thereby we put us on a quite
different standpoint than we thought we could take in classical theories.
If we speak of observations we play with a statistical problem. There
are certain features complementary to the wave pictures (existence of
individuals). ....

The saying that spacetime is an abstraction might seem a philosophi-
cal triviality but nature reminds us that we are dealing with something
of practical interest. Depends on how I consider theory. I may not have
understood, but I think the whole thing lies [therein that the] theory
is nothing else [but] a tool for meeting our requirements and I think it
does.

MR LORENTZ. — To represent the motion of a system of n material
points, one can of course make use of a space of 3 dimensions with
n points or of a space of 3n dimensions where the systems will be
represented by a single point. This must amount to exactly the same
thing; there can be no fundamental difference. It is merely a question of

them from Bohr’s Collected Works, vol. 6 (Bohr 1985, p. 103), which contains a
reconstruction of Bohr’s remarks from notes by Verschaffelt (held in the Bohr
archive). The tentative interpolations in square brackets are by the editor of Bohr
(1985), J. Kalckar (eds.).
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knowing which of the two representations is the most suitable, which is
the most convenient.

But I understand that there are cases where the matter is difficult. If
one has a representation in a space of 3n dimensions, one will be able to
return to a space of 3 dimensions only if one can reasonably separate the
3n coordinates into n groups of 3, each corresponding to a point, and I
could imagine that there may be cases where that is neither natural nor
simple. But, after all, it certainly seems to me that all this concerns the
form rather than the substance of the theory.

MR PAuLL. — I am wholly of the same opinion as Mr Bohr, when
he says that the introduction of a space with several dimensions is only
a technical means of formulating mathematically the laws of mutual
action between several particles, actions which certainly do not allow
themselves to be described simply, in the ordinary way, in space and
time. It may perfectly well be that this technical means may one day
be replaced by another, in the following fashion. By Dirac’s method one
can, for example, quantise the characteristic vibrations of a cavity filled
with blackbody radiation, and introduce a function 1 depending on the
amplitudes of these characteristic vibrations of unlimited number. One
can similarly use, as do Jordan and Klein, the amplitudes of ordinary
four-dimensional material waves as arguments of a multi-dimensional
function ¢. This gives, in the language of the corpuscular picture, the
probability that at a given instant the numbers of particles of each spe-
cies present, which have certain kinematical properties (given position or
momentum), take certain values. This procedure also has the advantage
that the defect of the ordinary multi-dimensional method, of which Mr
Einstein has spoken and which appears when one permutes two particles
of the same species, no longer exists. As Jordan and Klein have shown,
making suitable assumptions concerning the equations that this function
¢ of the amplitudes of material waves in ordinary space must satisfy,” one
arrives exactly at the same results as by basing oneself on Schréodinger’s
multi-dimensional theory.

To sum up, I wish then to say that Bohr’s point of view, according
to which the properties of physical objects of being defined and of being
describable in space and time are complementary, seems to be more
general than a special technical means. But, independently of such a
means, one can, according to this idea, declare in any case that the
mutual actions of several particles certainly cannot be described in the
ordinary manner in space and time.
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To make clear the state of things of which I have just spoken, allow me
to give a special example. Imagine two hydrogen atoms in their ground
state at a great distance from each other, and suppose one asks for their
energy of mutual action. Each of the two atoms has a perfectly isotropic
distribution of charge, is neutral as a whole, and does not yet emit
radiation. According to the ordinary description of the mutual action
of the atoms in space and time, one should then expect that such a
mutual action does not exist when the distance between the two neutral
spheres is so great that no notable interpenetration takes place between
their charge clouds. But when one treats the same question by the multi-
dimensional method, the result is quite different, and in accordance with
experiment.

The classical analogy to this last result would be the following: Imagine
inside each atom a classical oscillator whose moment p varies periodical-
ly. This moment produces a field at the location of the other atom whose
periodically variable intensity is of order £ ~ £, where r is the distance
between the two atoms. When two of these oscillators act on each other,
a polarisation occurs with the following potential energy, corresponding
to an attractive force between the atoms,

where « represents the polarisability of the atom.

In speaking of these oscillators, I only wanted to point out a classical
analogy with the effect that one obtains as a result of multi-dimensional
wave mechanics. I had found this result by means of matrices, but Wang
has derived it directly from the wave equation in several dimensions. In
a paper by Heitler and London, which is likewise concerned with this
problem, the authors have lost sight of the fact that, precisely for a large
distance between the atoms, the contribution of polarisation effects to
the energy of mutual action, a contribution which they have neglected,
outweighs in order of magnitude the effects they have calculated.

Mr DIRACH — I should like to express my ideas on a few questions.
The first is the one that has just been discussed and I have not much
to add to this discussion. I shall just mention the explanation that the

a Here we mostly follow the English version from Dirac’s manuscript.®(The French
translation may have been done from a typescript or fairer copy.) We generally
follow the French paragraphing, and we uniformise Dirac’s notation. Interesting
variants, cancellations and additions will be noted, as will significant deviations
from the published French (eds.).
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quantum theory would give of Bothe’s experiment.® The difficulty arises
from'° the inadequacy of the 3-dimensional wave picture. This picture
cannot distinguish between the case when there is a probability p of a
light-quant being in a certain small volume, and the case when there is
a probability %p of two light-quanta being in the volume, and no pro-
bability for only one. But the wave function in many-dimensional space
does distinguish between these cases. The theory of Bothe’s experiment
in many-dimensional space would show that, while there is a certain pro-
bability for a light-quantum appearing in one or the other of the counting
chambers, there is no probability of two appearing simultaneously.

At present the general theory of the wave function in many-dimensional
space necessarily involves the abandonment of relativity.!! One might,
perhaps, be able to bring relativity into the general quantum theory in
the way Pauli has mentioned of quantising 3-dimensional waves, but this
would not lead to greater Anschaulichkeit!'? in the explanation of results
such as Bothe’s.

I shall now show how Schrédinger’s expression for the electric density
appears naturally in the matrix theory. This will show the exact signi-
fication of this density and the limitations which must be imposed on
its use. Consider an electron moving in an arbitrary field, such as that
of an H atom. Its coordinates z,y, z will be matrices. Divide the space
up into a number of cells, and form that function of z,y, z that is equal
to 1 when the electron is in a given cell and 0 otherwise. This function
of the matrices x,y, z will also be a matrixH There is one such matrix
for each cell whose matrix elements will be functions of the coordinates
a, b, ¢ of the cell, so that it can be written A(a,b,c).

Each of these matrices represents a quantity that if measured experi-
mentally must have either the value 0 or 1. Hence each of these matrices
has the characteristic values 0 and 1 and no others. If one takes the two
matrices A(a,b,c) and A(a’,V',c’), one sees that they must commute,*?
since one can give a numerical value to both simultaneously; for example,
if the electron is known to be in the cell a, b, ¢, it will certainly not be in
the cell ', ¥, ¢, so that if one gives the numerical value 1 to A(a,b,c),
one must at the same time give the numerical value 0 to A(a’,b’, ).

We can transform each of the matrices A into a diagonal matrix A*

a The published version has: ‘Divide the space up into a large number of small cells,
and consider the function of three variables £, n, ¢ that is equal to 1 when the
point &, m, ¢ is in a given cell and equal to 0 when the point is elsewhere. This
function, applied to the matrices z, y, z, gives another matrix’ (eds.).
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by a transformation'? of the type
A* = BAB™.

Since all the matrices A(a, b, c) commute,'® they can be transformed
simultaneously into diagonal matrices by a transformation of this type.
The diagonal elements of each matrix A*(a,b,c) are its characteristic
values, which are the same as the characteristic values of A(a,b,c), that
is, 0 and 1.

Further, no two A* matrices, such as A*(a,b,c) [and] A*(a/, ¥, ),
can both have 1 for the same diagonal element, as a simple argument
shows that A*(a,b, c)+A*(a’, V', ¢') must also have only the characteristic
values 0 and 1. We can without loss of generality assume that each A*
has just one diagonal element equal to 1 and all the others zero. By
transforming back, by means of the formula

A(a,b,c) = B"'A*(a,b,c)B ,
we now find that the matrix elements of A(a,b,c) are of the form
A(a,b,¢)mn = B, By,

i.e. a function of the row multiplied by a function of the column.

It should be observed that the proof of this result is quite indepen-
dent of equations of motion and quantum conditions. If we take these
into account, we find that B! and B, are apart from constants just
Schrodinger’s eigenfunctions 1, and v, at the point a, b, c.

Thus Schrodinger’s density function ¥, (z, y, 2)Ym(x, y, 2) is al® dia-
gonal element of the matrix A referring to a cell about the point z,y, 2.
The true quantum expression for the density is the whole matrix. Its
diagonal elements give only the average density, and must not be used
when the density is to be multiplied by a dynamical variable represented
by a matrix.

Ishould now like to express my views on determinism and the nature of
the numbers appearing in the calculations of the quantum theory, as they
appear to me after thinking over Mr Bohr’s remarks of yesterday.!” In the
classical theory one starts from certain numbers describing completely
the initial state of the system, and deduces other numbers that describe
completely the final state. This deterministic theory applies only to an
isolated system.

But, as Professor Bohr has pointed out, an isolated system is by
definition unobservable. One can observe the system only by disturbing
it and observing its reaction to the disturbance. Now since physics is
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concerned only with observable quantities the deterministic classical
theory is untenable.'®

In the quantum theory one also begins with certain numbers and
deduces others from them. Let us inquire into the distinguishing cha-
racteristics!® of these two sets of numbers. The disturbances that an
experimenter applies to a system to observe it are directly under his
control, and are acts of freewill by him. It is only the numbers that
describe these acts of freewill that can be taken as initial numbers for a
calculation in the quantum theory. Other numbers describing the initial
state of the system are inherently unobservable, and do?" not appear in
the quantum theoretical treatment.

Let us now consider the final numbers obtained as the result of an
experiment. It is essential that the result of an experiment shall be a
permanent record. The numbers that describe such a result must help to
not only describe the state of the world at the instant the experiment is
ended, but also help to describe the state of the world at any subsequent
time. These numbers describe what is common to all the events in a
certain chain of causally connected events, extending indefinitely into
the future.

Take as an example a Wilson cloud expansion experiment. The causal
chain here consists of the formation of drops of water round ions, the
scattering of light by these drops of water, and the action of this light on
a photographic plate, where it leaves a permanent record. The numbers
that form the result of the experiment describe all of the events in this
chain equally well and help to describe the state of the world at any time
after the chain began.

One could perhaps extend the chain further into the past.?! In the
example one could, perhaps, ascribe the formation of the ions to a
[B-particle, so that the result of the experiment would be numbers de-
scribing the track of a g-particle. In general one tries with the help
of theoretical considerations to extend the chain as far back into the
past as possible, in order that the numbers obtained as the result of
the experiment may apply as directly as possible to the process under
investigation.??

This view of the nature of the results of experiments fits in very well
with the new quantum mechanics. According to quantum mechanics the
state of the world at any time is describable by a wave function v,
which normally varies according to a causal law, so that its initial value
determines its value at any later time. It may however happen that at a
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certain time ¢1, 1) can be expanded in the form
¢ = Z ann )
n

where the 1,,’s are wave functions of such a nature that they cannot
interfere with one another at any time subsequent to ¢;. If such is the
case, then the world at times later than ¢; will be described not by 1 but
by one of the 1,,’s. The particular 1, that it shall be must be regarded
as chosen by nature.?? One may say that nature chooses which ,, it is
to be, as the only information given by the theory is that the probability
of any v, being chosen is |c,|*.2* The value of the suffix n that labels
the particular ¢, chosen may be the result of an experiment, and the
result of an experiment must always be such a number. It is a number
describing an irrevocable choice of nature, which must affect the whole
of the future course of eventsH

As an example take the case of a simple collision problem. The wave
packet representing the incident electron gets scattered in all directions.
One must take for the wave function after the process not the whole
scattered wave, but once again a wave packet moving in a definite
direction. From the results of an experiment, by tracing back a chain
of causally connected events one could determine in which direction the
electron was scattered and one would thus infer that nature had chosen
this direction. If, now, one arranged a mirror to reflect the electron
wave scattered in one direction d; so as to make it interfere with the
electron wave scattered in another direction ds, one would not be able
to distinguish between the case when the electron is scattered in the
direction do and when it is scattered in the direction d; and reflected
back into ds. One would then not be able to trace back the chain of causal
events so far, and one would not be able to say that nature had chosen
a direction as soon as the collision occurred, but only [that] at a later
time nature chose where the electron should appear. The?® interference
between the 1,,’s compels nature to postpone her choice.

a The last two sentences appear differently in the published version: ‘T'he choice,

once made, is irrevocable and will affect the whole future state of the world. The
value of n chosen by nature can be determined by experiment and the results of
all experiments are numbers describing such choices of nature’.
Dirac’s notes contain a similar variant written in the margin: ‘The value of n
chosen by nature may be determined by experiment. The result of every experiment
consists of numbers determining one of these choices of nature, and is permanent
since such a choice is irrevocable and affects the whole future state of the world’
(eds.).
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Mr BOHRH — Quite see that one must go into details of pictures,
if one wants to control or illustrate general statements. I think still
that you may simpler put it in my way. Just this distinction between
observation and definition allows to let the quantum mechanics appear
as generalisation. What does mean: get records which do not allow to
work backwards. Even if we took all molecules in photographic plate one
would have closed system. If we tell of a record we give up definition of
plate. Whole point lies in that by observation we introduce something
which does not allow to go on.

MR BORN. — I should like to point out, with regard to the considera-
tions of Mr Dirac, that they seem closely related to the ideas expressed
in a paper by my collaborator J.2% von Neumann, which will appear
shortly. The author of this paper shows that quantum mechanics can be
built up using the ordinary probability calculus, starting from a small
number of formal hypotheses; the probability amplitudes and the law of
their composition do not really play a role there.

MR KRAMERS. — I think the most elegant way to arrive at the results
of Mr Dirac’s considerations is given to us by the methods he presented
in his memoir in the Proc. Roy. Soc., ser. A, vol. 113, p. 621. Let us
consider a function of the coordinates ¢i,¢o,qs of an electron, that is
equal to 1 when the point considered is situated in the interior of a
certain volume V of space and equal to zero for every exterior point, and
let us represent by (g, ) and 9(c, q) the transformation functions that
allow us to transform a physical quantity F', whose form is known as a
matrix (¢’, ¢"), into a matrix (o/, "), a1, ag, a3 being the first integrals
of the equation of motion. The function f, written as a matrix (¢’,¢"”),
will then take the form f(¢')d(¢’ — ¢"), where 6(¢' — ¢") represents
Dirac’s unit matrix. As a matrix (o, '), f will then take the form

flo o) = / 3o, ¢ )dd F(@)S(d — a")dg" v, o)
- / B!, d)dgv(d ")
\%

the integral having to be extended over the whole of the considered
volume. The diagonal terms of f(a/, @), which may be written in the

a Again, these remarks do not appear in the published French and we have
reproduced them from Bohr’s Collected Works (Bohr 1985, p. 105) (eds.).
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form
fla) = [ wida.

will directly represent, in accordance with Dirac’s interpretation of the
matrices, the probability that, for a state of the system characterised by
given values of «, the coordinates of the electron are those of a point
situated in the interior of V. As ® is nothing other than the solution of
Schrédinger’s wave equation, we arrive at once at the interpretation of
the expression 1) under discussion.

MR HEISENBERG. — I do not agree with Mr Dirac when he says
that, in the described experiment, nature makes a choice. Even if you
place yourself very far away from your scattering material, and if you
measure after a very long time, you are able to obtain interference by
taking two mirrors. If nature had made a choice, it would be difficult
to imagine how the interference is produced. Evidently, we say that this
choice of nature can never be known before the decisive experiment
has been done; for this reason, we can make no real objection to this
choice, because the expression ‘nature makes a choice’ then implies no
physical observation. I should rather say, as I did in my last paper,
that the observer himself makes the choiceﬁ because it is only at the
moment where the observation is made that the ‘choice’ has become a
physical reality and that the phase relationship in the waves, the power
of interference, is destroyed.

MR LORENTZ. — There is then, it seems to me, a fundamental diffe-
rence of opinion on the subject of the meaning of these choices made by
nature.

To admit the possibility that nature makes a choice means, I think,
that it is impossible for us to know in advance how phenomena will
take place in the future. It is then indeterminism that you wish to
erect as a principle. According to you there are events that we cannot
predict, whereas until now we have always assumed the possibility of
these predictions.

a From Heisenberg’s publication record, it is clear that he is here referring to his
uncertainty paper, which had appeared in May 1927. There we find the statement
that ‘all perceiving is a choice from a plenitude of possibilities’ (Heisenberg 1927,
p. 197). When Heisenberg says, in his above comment on Dirac, that the observer
‘makes’ the choice, he seems to mean this in the sense of the observer bringing
about the choice (eds.).
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PHOTONS

MR KRAMERS. — During the discussion of Mr de Broglie’s report, Mr
Brillouin explained to us how radiation pressure is exerted in the case
of interference and that one must assume an auxiliary stress. But how
is radiation pressure exerted in the case where it is so weak that there
is only one photon in the interference zone? And how does one obtain
the auxiliary tensor in this case?

MR DE BROGLIE. — The proof of the existence of these stresses can
be made only if one considers a cloud of photons.

MR KRAMERS. — And if there is only one photon, how can one
account for the sudden change of momentum suffered by the reflecting
object?

MR BRILLOUIN. — No theory currently gives the answer to Mr Kra-
mers’ question.

MR KRAMERS. — No doubt one would have to imagine a complicated
mechanism, that cannot be derived from the electromagnetic theory of
waves?

MR DE BROGLIE. — The dualist representation by corpuscles and as-
sociated waves does not constitute a definitive picture of the phenomena.
It does not allow one to predict the pressures exerted on the different
points of a mirror during the reflection of a single photon. It gives only
the mean value of the pressure during the reflection of a cloud of photons.

MR KRAMERS. — What advantage do you see in giving a precise value
to the velocity v of the photons?

MR DE BROGLIE. — This allows one to imagine the trajectory followed
by the photons and to specify the meaning of these entities; one can thus
consider the photon as a material point having a position and a velocity.

MR KrRAMERS. — I do not very well see, for my part, the advantage
that there is, for the description of experiments, in making a picture
where the photons travel along well-defined trajectories.



498 General discussion

MR EINSTEIN. — During reflection on a mirror, Mr L. de Broglie
assumes that the photons move parallel to the mirror with a speed csin 6,
but what happens if the incidence is normal? Do the photons then have
zero speed, as required by the formula (6 = 0)?

MR P1cCARD. — Yes. In the case of reflection, one must assume that
the component of the velocity of the photons parallel to the mirror is
constant. In the interference zone, the component normal to the mirror
disappears. The more the incidence increases, the more the photons
are slowed down. One thus indeed arrives at stationary photons in the
limiting case of normal incidence

MR LANGEVIN. — In this way then, in the interference zone, the
photons no longer have the speed of light; they do not then always have
the speed c?

MR DE BROGLIE. — No, in my theory the speed of photons is equal
to ¢ only outside any interference zone, when the radiation propagates
freely in the vacuum. As soon as there are interference phenomena, the
speed of the photons becomes smaller than c.

MR DE DONDER. — I should like to show how the research of Mr L.
de Broglie is related to mine on some points.

By identifying the ten equations of the gravitational field and the
four equations of the electromagnetic field with the fourteen equations
of the wave mechanics of L. Rosenfeld, I have obtainecﬁ a principle of
correspondence that clarifies and generalises that of O. Klein

In my principle of correspondence, there appear the quantum current
and the quantum tensor. I will give the formulas for them later on; let
it suffice to remark now that the example of correspondence that Mr de
Broglie has expounded is in harmony with my principle.

Mr L. Rosenfelo@ has given another example. Here, the mass is con-
served and, moreover, one resorts to the quantum current. We add that

a Note that here the wave train is tacitly assumed to be limited longitudinally. Cf.
our discussion of the de Broglie-Pauli encounter, section (eds.).

b Bull. Ac. Roy. de Belgique, Cl. des Sc. (5) XIII, ns. 8-9, session of 2 August
1927, 504-9. See esp. equations (5) and (8).

¢ Zeitschr. f. Phys. 41, n. 617 (1927). See esp. equations (18), p. 414.

d L. Rosenfeld, ‘L’univers a cinq dimensions et la mécanique ondulatoire (quatriéme
communication)’, Bull. Ac. Roy. Belg., Cl. des Sc., October 1927. See esp.
paragraphs 4 and 5.
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this model of quantisation is also included, as a particular case, in our
principle of correspondence.

Mr Lorentz has remarked, with some surprise, that the continuity
equation for charge is preserved in Mr de Broglie’s example. Thanks
to our principle of correspondence, and to Rosenfeld’s compatibility?”
theorem, one can show that it will always be so for the total current
(including the quantum current) and for the theorem of energy and
momentum. The four equations that express this last theorem are satis-
fied by virtue of the two generalised quantum equations of de Broglie-
Schrodinger.

One further small remark, to end with. Mr de Broglie said that rela-
tivistic systems do not exist yet. I have given the theory of continuous
or holonomic systemsEI But Mr de Broglie gives another meaning to
the word system; he has in mind interacting systems, such as the Bohr
atom, the system of three bodies, etc. I have remarked recentlyﬁ that the
quantisation of these systems should be done by means of a (ds)? taken
in a configuration space with 4n dimensions, n denoting the number of
particles. In a paper not yet published, I have studied particular systems
called additive.

MR LORENTZ. — The stresses of which you speak and which you call
quantum, are they those of Maxwell?

MR DE DONDER. — Our quantum stresses must contain the Maxwell
stresses as a particular case; this results from the fact that our principle
of correspondence is derived (in part, at least) from Maxwell’s equations,
and from the fact that these quantum stresses here formally play the
same role as the stresses of electrostrictiorﬂ in Einsteinian Gravity. Let
us recall, on this subject, that our principle of correspondence is also
derived from the fundamental equations of Einsteinian Gravity. Mr de
Broglie has, by means of his calculations, thus recovered the stresses of
radiation.

a C. R. Acad. Sc. Paris, 21 February 1927, and Bull. Ac. Roy. Belgique, Cl. des
Sc., 7 March 1927.

b Bull. Ac. Roy. Belgique, Cl. des Sc., 2 August 1927. See esp. form. (22).

¢ For more details, see our Note: ‘L’électrostriction déduite de la gravifique
einsteinienne’, Bull. Ac. Roy. Belgique, Cl. des Sc., session of 9 October 1926,
673-8.
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PHOTONS AND ELECTRONS

MR LANGEVIN makes a comparison between the old and modern stati-
stics.

Formerly, one decomposed the phase space into cells, and one evalua-
ted the number of representative points attributing an individuality to
each constituent of the system.

It seems today that one must modify this method by suppressing the
individuality of the constituents of the system, and substituting instead
the individuality of the states of motion. By assuming that any number
of constituents of the system can have the same state of motion, one
obtains the statistics of Bose-Einstein.

One obtains a third statistics, that of Pauli-Fermi-Dirac,?® by assu-
ming that there can be only a single representative point in each cell of
phase space.

The new type of representation seems more appropriate to the con-
ception of photons and particles: since one attributes a complete identity
of nature to them, it appears appropriate to not insist on their indivi-
duality, but to attribute an individuality to the states of motion.

In the report of Messrs Born and Heisenberg, I see that it results
from quantum mechanics that the statistics of Bose-Einstein is suitable
for molecules, that of Pauli-Dirac for electrons and protons. This means
that for photons? and molecules there is superposition, while for pro-
tons and electrons there is impenetrability. Material particles are then
distinguished from photons3’ by their impenetrability.>!

MR HEISENBERG. — There is no reason, in quantum mechanics, to
prefer one statistics to another. One may always use different statistics,
which can be considered as complete solutions of the problem of quantum
mechanics. In the current state of the theory, the question of interaction
has nothing to do with the question of statistics.

We feel nevertheless that Einstein-Bose statistics could be the more
suitable for light quanta, Fermi-Dirac statistics for positive and negative
electronsH The statistics could be connected with the difference between
radiation and matter, as Mr Bohr has pointed out. But it is difficult to
establish a link between this question and the problem of interaction. I
shall simply mention the difficulty created by electron spin.

MR KRAMERS reminds us of Dirac’s research on statistics, which

a That is, for protons and electrons (eds.).
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has shown that Bose-Einstein statistics can be expressed in an entirely
different manner. The statistics of photons, for example, is obtained by
considering a cavity filled with blackbody radiation as a system having
an infinity of degrees of freedom. If one quantises this system according
to the rules of quantum mechanics and applies Boltzmann statistics,
one arrives at Planck’s formula, which is equivalent to Bose-Einstein
statistics applied to photons.

Jordan has shown that a formal modification of Dirac’s method allows
one to arrive equally at a statistical distribution that is equivalent to
Fermi statistics. This method is suggested by Pauli’s exclusion principle.

MR DIRACH points out that this modification, considered from a
general point of view, is quite artificial. Fermi statistics is not established
on exactly the same basis as Einstein-Bose statistics, since the natural
method of quantisation for waves leads precisely to the latter statistics
for the particles associated with the waves. To obtain Fermi statistics,
Jordan had to use an unusual method of quantisation for waves, chosen
specially so as to give the desired result. There are mathematical errors
in the work of Jordan that have not yet been redressed.

MR KRAMERS. — I willingly grant that Jordan’s treatment does not
seem as natural as the manner by which Mr Dirac quantises the solution
of the Schrédinger equation. However, we do not yet understand why
nature requires this quantisation, and we can hope that one day we will
find the deeper reason for why it is necessary to quantise in one way in
one case and in another way in the other.

MR BORN. — An essential difference between Debye’s old theory, in
which the characteristic vibrations of the blackbody cavity are treated
like Planck oscillators, and the new theory is this, that both yield quite
exactly Planck’s radiation formula (for the mean density of radiation),
but that the old theory leads to inexact values for the local fluctuations
of radiation, while the new theory gives these values exactly.

MR HEISENBERG. — According to the experiments, protons and elec-
trons both have an angular momentum and obey the laws of the stati-
stics of Fermi-Dirac; these two points seem to be related. If one takes
two particles together, if one asks, for example, which statistics one

a On this criticism by Dirac, cf. Kragh (1990, pp. 128-30) (eds.).
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must apply to a gas made up of atoms of hydrogen, one finds that the
statistics of Bose-Einstein is the right one, because by permuting two
H atoms, we permute one positive electron and one negative electron
so that we change the sign of the Schrodinger function twice. In other
words, Bose-Einstein statistics is valid for all gases made up of neutral
molecules, or more generally, composed of systems whose charge is an
even multiple of e. If the charge of the system is an odd multiple of e,
the statistics of Fermi-Dirac applies to a collection of these systems.

The He nucleus does not rotate and a collection of He nuclei obeys
the laws of Bose-Einstein statistics.

MR FOWLER asks if the fine details of the structure of the bands of
helium agree better with the idea that we have only symmetric states
of rotation of the nuclei of helium than with the idea that we have only
antisymmetric states.

MR HEISENBERG. — In the bands of helium, the fact that each second
line disappears teaches us that the He nucleus is not endowed with a
spinning motion. But it is not yet possible to decide experimentally,
on the basis of these bands, if the statistics of Bose-Einstein or that of
Fermi-Dirac must be applied to the nucleus of He.

MR SCHRODINGER. — You have spoken of experimental evidence in
favour of the hypothesis that the proton is endowed with a spinning
motion just like the electron, and that protons obey the statistical law
of Fermi-Dirac. What evidence are you alluding to?

MR HEISENBERG. — The experimental evidence is provided by the
work of DennisorH on the specific heat of the hydrogen molecule, work
which is based on Hund’s research concerning the band spectra of hy-
drogen.

Hund found good agreement between his theoretical scheme and the
experimental work of Dilke, Hopfield and Richardson, by means of the
hypotheses mentioned by Mr Schrodinger. But for the specific heat, he
found a curve very different from the experimental curve. The experi-
mental curve of the specific heat seemed rather to speak in favour of
Bose-Einstein statistics. But the difficulty was elucidated in the paper
by Dennison, who showed that the systems of ‘symmetric’ and ‘anti-

a That is, we permute the two protons, and also the two electrons (eds.).
a Proc. Roy. Soc. A 114 (1927), 483.
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symmetric’ terms (with regard to protons) do not combine in the time
necessary to carry out the experiment. At low temperature, a transition
takes place about every three months. The ratio of statistical weights
of the systems of symmetric and antisymmetric terms is 1 : 3, as in
the helium atom. But at low temperatures the specific heat must be
calculated as if one had a mixture of two gases, an ‘ortho’ gas and a
‘para’ gas. If one wished to perform experiments on the specific heat
with a gas of hydrogen, kept at low temperature for several months, the
result would be totally different from the ordinary result.

MR EHRENFEST wishes to formulate a question that has some relation
to the recent experiments by Mr Langmuir on the disordered motion of
electrons in the flow of electricity through a gas.

In the well-known Pauli exclusion (Pauliverbot), one introduces (at
least in the language of the old quantum theory) a particular incompati-
bility relation between the quantum motions of the different particles of
a single system, without speaking explicitly of the role possibly played
by the forces acting between these particles. Now, suppose that through
a small opening one allows particles that, so to speak, do not exert forces
on each other, to pass from a large space into a small box bounded by qui-
te rigid walls with a complicated shape, so that the particles encounter
the opening and leave the box only at the end of a sufficiently long time.
Before entering the box, if the particles have almost no motion relative
to one another, the Pauli exclusion intervenes. After their exit, will they
have very different energies, independently of the weakness of the mutual
action between the particles? Or else what role do these forces play in the
production of Pauli’s incompatibility (choice of antisymmetric solutions
of the wave equation)?

MR HEISENBERG. — The difficulty with Mr Ehrenfest’s experiment is
the following: the two electrons must have different energies. If the energy
of interaction of the two electrons is very small, the time 77 required for
the electrons to exchange an appreciable amount of energy is very long.
But to find experimentally which state, symmetric or antisymmetric,
the system of the two electrons in the box is in, we need a certain time
To which is at least ~ 1/v, if hv is the [energy] difference between the
symmetric and antisymmetric states. Consequently, 71 ~ 75 and the
difficulty disappears.

MR RICHARDSON. — The evidence for a nuclear spin is much more
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complete than Mr Heisenberg has just said. I have recently had occasion
to classify a large number of lines in the visible bands of the spectrum
of the Hy molecule. One of the characteristic features of this spectrum is
a rather pronounced alternation in the intensity of the successive lines.
The intensities of the lines of this spectrum were recently measured by
MacLennan, Grayson-Smith and Collins. Unfortunately, a large number
of these lines overlap with each other, so that the intensity measurements
must be accepted only with reservations.

But nevertheless, I think one can say, without fear of being mistaken,
that all the bands that are sufficiently well-formed and sufficiently free of
influences of the lines on each other (so that one can have confidence in
the intensity measurements) have lines, generally numbered 1, 3, 5, ...,
that are intrinsically three times more intense than the intermediate
lines, generally numbered 2, 4, 6, .... By intrinsic intensity, [ mean that
which one obtains after having taken into account the effects on the
intensity of temperature and quantum number (and also, of course, the
effects of overlap with other lines, where it is possible to take this into
account). In other words, I wish to say that the constant c of the intensity

formula
—(m+3 2}12
J =c (m 4+ %) e (SWt(zk)T ,

where m is the number of the line and K the moment of inertia of the
molecule, is three times bigger for the odd-numbered lines than for the
even-numbered ones. This means that the ratio 3 : 1 applies, with an
accuracy of about 5%, for at least five different vibration states of a
three-electron state of excitation. It also applies to another state, which
is probably 3'P if the others are 33P. It is also shown, but in a less
precise way, that it applies to two different vibration states of a state of
excitation with four electrons.

At present, then, there is a great deal of experimental evidence that
this nuclear spin persists through the different states of excitation of the
hydrogen molecule.

MR LANGMUIR. — The question has often been raised of a similarity
in the relation between light waves and photons on the one hand, and de
Broglie waves and electrons on the other. How far can this analogy be
developed? There are many remarkable parallels, but also I should like
to see examined if there are no fundamental differences between these
relations. Thus, for example, an electron is characterised by a constant
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charge. Is there a constant property of the photon that may be compared
with the charge of the electron? The speed of the electron is variable;
is that of the photon also? The electromagnetic theory of light has
suggested a multitude of experiments, which have added considerably to
our knowledge. The wave theory of the electron explains the beautiful
results of Davisson and Germer. Can one hope that this theory will be
as fertile in experimental suggestions as the wave theory of light has
been?32

MR EHRENFEST. — When one examines a system of plane waves of
elliptically polarised light, placing oneself in differently moving coordi-
nate systems, these waves show the same degree of ellipticity whatever
system one places oneself in. Passing from the language of waves to
that of photons, I should like to ask if one must attribute an elliptical
polarisation (linear or circular in the limiting cases) to each photon?
If the reply is affirmative, in view of the invariance of the degree of
ellipticity in relativity, one must distinguish as many species of photons
as there are degrees of ellipticity. That would yield, it seems to me, a
new difference between the photon and the spinning electron. If, on the
other hand, one wishes above all to retain the analogy with the electron,
as far as I can see one comes up against two difficulties:

1. How then must one describe linearly polarised light in the language of
photons? (It is instructive, in this respect, to consider the way in which
the two linearly polarised components, emitted perpendicularly to the
magnetic field by a flame showing the Zeeman effect, are absorbed by a
second flame placed in a magnetic field with antiparallel orientation.)

Mr Zeeman, to whom I posed the question, was kind enough to per-
form the experiment about a year ago, and he was able to notice that
the absorption is the same in parallel and antiparallel fields, as one could
have predicted, in fact, by considerations of continuity.

2. For electrons, which move always with a speed less than that of
light, the universality of the spin may be expressed as follows, that
one transforms the corresponding antisymmetric tensor into a system
of coordinates carried with the electron in its translational motion (‘at
rest’). But photons always move with the speed of light!

MR CoMPTON. — Can light be elliptically polarised when the photon
has an angular momentum?
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MR EHRENFEST. — Because the photons move with the speed of
light, I do not really understand what it means when one says that each
photon has a universal angular momentum just like an electron.

Allow me to remind you of yet another property of photons. When
two photons move in directions that are not exactly the same, one can
say quite arbitrarily that one of the photons is a radio-photon and the
other a v-ray photon, or inversely. That depends quite simply on the
moving system of coordinates to which one refers the pair of photons.

MR LORENTZ. — Can you make them identical by such a transfor-
mation?
MR EHRENFEST. — Perfectly. If they move in different directions.

One can then give them the same colour by adopting a suitable frame of
reference. It is only in the case where their worldlines are exactly parallel
that the ratio of their frequencies remains invariant.

MR PauLL. — The fact that the spinning electron can take two ori-
entations in the field allowed by the quanta seems to invite us at first to
compare it to the fact that there are, for a given direction of propagation
of the light quanta, two characteristic vibrations of blackbody radiation,
distinguished by their polarisation. Nevertheless there remain essential
differences between the two cases. While in relativity one describes waves
by a (real) sextuple vector F;, = —F};, for the spinning electron one has
proposed the following two modes of description for the associated de
Broglie waves: 1. One describes these waves by two complex functions
Yo, ¥g (and so by four real functions); but these functions transform
in a way that is hardly intuitive during the change from one system
of coordinates to another. That is the route I followed myself. Or else:
2. Following the example of Darwin, one introduces a quadruple vector
with generally complex components (and so eight real functions in total).
But this procedure has the inconvenience that the vector involves a
redundancy [indétermination], because all the verifiable results depend
on only two complex functions.

These two modes of description are mathematically equivalent, but
independently of whether one decides in favour of one or the other, it
seems to me that one cannot speak of a simple analogy between the
polarisation of light waves and the polarisation of de Broglie waves
associated with the spinning electron.
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Another essential difference between electrons and light quanta is this,
that between light quanta there does not exist direct (immediate) mutual
action, whereas electrons, as a result of their carrying an electric charge,
exert direct mutual actions on each other.

Mr DIRACH — I should like to point out an important failure in the
analogy between the spin of electrons and the polarisation of photons.
In the present theory of the spinning electron one assumes that one can
specify the direction of the spin axis of an electron at the same time as its
position, or at the same time as its momentum. Thus the spin variable
of an electron commutes®? with its coordinate and with its momentum
variables. The case is different for photons. One can specify a direction of
polarisation for plane monochromatic light waves, representing photons
of given momentum, so that the polarisation variable commutes with
the momentum variables. On the other hand, if the position of a photon
is specified, it means one has an electromagnetic disturbance confined to
a very small volume,* and one cannot give a definite polarisation, i.e.
a definite direction for the electric vector, to this disturbance. Thus the
polarisation variable of a photon does not commute with its coordinates.

MR LORENTZ. — In these different theories, one deals with the pro-
bability ¥*. I should like to see quite clearly how this probability can
exist when particles move in a well-defined manner following certain
laws. In the case of electrons, this leads to the question of motions in
the field ¢ (de Broglie). But the same question arises for light quanta.
Do photons allow us to recover all the classical properties of waves? Can
one represent the energy, momentum and Poynting vector by photons?
One sees immediately that, when one has an energy density and energy
flow, if one wishes to explain this by photons then the number of photons
per unit volume gives the density, and the number of photons per second
that move across a unit surface gives the Poynting vector.

The photons will then have to move with a speed different from that of
light. If one wished to assign always the same speed ¢ to the photons, in
some cases one would have to assume a superposition of several photon
currents. Or else one would have to assume that the photons cannot be
used to represent all the components of the energy-momentum tensor.
Some of the terms must be continuous in the field. Or else the photons
are smeared out [fondus].

a Again, here we follow Dirac’s original English (eds.).
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A related question is to know whether the photons can have a speed
different from that of light and whether they can even be at rest. That
would altogether displease me. Could we speak of these photons and of
their motion in a field of radiation?

MR DE BROGLIE. — When I tried to relate the motion of the photons
to the propagation of the waves 1 of the new mechanics, I did not worry
about putting this point of view in accord with the electromagnetic con-
ception of light waves, and I considered only waves 1 of scalar character,
which one has normally used until now.

MR LORENTZ. — One will need these waves for photons also. Are
they of a different nature than light waves? It would please me less to
have to introduce two types of waves.

MR DE BROGLIE. — At present one does not know at all the physical
nature of the 1-wave of the photons. Can one try to identify it with the
electromagnetic wave? That is a question that remains open. In any case,
one can provisionally try to develop a theory of photons by associating
them with waves 1.

MR LORENTZ. — Is the speed of the wave equal to that of light?

MR DE BROGLIE. — In my theory, the speed of photons is equal to
¢, except in interfering fields. In general, I find that one must assign to
a moving corpuscle a proper mass My given by the formula

h? Oa
— il2
Mo = yfm5 = 472¢2 q

the function % being calculated at the point where the moving body
is located at the given moment (a is the amplitude of the wave ). For
photons, one has

mOZO.

Thus, when a photon moves freely, that is to say, is associated with an
ordinary plane wave, My is zero and, to have a finite energy, the photon
must have speed c. But, when there is interference, % becomes different
from zero, My is no longer zero and the photon, to maintain the same
energy, must have a speed less than ¢, a speed that can even be zero.
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MR LORENTZ. — The term
would become imaginary.

must be negative, otherwise the mass

MR DE BROGLIE. — In the corpuscular conception of light, the exi-
stence of diffraction phenomena occuring at the edge of a screen requires
us to assume that, in this case, the trajectory of the photons is curved.
The supporters of the emission theory said that the edge of the screen
exerts a force on the corpuscle. Now, if in the new mechanics as I develop
it, one writes the Lagrange equations for the photon, one sees appear
on the right-hand side of these equations a term proportional to the
gradient of M.

This term represents a sort of force of a new kind, which exists only
when the proper mass varies, that is to say, where there is interference.
It is this force that will curve the trajectory of the photon when its wave
¥ is diffracted by the edge of a screen.

Furthermore, for a cloud of photons the same Lagrange equations lead
one to recover the internal stresses pointed out by Messrs Schrodinger
and De DonderH One finds, indeed, the relations

% [T +11%*] =0,

where the tensor 7% is the energy-momentum tensor of the corpuscles

Tk = pouiu® .

The tensor II**, which depends on derivatives of the amplitude of the
wave 1 and is zero when this amplitude is constant, represents stresses
existing in the cloud of corpuscles, and these stresses allow us to recover
the value of the radiation pressure in the case of reflection of light by a
mirror.

The tensor T% + II'* is certainly related to the Maxwell tensor but,
to see clearly how, one would have to be able to clarify the relationship
existing between the wave v of the photons and the electromagnetic
light wave.

MR PAULIE — It seems to me that, concerning the statistical results
of scattering experiments, the conception of Mr de Broglie is in full
agreement with Born’s theory in the case of elastic collisions, but that
it is no longer so when one also considers inelastic collisions. I should

a Cf. Schrodinger (1927b) and De Donder’s comments above (eds.).
b Cf. section (eds.).
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like to illustrate this by the example of the rotator, which was already
mentioned by Mr de Broglie himself. As Fermi has shown, the treatment
by wave mechanics of the problem of the collision of a particle that moves
in the (z,y) plane and of a rotator situated in the same plane, may be
made clear in the following mannerﬁ One introduces a configuration
space of three dimensions, of which two coordinates correspond to the
x and y of the colliding particle, while as third coordinate one chooses
the angle ¢ of the rotator. In the case where there is no mutual action
between the rotator and the particle, the function ¢ of the total system
is given by?3?

w(iE, Y, <P) = A62ﬂi[%(pzm+pyy+p¢@)*l’t] ,

where one has put

pwzm% (m=0,1,2,...) .

In particular, the sinusoidal oscillation of the coordinate ¢ corresponds
to a stationary state of the rotator. According to Born, the superposition
of several partial waves of this type, corresponding to different values of
m and by consequence of p,,*® means that there is a probability different
from zero for several stationary states of the rotator, while according to
the point of view of Mr de Broglie, in this case the rotator no longer has
a constant angular velocity and can also execute oscillations in certain
circumstances.

Now, in the case of a finite energy of interaction between the colliding
particle and the rotator, if we study the phenomenon of the collision by
means of the wave equation in the space (z,y, ), according to Fermi
the result can be interpreted very simply. Indeed, since the energy of
interaction depends on the angle ¢ in a periodic manner and vanishes
at large distances from the rotator, that is to say from the axis ¢, in
the space (z,y,p) we are dealing simply with a wave that falls on a
grating and, in particular, on a grating that is unlimited in the direction
of the axis . At large distances from the grating, waves come out only in
fixed directions in configuration space, characterised by integral values
of the difference m’ — m/”. Fermi has shown that the different spectral
orders correspond simply to the different possible ways of transferring
the energy of the colliding particle to the rotator, or conversely. Thus to

a Zeitschr. f. Phys. 40 (1926), 399.
b See section [[02 for a discussion of Fermi’s argument (eds.).
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each spectral order of the grating corresponds a given stationary state
of the rotator after the collision.

It is, however, an essential point that, in the case where the rotator is
in a stationary state before the collision, the incident wave is unlimited
in the direction of the axis. For this reason, the different spectral orders
of the grating will always be superposed at each point of configuration
space. If we then calculate, according to the precepts of Mr de Broglie,
the angular velocity of the rotator after the collision, we must find that
this velocity is not constant. If one had assumed that the incident wave
is limite(ﬁ in the direction of the axis ¢, it would have been the same
before the collision. Mr de Broglie’s point of view does not then seem
to me compatible with the requirement of the postulate of the quantum
theory, that the rotator is in a stationary state both before and after the
collision.

To me this difficulty does not appear at all fortuitous or inherent in the
particular example of the rotator; in my opinion, it is due directly to the
condition assumed by Mr de Broglie, that in the individual collision pro-
cess the behaviour of the particles should be completely determined and
may at the same time be described completely by ordinary kinematics
in spacetime. In Born’s theory, agreement with the quantum postulate
is realised thus, that the different partial waves in configuration space,
of which the general solution of the wave equation after the collision
is composed, are applicable [indiquées| separately in a statistical way.
But this is no longer possible in a theory that, in principle, considers it
possible to avoid the application of notions of probability to individual
collision processes.

MR DE BROGLIE. — Fermi’s problem is not of the same type as that
which I treated earlier; indeed, he makes configuration space play a part,
and not ordinary space.

The difficulty pointed out by Mr Pauli has an analogue in classical
optics. One can speak of the beam diffracted by a grating in a given
direction only if the grating and the incident wave are laterally limited,
because otherwise all the diffracted beams will overlap and be bathed in
the incident wave. In Fermi’s problem, one must also assume the wave
1 to be limited laterally in configuration space.

a The French reads ‘illimitée’ [unlimited], which we interpret as a misprint. Pauli
seems to be saying that if, on the other hand, the incident wave had been taken as
limited, then before the collision the rotator could not have been in a stationary
state and its angular velocity could not have been constant (eds.).
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MR LORENTZ. — The question is to know what a particle should do
when it is immersed in two waves at the same time.

MR DE BROGLIE. — The whole question is to know if one has the right
to assume the wave 1 to be limited laterally in configuration space. If
one has this right, the velocity of the representative point of the system
will have a constant value, and will correspond to a stationary state
of the rotator, as soon as the waves diffracted by the ¢-axis will have
separated from the incident beam.

One can say that it is not possible to assume the incident beam to
be limited laterally, because Fermi’s configuration space is formed by
the superposition of identical layers of height 27 in the direction of the
-axis; in other words, two points of configuration space lying on the
same parallel to the p-axis and separated by a whole multiple of 27
represent the same state of the system. In my opinion, this proves above
all the artificial character of configuration spaces, and in particular of
that which one obtains here by rolling out along a line the cyclic variable
®.

MRr DE DONDER. — In the course of the discussion of Mr L. de
Broglie’s report, we explained how we obtained our Principle of Corre-
spondence; thanks to this principle, one will hav

c —h - - e -
prou’ + A" = V=gEA= Y Do g™ (Y — Ythn) = 2200,
pemyuu’ + 1% = /=g Z Z YN (Y ath g+ P.athg) — 7L
a B
(a, b, n=1,...,4; a, 6=0,1,...,4) .

The first relation represents the total current (= electronic current
+ quantum current) as a function of ¢ and of the potentials g%, ®°.

a I adopt here L. Rosenfeld’s notation, so as to facilitate the comparison with his
formulas, given later.
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Recall that one has set

L= P paths+ K (u2 - %) Wi
a B

A =g 40 = _adt | A =200, —

)

N =

€’ =2y, x=——, G=67x10"%cgs.

We have already mentioned the examples (or models) of correspon-
dence found respectively by L. de Broglie and L. Rosenfeld. To be able
to show clearly a new solution to the problem relating to photons that
Mr L. de Broglie has just posed, I am going to display the formulas
concerning the two above-mentioned modelng

a L. Rosenfeld, ‘L’univers a cinq dimensions et la mécanique ondulatoire’, Bull. Ac.
Roy. Belgique, Cl. des Sc., October 1927. See respectively the formulas (*387),
(*31), (*27), (21), (1), (8), (35), (28), (29), (*35).
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Model of L. de Broglie.

Quantum current A, = 0.

Charge density p) = 2K*A" 1/,
where we have put

oA’

K2A"°
which, retaining the charge e,
reduces to substituting for the
mass mg the modified mass of

L. de Broglie:

MoE\/m%—f—

W2 =4

h2 OA
An2¢2 A7

General discussion

Model of L. Rosenfeld.

Quantum current A, = 2K2A2C,,
where A’ is the modulus of
and where the potential C
S’ — S. The function S satisfies
the classical Jacobi equation; the
function S’ satisfies the modified
Jacobi equation; one then has

1
PS8 aSp=p>——
Y ar.B H 2X,
1 OA’
aﬁS/ S/ — 2 _ .
Y aRk.pg = H 2X+K2A/

The quantum potential C' produces
the difference between physical
quantisation and geometrical quan-
tisation.

Recall that pu = m%g, where mg and
e are respectively the mass (at rest)
and charge of the particle under
consideration. We have also put

2 e
k=iK =i—- .
i i
Charge density p) = 2K*A"p.
Here then one retains, at the same
time, the mass mg and the charge e.

Let us respectively apply these formulas to the problem of the photon
pointed out by Mr L. de Broglie. The proper mass mg of the photon is
zero; in the model of Mr L. de Broglie, this mass must be replaced by the
modified mass My; on the contrary, in the model of Mr L. Rosenfeld, one
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uses only the proper mass my = 0. In the two models, the charge density
P(e) 1s zero. Finally, in the first model, the speed of the photon must
vary; in contrast, in the second model, one can assume that this speed is
always that of light. These conclusions obviously speak in favour of the
model of L. Rosenfeld, and, in consequence, also in favour of the physical
existence of our quantum current A® (a = 1,2,3,4). This current will
probably play a dominant role in still unexplained optical phenomena

MR LORENTZ. — Let us take an atom of hydrogen and let us form
the Schrodinger function .37 We consider ¢1* as the probability for the
presence of the electron in a volume element. Mr Born has mentioned all
the trajectories in the classical theory: let us take them with all possible
phases i but let us now take the i corresponding to a single value W,, of
energy and then let us form ¢*. Can one say that this product ¥,
represents the probability that the electrons move with the given energy
W.,,? We think that the electron cannot escape from a certain sphere. The
atom is limited, whereas 1 extends to infinity. That is disagreeable.?®

MR BORN. — The idea that ¥* represents a probability density has
great importance in applications. If, for example, in the classical theory
an electron had two equilibrium positions separated by a considerable
potential energy, then classically, for a sufficiently weak total energy only
one oscillation could ever take place, around one of the two equilibrium
positions. But according to quantum mechanics, each eigenfunction ex-
tends from one domain into the other; for this reason there always exists
a probability that a particle, which at first vibrates in the neighbourhood
of one of the equilibrium positions, jumps to the other. Hund has made
important applications of this to molecular structure. This phenomenon
probably also plays a role in the explanation of metallic conduction.

MR DE BROGLIE. — In the old theory of the motion of an electron in
the hydrogen atom, an electron of total energy

moc? e2

Ji-® 7

a On this subject, Mr L. Brillouin has kindly drawn my attention to the experiments
by Mr F. Wolfers: ‘Sur un nouveau phénoméne en optique: interférences par
diffusion’ (Le Journal de Physique et le Radium (VI) 6, n. 11, November 1925,
354-68).

a The ‘phases’ of classical trajectories seems to be meant in the sense of action-angle
variables (eds.).
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cannot escape from a sphere of radius

e2

R=-—%
W — mgc?

m062

1-p2

In my conception one must take

Myc? e?

U
as the expression for the energy, where M is the variable proper mass
which I have already defined. Calculation shows that the proper mass
My diminishes when r increases, in such a way that an electron of energy
W is no longer at all constrained to be in the interior of a sphere of radius
R.

because the value of the term has moc? as a lower limit.

MR BORN. — Contrary to Mr Schrodinger’s opinion, that it is non-
sense to speak of the location and motion of an electron in the atom, Mr
Bohr and I are of the opinion that this manner of speaking always has
a meaning when one can specify an experiment allowing us to measure
the coordinates and the velocities with a certain approximation.

Again in Richardson’s notes on the general discussion (cf. p.[478)), the following
text together with Fig. D (both labelled ‘Bohr’), and a similar figure with the
shaded region labelled ‘B’, appear immediately after notes on De Donder’s
lengthy exposition just above, and clearly refer to remarks Bohr made on the
topic being addressed here:

BJohr] says it has no point to worry about the paradox that the elec-
tron in the atom is in a fixed path (ellipse or circle) and the probability
that it should be found in a given place is given by the product 1)1 which
is a continuous function of space extending from zero to co. He says if
we take a region such as B a long way from the atom in order to find
if the electron is there we must illuminate it with long light waves and
the frequency of these is so low that the electron is out of the region by
reason of its motion in the stationary state before it has been illuminated
long enough for the photoelectric act to occur. I am really not sure if
this is right. But, anyway, it is no objection to pulling it out with an
intense static electric field & this appears to be what is happening in
the W experiments.
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MR PAULIL. — One can indeed determine the location of the electron
outside the sphere, but without modifying its energy to the point where
an ionisation of the atom occurs.

MR LORENTZ. — I should like to make a remark on the subject of
wave packetsH

When Mr Schrodinger drew attention to the analogy between me-
chanics and optics, he suggested the idea of passing from corpuscular
mechanics to wave mechanics by making a modification analogous to
that which is made in the passage from geometrical optics to wave
optics.?¥ The wave packet gave a quite striking picture of the electron,
but in the atom the electron had to be completely smeared out [fondu],
the packet having the dimensions of the atom. When the dimensions of
the wave packet become comparable to those of the trajectories of the
classical theory, the material point would start to spread; having passed
this stage, the electron will be completely smeared out.

The mathematical difficulty of constructing wave packets in the atom
is due to the fact that we do not have at our disposal wavelengths
sufficiently small or sufficiently close together. The frequencies of stable
waves in the atom (eigenvalues) are more or less separated from each
other; one cannot have frequencies very close together corresponding to
states differing by very little, because the conditions at infinity would not

a Cf. also the discussion of the Lorentz-Schrodinger correspondence in section 3]
(eds.).
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be satisfied. To construct a packet, one must superpose waves of slightly
different wavelengths; now, one can use only eigenfunctions ),,, which
are sharply different from each other. In atoms, then, one cannot have
wave packets. But there is a difficulty also for free electrons, because in
reality a wave packet does not, in general, retain its shape in a lasting
manner. Localised [limités] wave packets do not seem able to maintain
themselves; spreading takes place. The picture of the electron given by
a wave packet is therefore not satisfying, except perhaps during a short
enough time.

What Mr Bohr does is this: after an observation he again localises
[limite] the wave packet so as to make it represent what this observation
has told us about the position and motion of the electron; a new period
then starts during which the packet spreads again, until the moment
when a new observation allows us to carry out the reduction again. But
I should like to have a picture of all that during an unlimited time.*°

MR SCHRODINGER. — I see no difficulty at all in the fact that on orbits
of small quantum number one certainly cannot construct wave packets
that move in the manner of the point electrons of the old mechanics.

The fact that this is impossible is precisely the salient point of the
wave mechanical view, the basis of the absolute powerlessness of the old
mechanics in the domain of atomic dimensions. The original picture was
this, that what moves is in reality not a point but a domain of excitation
of finite dimensions, in particular at least of the order of magnitude of a
few wavelengths. When such a domain of excitation propagates along a
trajectory whose dimensions and radii of curvature are large compared
with the dimensions of the domain itself, one can abstract away the
details of its structure and consider only its progress along the trajectory.
This progress takes place following exactly the laws of the old mechanics.
But if the trajectory shrinks until it becomes of the order of magnitude
of a few wavelengths, as is the case for orbits of small quantum number,
all its points will be continually inside the domain of excitation and one
can no longer reasonably speak of the propagation of an excitation along
a trajectory, which implies that the old mechanics loses all meaning.

That is the original idea. One has since found that the naive iden-
tification of an electron, moving on a macroscopic orbit, with a wave
packet encounters difficulties and so cannot be accepted to the letter.
The main difficulty is this, that with certainty the wave packet spreads
in all directions when it strikes an obstacle, an atom for example. We
know today, from the interference experiments with cathode rays by
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Davisson and Germer, that this is part of the truth, while on the other
hand the Wilson cloud chamber experiments have shown that there must
be something that continues to describe a well-defined trajectory after
the collision with the obstacle. I regard the compromise proposed from
different sides, which consists of assuming a combination of waves and
point electrons, as simply a provisional manner of resolving the difficulty.

MR BORN. — Also in the classical theory, the precision with which the
future location of a particle can be predicted depends on the accuracy
of the measurement of the initial location. It is then not in this that
the manner of description of quantum mechanics, by wave packets, is
different from classical mechanics. It is different because the laws of
propagation of packets are slightly different in the two cases.
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Notes to the translation

Microfilmed in AHQP-BMSS-11, section 5.

AHQP-36, section 10.

These notes are to be found in the Richardson collection in Houston,
included with the copy of Born and Heisenberg’s report (microfilmed in
AHQP-RDN, document M-0309).

Included in AHQP-RDN, document M-0309.

French edition: ‘les’ is misprinted as ‘le’.

AEA 16-617.00 (in German, with transcription and archival comments).
The French text has ‘¢’ instead of ‘¢’, and ‘doit satisfaire dans l'espace
ordinaire’ instead of the other way round. Note that ¢ is a functional of
‘material’ waves which themselves propagate in ordinary space.
AHQP-36, section 10.

The French adds: ‘décrite par M. Compton’.

The French reads: ‘provient uniquement de’.

Dirac’s manuscript omits ‘At present’.

The French reads ‘intuitivité’.

Instead of ‘commute’ the French has ‘permuter leurs valeurs’.

The French reads: ‘transformation canonique’.

Instead of ‘commute’ the French has ‘changent de valeur’.

Dirac’s manuscript reads ‘the’.

In Dirac’s manuscript, the words ‘determinism and’ are cancelled and
possibly reinstated. They appear in the French, which also omits ‘of
yesterday’.

<therefore unsatisfactory> <untenable>, the latter seems reinstated.
The French has ‘indéfendable’.

Instead of ‘the distinguishing characteristics’ the French has ‘’essence
physique’.

<do>, {would} appears above the line, {can} below. The French reads
‘ne figurent pas’.

This sentence does not appear in the French.

In the French, this sentence appears at the beginning of the paragraph.
This sentence does not appear in the French.

Dirac’s manuscript has ‘c2’.

<Thus <a possibility> {the existence} of> .

The French has ‘F.’.

Misprinted as ‘comptabilité’, despite having been corrected in the galley
proofs.

In the printed text, the word ‘Dirac’ is misplaced to later in the
paragraph.

Misprinted as ‘protons’.

Again misprinted as ‘protons’.

The version of this contribution in the galley proofs reads as follows:

MR LANGEVIN makes a comparison between the old and modern
statistics.

Formerly, one decomposed the phase space, into cells and one evaluated
the representative points.
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It seems that one must modify this method by suppressing the
individuality of the representative points and [blank]

Third method: that of Pauli.

This type of representation seems more appropriate to the conception of
photons and particles [blank]| attribute identity of nature, attribute at the
same time individuality representing a state.

In the report of Messrs Born and Heisenberg, I see that it results from
quantum mechanics that the statistics of Bose-Einstein is suitable for
molecules, that of Pauli-Dirac, instead, is suitable for electrons. This
means that for [blank] there is superposition, while for photons and
electrons there is impenetrability.

The galley proofs contain the following version of this contribution:

MRr LAaNGMUIR would like to see established clearly a parallel between
electrons and photons. What characterises an electron? A well-defined
charge. What characterises the photon? Its velocity, perhaps? What is
the analogy, what are the differences? Electron: de Broglie waves; photon:
electromagnetic waves. For certain respects, this parallelism is clear, but
perhaps it can be pursued to the end? What are the suggestions in the
way of experiments?

The French renders ‘commute’ throughout with ‘changer’.
The French adds: ‘a4 un instant donné’.

‘h’ misprinted as ‘\’.

‘p,’ misprinted as ‘p’.

‘40’ missing in the original, with a space instead.

Here the galley proofs include an additional sentence:

If one took the integral extended over the whole of this space, the
exterior part would be comparable.

The original mistakenly reads ‘geometrical mechanics’ and ‘corpuscular
optics’.

The version in the galley proofs reads as follows. (Note that in the case of
this and the preceding contribution by Lorentz in the galley proofs, the
published version was clearly not edited by him, since he had died at the
beginning of February.)

MR LoRENTZ. — I should like to make a remark on the subject of wave
packets.

When Mr Schrédinger drew attention to the analogy between mechanics
and optics, he suggested the idea of passing from geometrical mechanics
to wave mechanics by making a modification analogous to that which is
made in the passage from corpuscular optics to wave optics. The wave
packet was a quite striking picture, but in the atom the electron is
completely smeared out, the packet being of the dimensions of the
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atom [blank]|, material point that would start to spread [blank], passed,
these electrons are completely smeared out.

Mathematical difficulty, wave packets in the atom, more or less
distinguished frequencies (eigenvalues), but you could not have
frequencies very close together by states differing by much or little [par
des états tant soit peu différants|, because one would not have the
conditions at infinity. To construct a packet, one must superpose waves of
slightly different wavelengths; now, one can use only eigenfunctions )y,
which are sharply different from each other. Thus one does not have the
waves with which one could build a packet. In atoms, then, one cannot
have the wave packets; it is the same for free electrons. All these wave
packets will end up dissolving.

In reality a wave packet does not last; wave packets that would remain
localised [limités] do not seem to maintain themselves; spreading takes
place; the picture is therefore not satisfying [blank|, short enough time
perhaps [blank].

What Mr Bohr does is this [small blank| after an observation we have
again localised [limité] [blank]|; a new period starts [blank|. But I should
like to have a picture of all that during an indefinite time.



Bibliography

Aharonov, Y., and Vaidman, L. (1996). About position measurements which
do not show the Bohmian particle position. In Cushing, Fine and
Goldstein (1996), pp. 141-54.

Bacciagaluppi, G. (2005). The role of decoherence in quantum theory. In The
Stanford Encyclopedia of Philosophy, Summer 2005 edn., ed. E. N. Zalta.
http://plato.stanford.edu/archives/sum2005/entries/qm-decoherence .

Ballentine, L. E. (1970). The statistical interpretation of quantum mechanics.
Reviews of Modern Physics, 42, 358-81.

Ballentine, L. E. (1972). Einstein’s interpretation of quantum mechanics.
American Journal of Physics, 40, 1763-71.

Ballentine, L. E. (1986). Probability theory in quantum mechanics. American
Journal of Physics, 54, 883-9.

Ballentine, L. E. (1987). Resource letter IQM-2: Foundations of quantum
mechanics since the Bell inequalities. American Journal of Physics, 55,
785-92.

Ballentine, L. (2003). The classical limit of quantum mechanics and its
implications for the foundations of quantum mechanics. In Quantum
Theory: Reconsideration of Foundations — 2, ed. A. Khrennikov,
Mathematical modelling in physics, engineering and cognitive science,
vol. 10. Vaxjo: Vaxjo University Press, pp. 71-82.

Barbour, J. B. (1994a). The timelessness of quantum gravity, I. The evidence
from the classical theory. Classical and Quantum Gravity, 11, 2853-73.

Barbour, J. B. (1994b). The timelessness of quantum gravity, II. The
appearance of dynamics in static configurations. Classical and Quantum
Gravity, 11, 2875-97.

Bell, J. S. (1964). On the Einstein-Podolsky-Rosen paradox. Physics, 1, 195—
200. Reprinted in Bell (1987), pp. 14-21.

Bell, J. S. (1966). On the problem of hidden variables in quantum mechanics.
Reviews of Modern Physics, 38, 447-52. Reprinted in Bell (1987), pp. 1-
13.

Bell, J. S. (1980). De Broglie-Bohm, delayed-choice double-slit experiment,
and density matrix. International Journal of Quantum Chemistry, 14,
155-9. Reprinted in Bell (1987), pp. 111-16.

Bell, J. S. (1984). Beables for quantum field theory. CERN-TH. 4035/84.
Reprinted in Bell (1987), pp. 173-80.

Bell, J. S. (1986). Interview. In The Ghost in the Atom, eds. P. C. W. Davies

923



524 Bibliography

and J. R. Brown. Cambridge: Cambridge University Press, pp. 45-57.

Bell, J. S. (1987). Speakable and Unspeakable in Quantum Mechanics.
Cambridge: Cambridge University Press.

Bell, J. S. (1990). Against ‘measurement’. In Miller (1990), pp. 17-31.

Beller, M. (1999). Quantum Dialogue: The Making of a Revolution. Chicago:
University of Chicago Press.

Belousek, D. W. (1996). Einstein’s 1927 unpublished hidden-variable theory:
its background, context and significance. Studies in History and
Philosophy of Modern Physics, 27, 437-61.

Berndl, K., Diirr, D., Goldstein, S., and Zanghi, N. (1996). Nonlocality,
Lorentz invariance, and Bohmian quantum theory. Physical Review A,
53, 2062-73.

Berry, M. (1997). Slippery as an eel. Physics World, 10 (December 1997),
41-2.

Bjorken, J. D., and Drell, S. D. (1964). Relativistic Quantum Mechanics. New
York: McGraw-Hill.

Bohme, K. (ed.) (1975). Aufrufe und Reden deutscher Professoren im ersten
Weltkrieg. Stuttgart: Reclam.

Bohm, D. (1952a). A suggested interpretation of the quantum theory in terms
of ‘hidden’ variables, I. Physical Review, 85, 166—79.

Bohm, D. (1952b). A suggested interpretation of the quantum theory in terms
of ‘hidden’ variables, II. Physical Review, 85, 180-93.

Bohm, D. (1953). Proof that probability density approaches |¢|® in causal
interpretation of the quantum theory. Physical Review, 89, 458—66.
Bohm, D., Dewdney, C., and Hiley, B. J. (1985). A quantum potential

approach to the Wheeler delayed-choice experiment. Nature, 315, 294-7.

Bohm, D., and Hiley, B. J. (1993). The Undivided Universe: An Ontological
Interpretation of Quantum Theory. London: Routledge.

Bohm, D., and Vigier, J. P. (1954). Model of the causal interpretation of
quantum theory in terms of a fluid with irregular fluctuations. Physical
Review, 96, 208-16.

Bohr, N. (1925). Uber die Wirkung von Atomen bei StoRen. Zeitschrift fiir
Physik, 34, 142-57.

Bohr, N. (1928). Das Quantenpostulat und die neuere Entwicklung der
Atomistik. Die Naturwissenschaften, 16, 245-57.

Bohr, N. (1949). Discussion with Einstein on epistemological problems in
atomic physics. In Schilpp (1949), pp. 201-41.

Bohr, N. (1984). Niels Bohr: Collected Works, vol. 5, ed. K. Stolzenburg.
Amsterdam: North-Holland.

Bohr, N. (1985). Niels Bohr: Collected Works, vol. 6, ed. J. Kalckar.
Amsterdam: North-Holland.

Bohr, N., Kramers, H. A., and Slater, J. C. (1924a). The quantum theory
of radiation. Philosophical Magazine, 47, 785—-802. Reprinted in Sources
of quantum mechanics, ed. B. L. van der Waerden. Amsterdam: North-
Holland, 1967, pp. 159-76.

Bohr, N., Kramers, H. A., and Slater, J. C. (1924b). Uber die Quantentheorie
der Strahlung. Zeitschrift fir Physik, 24, 69-87.

Bonk, T. (1994). Why has de Broglie’s theory been rejected? Studies in the
History and Philosophy of Science, 25, 191-209.

Born, M. (1924). Uber Quantenmechanik. Zeitschrift fir Physik, 26, 379-95.

Born, M. (1926a). Zur Quantenmechanik der Stossvorginge. Zeitschrift fir



Bibliography 525

Physik, 37, 863-7.

Born, M. (1926b). Quantenmechanik der Stossvorgéinge. Zeitschrift fiir Physik,
38, 803-27.

Born, M. (1926¢). Das Adiabatenprinzip in der Quantenmechanik. Zeitschrift
fiir Physik, 40, 167-92.

Born, M. (1926d). Problems of Atomic Dynamics. Cambridge, Mass.:
Massachusetts Institute of Technology. Reprinted Cambridge, Mass.: MIT
Press, 1970.

Born, M. (1926e). Probleme der Atomdynamik. Berlin: Springer.

Born, M. (1927). Physical aspects of quantum mechanics. Nature, 119, 354-7.

Born, M. (1969). Atomic Physics, 8th edn. Glasgow: Blackie and Son.
Reprinted New York: Dover, 1989.

Born, M., and Jordan, P. (1925). Zur Quantenmechanik, I. Zeitschrift fir
Physik, 34, 858-88.

Born, M., Heisenberg, W., and Jordan, P. (1926). Zur Quantenmechanik, II.
Zeitschrift fir Physik, 35, 557-615.

Born, M., and Wiener, N. (1926a). Eine neue Formulierung der Quantengesetze
fiir periodische und nichtperiodische Vorgange. Zeitschrift fir Physik, 36,
174-87.

Born, M., and Wiener, N. (1926b). A new formulation of the laws
of quantization of periodic and aperiodic phenomena. Journal of
Mathematics and Physics M.I.T., 5, 84-98.

Bose, S. N. (1924) Warmegleichgewicht im Strahlungsfeld bei Anwesenheit
von Materie. Zeitschrift fir Physik, 27, 384-92.

Bothe, W., and Geiger, H. (1924). Ein Weg zur experimentellen Nachpriifung
der Theorie von Bohr, Kramers und Slater. Zeitschrift fir Physik, 26, 44.

Bothe, W., and Geiger, H. (1925a). Experimentelles zur Theorie von Bohr,
Kramers und Slater. Die Naturwissenschaften, 13, 440-1.

Bothe, W., and Geiger, H. (1925b). Uber das Wesen des Comptoneffekts: ein
experimenteller Beitrag zur Theorie der Strahlung. Zeitschrift fir Physik,
32, 639-63.

Brillouin, L. (1922). Diffusion de la lumiére et des rayons X par un corps
transparent homogeéne; influence de agitation thermique. Annales de
Physique, 17, 88-122.

Broglie, L. de (1922). Rayonnement noir et quanta de lumiére. Le Journal de
Physique et le Radium, (6) 3, 422-8.

Broglie, L. de (1923a). Ondes et quanta. Comptes Rendus Hebdomadaires des
Séances de I’Académie des Sciences (Paris), 177, 507-10.

Broglie, L. de (1923b). Quanta de lumiére, diffraction et interférences. Comptes
Rendus Hebdomadaires des Séances de 1’Académie des Sciences (Paris),
177, 548-50.

Broglie, L. de (1923c). Les quanta, la théorie cinétique des gaz et le principe
de Fermat. Comptes Rendus Hebdomadaires des Séances de 1’Académie
des Sciences (Paris), 177, 630-2.

Broglie, L. de (1923d). Waves and quanta. Nature, 112, 540.

Broglie, L. de (1924a). A tentative theory of light quanta. Philosophical
Magazine (6), 47, 446-58.

Broglie, L. de (1924b). Sur la définition générale de la correspondance entre
onde et mouvement. Comptes Rendus Hebdomadaires des Séances de
I’Académie des Sciences (Paris), 179, 39-40.

Broglie, L. de (1924c). Sur un théoréme de M. Bohr. Comptes Rendus



526 Bibliography

Hebdomadaires des Séances de U’Académie des Sciences (Paris), 179,
676-7.

Broglie, L. de (1924d). Sur la dynamique du quantum de lumiére et les
interférences. Comptes Rendus Hebdomadaires des Séances de I’Académie
des Sciences (Paris), 179, 1039-41.

Broglie, L. de (1924e). Recherches sur la théorie des quanta. Ph.D. Thesis,
University of Paris.

Broglie, L. de (1925). Recherches sur la théorie des quanta. Annales de
Physique (10), 3, 22-128.

Broglie, L. de (1926). Sur la possibilité de relier les phénomeénes d’interférences
et de diffraction & la théorie des quanta de lumiére. Comptes Rendus
Hebdomadaires des Séances de I’Académie des Sciences (Paris), 183, 447-
8.

Broglie, L. de (1927a). La structure atomique de la matiére et du rayonnement
et la mécanique ondulatoire. Comptes Rendus Hebdomadaires des Séances
de ’Académie des Sciences (Paris), 184, 273-4.

Broglie, L. de (1927b). La mécanique ondulatoire et la structure atomique de
la matiére et du rayonnement. Le Journal de Physique et le Radium (6),
8, 225-41.

Broglie, L. de (1930). An Introduction to the Study of Wave Mechanics. New
York: E. P. Dutton and Company.

Broglie, L. de (1955). Physics and Microphysics. New York: Pantheon Books.

Broglie, L. de (1956). Une tentative d’interprétation causale et non linéaire
de la mécanique ondulatoire (la théorie de la double solution). Paris:
Gauthier-Villars.

Broglie, L. de (1974). Beginnings of wave mechanics. In Wave Mechanics: The
First Fifty Years, eds. W. C. Price, S. S. Chissick and T. Ravensdale.
London: Butterworths.

Broglie, L. de (1999). The wave nature of the electron. Nobel lecture, 12
December 1929. In Nobel Lectures in Physics (1901-1995), CD-Rom edn.
Singapore: World Scientific.

Broglie, L. de, and Brillouin, L. (1928). Selected Papers on Wave Mechanics.
London: Blackie and Son.

Brown, L. M. (ed.) (2005). Feynman’s Thesis: a New Approach to Quantum
Theory. New Jersey: World Scientific.

Camilleri, K. (2006). Heisenberg and the wave-particle duality. Studies in
History and Philosophy of Modern Physics, 37, 298-315.

Campbell, N. R. (1921). Atomic structure. Nature, 107, 170.

Campbell, N. R. (1926). Time and chance. Philosophical Magazine (7), 1,
1106-17.

Chevalley, C. (1988). Physical reality and closed theories in Werner
Heisenbergés early papers. In Theory and Ezperiment, eds. D. Batens
and J. P. van Bendegem. Dordrecht: Reidel.

Clifton, R., Bub, J., and Halvorson, H. (2003). Characterizing quantum theory
in terms of information-theoretic constraints. Foundations of Physics, 33,
1561-91.

Compton, A. H. (1928). Some experimental difficulties with the electromag-
netic theory of radiation. Journal of the Franklin Institute, 205, 155-78.

Compton, A. H., and Simon, A. W. (1925). Directed quanta of scattered X-
rays. Physical Review, 26, 289-99.

Cushing, J. T. (1994). Quantum Mechanics: Historical Contingency and the



Bibliography 527

Copenhagen Hegemony. Chicago: University of Chicago Press.

Cushing, J. T. (1996). The causal quantum theory program. In Cushing, Fine
and Goldstein (1996), pp. 1-19.

Cushing, J. T., Fine, A., and Goldstein, S. (eds.) (1996). Bohmian Mechanics
and Quantum Theory: An Appraisal. Dordrecht: Kluwer.

Darrigol, O. (1992). From c-numbers to g-numbers: The Classical Analogy in
the History of Quantum Theory. Berkeley: University of California Press.

Darrigol, O. (1993). Strangeness and soundness in Louis de Broglie’s early
works. Physis, 30, 303-72. Reprinted with typographical corrections,
1994.

Davisson, C., and Germer, L. (1927). The scattering of electrons by a single
crystal of Nickel. Nature, 119, 558—-60.

Debye, P. (1909). Das Verhalten von Lichtwellen in der Nihe eines
Brennpunktes oder einer Brennlinie. Annalen der Physik, 30, 755-76.

de Regt, H. (1997). Erwin Schrédinger, Anschaulichkeit, and quantum theory.
Studies in History and Philosophy of Modern Physics, 28B, 461-81.

de Regt, H. (2001). Space-time visualisation and the intelligibility of physical
theories. Studies in History and Philosophy of Modern Physics, 32B, 243~
65.

Despy-Meyer, A., and Devriese, D. (1997). Ernest Solvay et son temps.
Bruxelles: Archives de 'ULB.

Deutsch, D. (1999). Quantum theory of probability and decisions. Proceedings
of the Royal Society of London A, 455, 3129-37.

Dewduney, C., Hardy, L., and Squires, E. J. (1993). How late measurements of
quantum trajectories can fool a detector. Physics Letters A, 184, 6-11.

DeWitt, B. S. (1967). Quantum theory of gravity, I. The canonical theory.
Physical Review, 160, 1113-48.

DeWitt, B. S., and Graham, N. (1973). The Many-Worlds Interpretation of
Quantum Mechanics. Princeton: Princeton University Press.

Dirac, P. (1926a). Quantum mechanics and a preliminary investigation of the
hydrogen atom. Proceedings of the Royal Society A, 110, 561-79.

Dirac, P. (1926b). Relativity quantum mechanics with an application to
Compton scattering. Proceedings of the Royal Society A, 111, 405-23.

Dirac, P. (1926¢). On the theory of quantum mechanics. Proceedings of the
Royal Society A, 112, 661-77.

Dirac, P. (1927a). The physical interpretation of quantum dynamics.
Proceedings of the Royal Society A, 113, 621-41.

Dirac, P. (1927b). The quantum theory of emission and absorption of
radiation. Proceedings of the Royal Society A, 114, 243-65.

Dirac, P. (1927c). The quantum theory of dispersion. Proceedings of the Royal
Society A, 114, 710-28.

Dirac, P. A. M. (1933). The Lagrangian in quantum mechanics. Physikalische
Zeitschrift der Sowjetunion, 3, 64-72.

Diirr, D., Fusseder, W., Goldstein, S., and Zanghi, N. (1993). Comment
on ‘Surrealistic Bohm trajectories’. Zeitschrift fir Naturforschung, 48a,
1261-2.

Diirr, D., Goldstein, S., and Zanghi, N. (1992). Quantum equilibrium and the
origin of absolute uncertainty. Journal of Statistical Physics, 67, 843-907.

Dymond, E. G. (1927). On electron scattering in Helium. Physical Review, 29,
433-41.

Eckart, C. (1926). Operator calculus and the solution of the equations of



528 Bibliography

quantum dynamics. Physical Review, 28, 711-26.

Ehrenfest, P. (1917). Adiabatic invariants and the theory of quanta.
Philosophical Magazine, 33, 500-13.

Einstein, A. (1909). Uber die Entwickelung unserer Anschauungen iiber das
Wesen und die Konstitution der Strahlung. Physikalische Zeitschrift, 10,
817-26. English translation in The Collected Papers of Albert Einstein,
vol. 2, eds. A. Beck and P. Havas. Princeton: Princeton University Press,
1989, pp. 379-98.

Einstein, A. (1924). Quantentheorie des einatomigen idealen Gases. Sitzungs-
berichte der Preussischen Akademie der Wissenschaften, Physikalisch-
mathematische Klasse (1924), 261-7.

Einstein, A. (1925a). Quantentheorie des einatomigen idealen Gases,
2. Abhandlung. Sitzungsberichte der Preussischen Akademie der
Wissenschaften, Physikalisch-mathematische Klasse (1925), 3-14.

Einstein, A. (1925b). Quantentheorie des idealen Gases. Sitzungsberichte der
Preussischen Akademie der Wissenschaften, Physikalisch-mathematische
Klasse (1925), 18-25.

Einstein, A. (1949). Remarks concerning the essays brought together in this
co-operative volume. In Schilpp (1949), pp. 665—88.

Einstein, A., and Besso, M. (1972). Correspondance: 1903-1955, ed.
P. Speziali. Paris: Hermann.

Einstein, A., Podolsky, B., and Rosen, N. (1935). Can quantum-mechanical
description of physical reality be considered complete? Physical Review,
47, 777-80.

Elsasser, W. (1925). Bemerkungen zur Quantenmechanik freier Elektronen.
Die Naturwissenschaften, 13, 711.

Englert, B.-G., Scully, M. O., Siissmann, G., and Walther, H. (1992).
Surrealistic Bohm trajectories. Zeitschrift fir Naturforschung, 47a,
1175-86.

Everett, H. (1957). ‘Relative state’ formulation of quantum mechanics. Reviews
of Modern Physics, 29, 454-62.

Fényes, I. (1952). Eine wahrscheinlichkeitstheoretische Begriindung und
Interpretation der Quantenmechanik. Zeitschrift fir Physik, 132, 81-106.

Fermi, E. (1926). Zur Wellenmechanik des Stofivorganges. Zeitschrift fir
Physik, 40, 399-402.

Fermi, E. (1927). Sul meccanismo dell’emissione nella meccanica ondulatoria.
Rendiconti Lincei, 5, 795-800.

Feuer, L. S. (1974). Einstein and the Generations of Science. New York: Basic
Books.

Feynman, R. P. (1942). The principle of least action in quantum mechanics.
Ph.D. thesis, Princeton University.

Feynman, R. P. (1948). Space-time approach to non-relativistic quantum
mechanics. Reviews of Modern Physics, 20, 367-87.

Feynman, R. P., Leighton, R. B., and Sands, M. (1965). The Feynman Lectures
on Physics, wvol. III: Quantum Mechanics. Reading, Massachusetts:
Addison-Wesley.

Fine, A. (1986). The Shaky Game: Einstein, Realism and the Quantum Theory.
Chicago: University of Chicago Press.

Fine, A. (1999). Locality and the Hardy theorem. In From Physics to
Philosophy, eds. J. Butterfield and C. Pagonis. Cambridge: Cambridge
University Press, pp. 1-11.



Bibliography 529

Fuchs, C. A. (2002). Quantum mechanics as quantum information (and only
a little more), quant-ph/0205039.

Gell-Mann, M. and Hartle, J. B. (1990). Quantum mechanics in the
light of quantum cosmology. In Complexity, Entropy, and the Physics
of Information, ed. W. H. Zurek. Reading, Mass.: Addison-Wesley,
pp- 425-58.

Ghirardi, G.C., Rimini, A., and Weber, T. (1986). Unified dynamics for
microscopic and macroscopic systems. Physical Review D, 34, 470-91.

Goldstein, H. (1980). Classical Mechanics. Reading: Addison-Wesley.

Gordon, W. (1926). Der Comptoneffekt nach der Schrédingerschen Theorie.
Zeitschrift fir Physik, 40, 117-33.

Greene, B. (2000). The Elegant Universe: Superstrings, Hidden Dimensions,
and the Quest for the Ultimate Theory. London: Vintage.

Greene, B. (2005). The Fabric of the Cosmos: Space, Time, and the Texture
of Reality. New York: Vintage.

Griffiths, R. B. (1984). Consistent histories and the interpretation of quantum
mechanics. Journal of Statistical Physics, 36, 219-72.

Griffiths, R. B. (2002). Consistent Quantum Theory. Cambridge: Cambridge
University Press.

Guth, A. H. (1981). Inflationary universe: A possible solution to the horizon
and flatness problems, Physical Review D, 23, 347-56.

Hardy, L. (1995). The EPR argument and nonlocality without inequalities
for a single photon. In Fundamental Problems in Quantum Theory, eds.
D. M. Greenberger and A. Zeilinger. New York: New York Academy of
Sciences, pp. 600-15.

Hardy, L. (2001). Quantum theory from five reasonable axioms. quant-
ph/0101012.

Hardy, L. (2002). Why quantum theory? In Non-locality and Modality, eds.
T. Placek and J. Butterfield. Dordrecht: Kluwer, pp. 61-73.

Hardy, L. (2005). Probability theories with dynamic causal structure: A new
framework for quantum gravity. gr-qc/0509120.

Hartle, J. B. (1995). Spacetime quantum mechanics and the quantum
mechanics of spacetime. In Gravitation and Quantizations: Proceedings of
the 1992 Les Houches Summer School, eds. B. Julia and J. Zinn-Justin.
Amsterdam: Elsevier, pp. 285-480.

Heisenberg, W. (1925a). Uber eine Anwendung des Korrespondenzprinzips
auf die Frage nach der Polarisation des Fluoreszenzlichtes. Zeitschrift fir
Physik, 31, 617-28.

Heisenberg, W. (1925b). Uber quantentheoretische Umdeutung kinematischer
und mechanischer Beziehungen. Zeitschrift fir Physik, 33, 879-93.

Heisenberg, W. (1926a). Schwankungserscheinungen und Quantenmechanik.
Zeiutschrift fir Physik, 40, 501-6.

Heisenberg, W. (1926b). Mehrkorperproblem und Resonanz in der
Quantenmechanik, I. Zeitschrift fiir Physik, 38, 411-26.

Heisenberg, W. (1926¢). Quantenmechanik. Die Naturwissenschaften, 14, 989
94

Heisenberg, W. (1927). Uber den anschaulichen Inhalt der quantentheoreti-
schen Kinematik und Mechanik. Zeitschrift fir Physik, 43, 172-98.
Heisenberg, W. (1929). Die Entwicklung der Quantentheorie 1918-1928. Die

Naturwissenschaften, 14, 490-6.
Heisenberg, W. (1930a). Die physikalischen Prinzipien der Quantentheorie.



530 Bibliography

Leipzig: Hirzel. Reprinted Mannheim: BI Wissenschaftsverlag, 1991.

Heisenberg, W. (1930b). The Physical Principles of the Quantum Theory,
translated by C. Eckart and F. C. Hoyt. Chicago: University of Chicago
Press. Reprinted New York: Dover, 1949.

Heisenberg, W. (1946). Der unanschauliche Quantensprung. Neue physikali-
sche Bldtter, 2, 4-6.

Heisenberg, W. (1948). Der Begriff der ‘Abgeschlossenen Theorie’ in der
modernen Naturwissenschaft. Dialectica, 2, 331-6.

Heisenberg, W. (1962). Physics and Philosophy: The Revolution in Modern
Science. New York: Harper and Row.

Heisenberg, W. (1967). Quantum theory and its interpretation. In Niels Bohr:
His Life and Work as seen by his Friends and Colleagues, ed. S. Rozental.
New York: John Wiley and Sons, pp. 94-108.

Heisenberg, W. (1969). Der Teil und das Ganze. Miinchen: Piper.

Heisenberg, W. (1984). Gesammelte Werke, eds. W. Blum, H.-P. Diirr and
H. Rechenberg. Berlin: Springer.

Hendry, J. (1986). James Clerk Mazwell and the Theory of the Electromagnetic
Field. Bristol: Adam Hilger.

Hilbert, D., von Neumann, J., and Nordheim, L. (1928). Uber die Grundlagen
der Quantenmechanik. Mathematische Annalen, 98, 1-30.

Holland, P. R. (1993). The Quantum Theory of Motion: An Account of the de
Broglie-Bohm Causal Interpretation of Quantum Mechanics. Cambridge:
Cambridge University Press.

Holland, P. R. (2005). What’s wrong with Einstein’s 1927 hidden-variable
interpretation of quantum mechanics? Foundations of Physics, 35, 177—
96.

Howard, D. (1990). ‘Nicht sein kann was nicht sein darf’, or the prehistory of
EPR, 1909-1935: Einstein’s early worries about the quantum mechanics
of composite systems. In Miller (1990), pp. 61-111.

Jammer, M. (1966). The Conceptual Development of Quantum Mechanics.
New York: McGraw-Hill.

Jammer, M. (1974). The Philosophy of Quantum Mechanics: The
Interpretations of Quantum Mechanics in Historical Perspective. New
York: John Wiley and Souns.

Jordan, P. (1926a). Uber kanonische Transformationen in der Quantenmecha-
nik. Zeitschrift fir Physik, 37, 383—6.

Jordan, P. (1926b). Uber kanonische Transformationen in der Quantenmecha-
nik, II. Zeitschrift fir Physik, 38, 513-17.

Jordan, P. (1927a). Uber quantenmechanische Darstellung von Quantenspriin-
gen. Zeitschrift fir Physik, 40, 661-6.

Jordan, P. (1927b). Uber eine neue Begriindung der Quantenmechanik, I.
Zeitschrift fir Physik, 40, 809-38.

Jordan, P. (1927c). Uber eine neue Begriindung der Quantenmechanik, II.
Zeitschrift fir Physik, 44, 1-25.

Jordan, P. (1927d). Zur Quantenmechanik der Gasentartung. Zeitschrift fir
Physik, 44, 473-80.

Jordan, P. (1927e). Die Entwicklung der neuen Quantenmechanik. Die
Naturwissenschaften, 15, 614-23, 636—-49.

Jordan, P. (1927f). Kausalitdit und Statistik in der modernen Physik. Die
Naturwissenschaften, 15, 105-10.

Jordan, P. (1927g). Philosophical foundations of quantum theory. Nature, 119,



Bibliography 531

566-9.

Kiefer, C., Polarski, D., and Starobinsky, A. A. (1998). Quantum-to-classical
transition for fluctuations in the early universe. International Journal of
Modern Physics D, 7, 455-62.

Kirsten, C., and Treder, H. J. (1979). Albert Einstein in Berlin 1913-1933.
Berlin: Akademie-Verlag.

Klein, O. (1926). Quantentheorie und fiinfdimensionale Relativitétstheorie.
Zeitschrift fiir Physik, 37, 895-906.

Koopman, B. O. (1955). Quantum theory and the foundations of probability.
In Applied Probability, ed. L. A. MacColl. New York: McGraw-Hill,
pp. 97-102.

Kramers, H. (1924). The quantum theory of dispersion. Nature, 114, 310-11.

Kramers, H., and Heisenberg, W. (1925). Uber die Streuung von Strahlung
durch Atome. Zeitschrift fir Physik, 31, 681-708.

Kragh, Helge (1990). Dirac: A Scientific Biography. Cambridge: Cambridge
University Press.

Kuhn, W. (1925). Uber die Gesamtstirke der von einem Zustande ausgehenden
Absorptionslinien. Zeitschrift fiir Physik, 33, 408-12.

Lacki, J. (2004). The puzzle of canonical transformations in early quantum
mechanics. Studies in History and Philosophy of Modern Physics, 35,
317-44.

Lanczos, K. (1926). Uber eine feldmissige Darstellung der neuen
Quantenmechanik. Zeitschrift fir Physik, 35, 812-30.

Laue, M. von (1914). Die Freiheitsgrade von Strahlenbiindeln. Annalen der
Physik, 44, 1197-1212.

Liddle, A. R. and Lyth, D. H. (2000). Cosmological Inflation and Large-Scale
Structure. Cambridge: Cambridge University Press.

Lochak, G. (1992). Louis de Broglie. Paris: Flammarion.

London, F. (1926a). Uber die Jacobischen Transformationen der Quantenme-
chanik. Zeitschrift fir Physik, 37, 9150-25.

London, F. (1926b). Winkelvariable und kanonische Transformationen in der
Undulationsmechanik. Zeitschrift fir Physik, 40, 193-U210.

Ludwig, G. (1968). Wave Mechanics. Oxford: Pergamon Press.

Madelung, E. (1926a). Eine anschauliche Deutung der Gleichung von
Schrédinger. Die Naturwissenschaften, 14, 1004.

Madelung, E. (1926b). Quantentheorie in hydrodynamischer Form. Zeitschrift
fiir Physik, 40, 322-6.

Margenau, H. (1939). Van der Waals forces. Reviews of Modern Physics, 11,
1-35.

Mehra, J. (1975). The Solvay Conferences on Physics: Aspects of the
Development of Physics since 1911. Dordrecht and Boston: Reidel.

Mehra, J., and Rechenberg, H. (1982a). The Historical Development of
Quantum Theory, vol. 1, part 2. New York: Springer.

Mehra, J., and Rechenberg, H. (1982b). The Historical Development of
Quantum Theory, vol. 2. New York: Springer.

Mehra, J., and Rechenberg, H. (1982c). The Historical Development of
Quantum Theory, vol. 3. New York: Springer.

Mehra, J., and Rechenberg, H. (1987). The Historical Development of
Quantum Theory, vol. 5, part 2. New York: Springer.

Mehra, J., and Rechenberg, H. (2000). The Historical Development of
Quantum Theory, vol. 6, part 1. New York: Springer.



5932 Bibliography

Miller, A. I. (ed.) (1990). Sizty-two Years of Uncertainty. New York: Plenum
Press.

Millikan, R. A. (1916). A direct photoelectric determination of Planck’s “h”.
Physical Review, 7, 355—88.

Moore, W. (1989). Schrédinger: Life and Thought. Cambridge: Cambridge
University Press.

Muller, F. (1997). The Equivalence Myth of Quantum Mechanics, parts I and
IT and addendum. Studies in History and Philosophy of Modern Physics,
28B, 3561 and 219-47; ibid., 30B, 543-5.

Nelson, E. (1966). Derivation of the Schrédinger equation from Newtonian
mechanics. Physical Review, 150, 1079-85.

Neumann, J. von (1927). Mathematische Begriindung der Quantenmechanik.
Nachrichten der Akademie der Wissenschaften in Gottingen. II,
Mathematisch-Physikalische Klasse, 20 May 1927, 1-57.

Newton, I. (1730). Opticks: Or, a Treatise of the Reflections, Refractions,
Inflections and Colours of Light, 4th edn. London. Reprinted as I. Newton,
Opticks. New York: Dover, 1979.

Nicolai, G. F. (1917). Die Biologic des Krieges. Ziirich: Orell Fiissli.

Norsen, T. (2005). Einstein’s boxes. American Journal of Physics, 73, 164-76.

Nye, M. J. (1997). Aristocratic culture and the pursuit of science: the de
Broglies in modern France. Isis, 88, 397-421.

Omnes, R. (1992). Consistent interpretations of quantum mechanics. Reviews
of Modern Physics, 64, 339-82.

Omnes, R. (1994). The Interpretation of Quantum Mechanics. Princeton:
Princeton University Press.

Oseen, C. W. (1999). Presentation speech, 12 December 1929. In Nobel
Lectures in Physics (1901-1995), CD-Rom edn. Singapore: World
Scientific.

Padmanabhan, T. (1993). Structure Formation in the Universe. Cambridge:
Cambridge University Press.

Pais, A. (1982). Subtle is the Lord: The Science and the Life of Albert Einstein.
Oxford: Oxford University Press.

Patterson, A. L. (1927). The scattering of electrons from single crystals of
nickel. Nature, 120, 46—7.

Pauli, W. (1925). Uber die Intensititen der im elektrischen Feld erscheinenden
Kombinationslinien. Matematisk-fysiske Meddelser, 7, 3-20.

Pauli, W. (1927). Uber Gasentartung und Paramagnetismus. Zeitschrift fiir
Physik, 41, 81-102.

Pauli, W. (1979). Wissenschaftlicher Briefwechsel mit Bohr, Einstein,
Heisenberg u.a., Teil I: 1919-1929, eds. A. Hermann, K. v. Meyenn and
V. F. Weisskopf. Berlin and Heidelberg: Springer.

Pearle, P. (1976). Reduction of the state vector by a nonlinear Schrédinger
equation. Physical Review D, 13, 857—68.

Pearle, P. (1979). Toward explaining why events occur. International Journal
of Theoretical Physics, 18, 489-518.

Pearle, P. (1989). Combining stochastic dynamical state-vector reduction with
spontaneous localization. Physical Review A, 39, 2277-89.

Pearle, P., and Valentini, A. (2006). Quantum mechanics: generalizations. In
Encyclopaedia of Mathematical Physics, eds. J.-P. Francoise, G. Naber
and T. S. Tsun. Amsterdam: Elsevier, pp. 265-76.

Perez, A., Sahlmann, H., and Sudarsky, D. (2006). On the quantum origin



Bibliography 533

of the seeds of cosmic structure. Classical and Quantum Gravity, 23,
2317-54.

Perovic, S. (2006). Schrédinger’s interpretation of quantum mechanics and
the relevance of Bohr’s experimental critique. Studies in History and
Philosophy of Modern Physics, 37, 275-97.

Philippidis, C., Dewdney, C., and Hiley, B. J. (1979). Quantum interference
and the quantum potential. Nuovo Cimento B, 52, 15-28.

Polkinghorne, J. (2002). Quantum Theory: A Very Short Introduction. Oxford:
Oxford University Press.

Popper, K. R. (1982). Quantum Theory and the Schism in Physics. London:
Unwin Hyman.

Przibram, K. (ed.) (1967). Letters on Wave Mechanics. New York:
Philosophical Library. Originally published as Briefe zur Wellenmechanik.
Wien: Springer, 1963.

Rovelli, C. (2004). Quantum Gravity. Cambridge: Cambridge University Press.

Saunders, S. (1995). Time, decoherence and quantum mechanics. Synthese,
102, 235-66.

Saunders, S. (1998). Time, quantum mechanics, and probability. Synthese,
114, 373-404.

Scheibe, E. (1993). Heisenbergs Begriff der abgeschlossenen Theorie. In Werner
Heisenberg: Physiker und Philosoph, eds. B. Geyer, H. Herwig and
H. Rechenberg. Heidelberg: Spektrum, pp. 251-7.

Schiff, L. I. (1955). Quantum Mechanics. New York: McGraw-Hill.

P. A. Schilpp (ed.) (1949). Albert Einstein: Philosopher-Scientist, The Library
of Living Philosophers, vol. VII. La Salle, Ill.: Open Court.

Schrodinger, E. (1922). Dopplerprinzip und Bohrsche Frequenzbedingung.
Physikalische Zeitschrift, 23, 301-3.

Schrédinger, E. (1924a). Uber das thermische Gleichgewicht zwischen Licht-
uns Schallstrahlen. Physikalische Zeitschrift, 25, 89-94.

Schrodinger, E. (1924b). Bohrs neue Strahlungshypothese und der
Energiesatz. Die Naturwissenschaften, 12, 720—4.

Schrodinger, E. (1926a). Zur Einsteinschen Gastheorie. Physikalische
Zeitschrift, 27, 95-101.

Schrodinger, E. (1926b). Quantisierung als Eigenwertproblem (erste
Mitteilung). Annalen der Physik, 79, 361-76.

Schrodinger, E. (1926c¢). Quantisierung als Eigenwertproblem (zweite
Mitteilung). Annalen der Physik, 79, 489-527.

Schrodinger, E. (1926d). Uber das Verhiltnis der Heisenberg-Born-
Jordanschen Quantenmechanik zu der meinen. Annalen der Physik, 79,
734-56.

Schrodinger, E. (1926). Der stetige Ubergang von der Mikro- zur
Makromechanik. Die Naturwissenschaften, 14, 664—6.

Schrodinger, E. (1926f). Quantisierung als Eigenwertproblem (dritte
Mitteilung: Stérungstheorie, mit Anwendung auf den Starkeffekt der
Balmerlinien). Annalen der Physik, 80, 437-90.

Schrodinger, E. (1926g). Quantisierung als Eigenwertproblem (vierte
Mitteilung). Annalen der Physik, 81, 109-139.

Schrodinger, E. (1926h). An undulatory theory of the mechanics of atoms and
molecules. Physical Review, 28, 1049-1070.

Schrédinger, E. (19261). Vorwort zur ersten Auflage. In Schrédinger (1928),
p. iv.



534 Bibliography

Schrédinger, E. (1927a). Uber den Comptoneffekt. Annalen der Physik, 82,
257-64.

Schrédinger, E. (1927b). Der Energieimpulssatz der Materiewellen. Annalen
der Physik, 82, 265-72.

Schrodinger, E. (1927c). Energieaustausch nach der Wellenmechanik. Annalen
der Physik, 83, 956-68.

Schrodinger, E. (1928). Abhandlungen zur Wellenmechanik, 2nd, enlarged
edn. Leipzig: Barth. Translated as Collected Papers on Wave Mechanics.
London and Glasgow: Blackie and Son, 1928.

Schrodinger, E. (1929a). Was ist ein Naturgesetz? Die Naturwissenschaften,
17, 9-11.

Schrodinger, E. (1929b). Die Erfassung der Quantengesetze durch
kontinuierliche Funktionen. Die Naturwissenschaften, 13, 486-9.

Schrodinger, E. (1935). Die gegenwiértige Situation in der Quantenmechanik.
Die Naturwissenschaften, 23, 807-12, 823-8, 844-9.

Schrodinger, E. (1936). Probability relations between separated systems.
Proceedings of the Cambridge Philosophical Society, 32, 446-52.

Schrodinger, E. (1984). Gesammelte Abhandlungen, eds. Osterreichische
Akademie der Wissenschaften. Braunschweig: Vieweg.

Schrodinger, E. (1995). The Interpretation of Quantum Mechanics. Ed. and
with introduction by M. Bitbol. Woodbridge, Conn.: Ox Bow Press.
Schulman, L. S. (1997). Time’s Arrows and Quantum Measurement.

Cambridge: Cambridge University Press.

Senftleben, H. A. (1923). Zur Grundlegung der ‘Quantentheorie’, I. Zeitschrift
fiir Physik, 22, 127-56.

Shankar, R. (1994). Principles of Quantum Mechanics, 2nd edn. New York:
Springer-Verlag.

Shimony, A. (2005). Comment on Norsen’s defense of Einstein’s ‘box
argument’. American Journal of Physics, 73, 177-8.

Slater, J. C. (1924). Radiation and atoms. Nature, 113, 307-8.

Smekal, A. (1923). Zur Quantentheorie der Dispersion. Die Naturwissenschaf-
ten, 11, 873-5.

Taylor, G. L. (1909). Interference fringes with feeble light. Proceedings of the
Cambridge Philosophical Society, 15, 114-15.

Thomas, W. (1925). Uber die Zahl der Dispersionselektronen, die einem
stationdren Zustande zugeordnet sind (vorlaufige Mitteilung). Die
Naturwissenschaften, 13, 627.

Unruh, W. G. and Wald, R. M. (1989). Time and the interpretation of
canonical quantum gravity. Physical Review D, 40, 2598-2614.

Valentini, A. (1991a). Signal-locality, uncertainty, and the subquantum H-
theorem, I. Physics Letters A, 156, 5-11.

Valentini, A. (1991b). Signal-locality, uncertainty, and the subquantum H-
theorem, II. Physics Letters A, 158, 1-8.

Valentini, A. (1992). On the pilot-wave theory of classical, quantum and
subquantum physics. Ph.D. thesis, International School for Advanced Stu-
dies, Trieste, Italy. http://www.sissa.it/ap/PhD/Theses/valentini.pdf .

Valentini, A. (1997). On Galilean and Lorentz invariance in pilot-wave
dynamics. Physics Letters A, 228, 215-22.

Valentini, A. (2001). Hidden variables, statistical mechanics and the early
universe. In Chance in Physics: Foundations and Perspectives, eds. J.
Bricmont, D. Diirr, M. C. Galavotti, G. Ghirardi, F. Petruccione and N.



Bibliography 535

Zanghi. Berlin: Springer-Verlag, pp. 165-81.

Valentini, A. (2002a). Signal-locality in hidden-variables theories. Physics
Letters A, 297, 273-8.

Valentini, A. (2002b). Subquantum information and computation. Pramana
— Journal of Physics, 59, 269-77.

Valentini, A. (2006). Inflationary cosmology as a probe of primordial quantum
mechanics. hep-th/

Valentini, A. (2007). Cambridge: Cambridge University Press. Forthcoming.

Valentini, A. and Westman, H. (2005). Dynamical origin of quantum
probabilities. Proceedings of the Royal Society of London A, 461, 253-72.

Wallace, D. (2003a). Everett and structure. Studies in History and Philosophy
of Modern Physics, 34, 87-105.

Wallace, D. (2003b). Everettian rationality: defending Deutsch’s approach
to probability in the Everett interpretation. Studies in History and
Philosophy of Modern Physics, 34, 415-39.

Wallstrom, T. C. (1994). Inequivalence between the Schrédinger equation and
the Madelung hydrodynamic equations. Physical Review A, 49, 1613-17.

Wentzel, G. (1926). Zur Theorie des photoelektrischen Effekts. Zeitschrift fir
Physik, 40, 574-89.

Wentzel, G. (1927). Uber die Richtungsverteilung der Photoelektronen.
Zeitschrift fir Physik, 41, 828-32.

Wheeler, J. A. (1978). The ‘past’ and the ‘delayed-choice’ double-slit
experiment. In Mathematical Foundations of Quantum Mechanics, ed. A.
R. Marlow. New York: Academic, pp. 9-48. Reprinted in Wheeler and
Zurek (1983), pp. 182-213.

Wheeler, J. A. (1986). Interview. In The Ghost in the Atom, eds. P. C. W.
Davies and J. R. Brown, Cambridge: Cambridge University Press, pp. 58—
69.

Wheeler, J. A., and Zurek, W. H. (eds.) (1983). Quantum Theory and
Measurement. Princeton: Princeton University Press.

Wien, W. (1923). Kanalstrahlen, 2nd edn. Vol. IV.1 of Handbuch der
Radiologie, ed. E. Marx. Leipzig: Akademische Verlagsgesellschaft.

Wigner, E. P. (1961). Remarks on the mind-body question. In The Scientist
Speculates, ed. 1. J. Good. London: Heinemann, pp. 284-302. Reprinted
in E. P. Wigner Symmetries and Reflections. Bloomington: Indiana
University Press, 1967, pp. 171-84. Also reprinted in Wheeler and Zurek
(1983), pp. 168-81.

Wigner, E. P. (1980). Thirty years of knowing Einstein. In Some Strangeness in
the Proportion: a Centennial Symposium to Celebrate the Achievements of
Albert Einstein, ed. H. Woolf. Reading, Massachusetts: Addison-Wesley,
pp. 461-8.

Wootters, W. K., and Zurek, W. H. (1979). Complementarity in the double-
slit experiment: quantum nonseparability and a quantitative statement of
Bohr’s principle. Physical Review D, 19, 473-84.

Zurek, W. H. (1991). Decoherence and the transition from quantum to
classical. Physics Today, 44, n. 10 (October 1991), pp. 36—44.



	Preface
	Abbreviations
	Typographic conventions
	Note on the bibliography
	Permissions and copyright notices

	Part I  Perspectives on the 1927 Solvay conference
	Historical introduction
	Ernest Solvay and the Institute of Physics
	War and international relations
	Scientific planning and background
	Further details of planning
	The Solvay meeting
	The editing of the proceedings
	Conclusion
	Archival notes

	De Broglie's pilot-wave theory
	Background
	A new approach to particle dynamics: 1923–24
	First papers on pilot-wave theory (1923)
	Thesis (1924)
	Optical interference fringes: November 1924

	Towards a complete pilot-wave dynamics: 1925–27
	`Structure': Journal de Physique, May 1927
	Significance of de Broglie's `Structure' paper

	1927 Solvay report: the new dynamics of quanta
	Significance of de Broglie's work from 1923 to 1927
	Archival notes

	From matrix mechanics to quantum mechanics
	Summary of Born and Heisenberg's report
	Writing of the report
	Formalism
	Before matrix mechanics
	Matrix mechanics
	Formal extensions of matrix mechanics

	Interpretation
	Matrix mechanics, Born and Wiener
	Born and Jordan on guiding fields, Bohr on collisions
	Born's collision papers
	Heisenberg on energy fluctuations
	Transformation theory
	Development of the `statistical view' in the report
	Justification and overall conclusions

	Archival notes

	Schrödinger's wave mechanics
	Planning of Schrödinger's report
	Summary of the report
	Particles as wave packets
	The problem of radiation
	Schrödinger and de Broglie
	The conflict with matrix mechanics
	Early days
	From Munich to Copenhagen
	Continuity and discontinuity

	Archival notes


	Part II  Quantum foundations and the 1927 Solvay conference
	Quantum theory and the measurement problem
	What is quantum theory?
	The measurement problem today
	A fundamental ambiguity
	Measurement as a physical process: quantum theory `without observers'
	Quantum cosmology
	The measurement problem in `statistical' interpretations of 


	Interference, superposition, and wave packet collapse
	Probability and interference
	Interference in de Broglie's pilot-wave theory
	Interference in the `quantum mechanics' of Born and Heisenberg

	Macroscopic superposition: Born's discussion of the cloud chamber
	Quantum mechanics without wave packet collapse?

	Dirac and Heisenberg: interference, state reduction, and delayed choice
	Further remarks on Born and Heisenberg's quantum mechanics

	Locality and incompleteness
	Einstein's 1927 argument for incompleteness
	A precursor: Einstein at Salzburg in 1909
	More on nonlocality and relativity

	Time, determinism, and the spacetime framework
	Time in quantum theory
	Determinism and probability
	Visualisability and the spacetime framework

	Guiding fields in 3-space
	Einstein's early attempts to formulate a dynamical theory of light quanta
	The failure of energy-momentum conservation

	Scattering and measurement in de Broglie's pilot-wave theory
	Scattering in pilot-wave theory
	Elastic and inelastic scattering: Born and Brillouin, Pauli and de Broglie
	Quantum measurement in pilot-wave theory
	Recoil of a single photon: Kramers and de Broglie

	Pilot-wave theory in retrospect
	Historical misconceptions
	Why was de Broglie's theory rejected?
	Einstein's alternative pilot-wave theory (May 1927)
	Objections: in 1927 and today

	Beyond the Bohr-Einstein debate
	The standard historical account
	Towards a historical revision


	Part III  The proceedings of the 1927 Solvay conference
	H. A. Lorentz †
	Fifth physics conference
	The intensity of X-ray reflection (W. L. Bragg)
	The classical treatment of X-ray diffraction phenomena
	History of the use of quantitative methods
	Results of quantitative analysis
	Interpretation of measurements of F
	Examples of analysis
	The mechanism of X-ray scattering
	The analysis of atomic structure by X-ray intensity measurements
	The refraction of X-rays
	References
	Discussion of Mr Bragg's report
	Notes to the translation

	Disagreements between experiment and the electromagnetic theory of radiation (A. H. Compton)
	Introduction
	The problem of the ether
	The emission of radiation
	The photoelectric effect
	Phenomena associated with the scattering of X-rays
	Interactions between radiation and single electrons
	Reliability of experimental evidence
	Summary
	Discussion of Mr Compton's report
	Notes to the translation

	The new dynamics of quanta (L. de Broglie)
	I. — Principal points of view
	II. — Probable meaning of the continuous waves 
	III. — Experiments showing preliminary direct evidence for the new Dynamics of the electron
	Bibliography
	Discussion of Mr de Broglie's report
	Notes to the translation

	Quantum mechanics (M. Born and W. Heisenberg)
	Introduction
	I. — The mathematical methods of quantum mechanics
	II. — Physical interpretation
	III. — Formulation of the principles and delimitation of their scope
	IV. — Applications of quantum mechanics
	Conclusion
	Bibliography
	Discussion of Messrs Born and Heisenberg's report
	Notes to the translation

	Wave mechanics (E. Schrödinger)
	Introduction
	I. — Multi-dimensional theory
	II. — Four-dimensional theory
	III. — The many-electron problem
	Discussion of Mr Schrödinger's report
	Notes to the translation

	General discussion of the new ideas presented
	Causality, determinism, probability
	Photons
	Photons and electrons
	Notes to the translation

	Bibliography


