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Advanced Quantum Mechanics

Prof. Dr. J. Krug, Dr. J. Åberg

Exercise sheet 3 (Due: Monday November, 7th.)

3.1 Invariant subspaces and para-statistics

Imagine three indistinguishable particles occupying three orthonormal single-particle
states |α〉, |β〉, and |γ〉. We have learned that this should be associated with the totally
symmetric state |ψs〉 (for bosons) or the totally anti-symmetric state |ψa〉 (for fermions)

|ψs〉 =
1√
6
(|α, β, γ〉+ |β, α, γ〉+ |α, γ, β〉+ |γ, β, α〉+ |γ, α, β〉+ |β, γ, α〉),

|ψa〉 =
1√
6
(|α, β, γ〉 − |β, α, γ〉 − |α, γ, β〉 − |γ, β, α〉+ |γ, α, β〉+ |β, γ, α〉),

where we use the short-hand notation |α, β, γ〉 = |α〉1|β〉2|γ〉3. Could one imagine some-
thing other than this? In this exercise we explore a theoretical alternative, sometimes
referred to as para-statistics. It is useful to introduce the six possible permutations of the
three particles S3 = {1, P12, P23, P31, P123, P132} (the symmetric group over three objects).
Here P123 means that particle 1 is relabelled to 2, 2 is relabelled to 3, and 3 to 1, i.e.
P123|α〉1|β〉2|γ〉3 = |α〉2|β〉3|γ〉1 = |γ〉1|α〉2|β〉3. When these six permutations act on the
state |α, β, γ〉, we obtain six orthonormal states that thus span a six-dimensional space. If
the particles are indistinguishable, no experiment would be able to detect any di�erence
between the elements of this space. The states |ψs〉 and |ψa〉 each span a one-dimensional
subspace that is invariant under the action of S3, since P |ψs〉 = |ψs〉 for all P ∈ S3, and
since P |ψa〉 = |ψa〉 for even permutations P , and P |ψa〉 = −|ψa〉 for odd permutations.
Moreover, these two subspaces are orthogonal to each other. Hence, the symmetric and
anti-symmetric subspace only use two out of the six dimensions available, so there is
indeed room for something more.

(a) Show that all elements of S3 can be written as products of P12 and P31. (The technical
term is that P12 and P31 are generators of S3.) (2 points)

(b) Consider the two orthonormal vectors

|ψ1〉 =
1√
12

(2|α, β, γ〉+ 2|β, α, γ〉 − |α, γ, β〉 − |γ, β, α〉 − |γ, α, β〉 − |β, γ, α〉),

|ψ2〉 =
1

2
(−|α, γ, β〉+ |γ, β, α〉+ |γ, α, β〉 − |β, γ, α〉).

The action of P12 on these vectors is given by

P12|ψ1〉 = |ψ1〉, P12|ψ2〉 = −|ψ2〉.

Argue that this means that P12|v〉 ∈ V for all |v〉 ∈ V = Sp{|ψ1〉, |ψ2〉}, i.e., the space
spanned by |ψ1〉, |ψ2〉 is left invariant by P12. Show that V also is invariant under P31.
Combine these results with 3.1(a) to prove that V is invariant under all of S3.(4 points)

Remark: This shows that there exist additional invariant subspaces, apart from the
symmetric and anti-symmetric ones. One could imagine that states of identical particles
would be elements of such subspaces, thus obeying para-statistics, rather than Bose- or
Fermi-statistics. However, it seems that nature does not favour such alternatives.
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3.2 Energy spectrum for identical particles

Suppose that we have two identical particles of mass m on a line, and that these
interact via a harmonic potential, such that the Hamiltonian is H = − ~2

2m
∂2

∂x21
− ~2

2m
∂2

∂x22
+

k
2
(x1 − x2)2. As you may recall, it is useful to change to the center of mass coordinate
R = (mx1+mx2)/(2m) = 1

2
(x1+x2) and the relative coordinate r = x1−x2. By separation

of variables, the eigenfunctions of H can be written ψp,n(R, r) = eipRφn(r), where φn for

n = 0, 1, 2, . . . are the solutions to the harmonic oscillator H ′ = − ~2
2µ

d2

dr2
+ k

2
r2, with the

reduced mass µ = m/2.

(a) How does r and R transform under the exchange of particles? What can we conclude
concerning the symmetry or anti-symmetry of the factor eipR? Argue that it is only
φn(r) that determines whether ψp,n(R, r) is symmetric or anti-symmetric under particle
exchange. (2 points)

(b) For which n = 0, 1, 2, . . . does φn correspond to a solution that is symmetric under
permutation of particles 1 and 2, and for which n are they anti-symmetric? If these
particles have no additional degrees of freedom, what would be the spectrum be for two
identical bosons, and what would it be for two identical fermions? Ignore the center of
mass motion, and express the spectrum in terms of m and k. (2 points)

(c) Suppose now that the two particles in addition have a spin degree of freedom, and
more precisely that they are spin-half fermions. What is the spectrum, and what are the
degeneracies? (Do again ignore the center of mass motion.) What is the lowest energy
that the system can have if the total spin is restricted to be in a spin-singlet state? What
is the lowest energy if it is restricted to a spin triplet? (4 points)

Remark: The Hamiltonian in this example has no explicit dependence on the spin.
Nevertheless, the total energy depends on the spin-state. This may at �rst sight seem per-
plexing, but is due to the restriction of the state space imposed by the anti-symmetrization
(or symmetrization). A striking example of this is the hydrogen molecule, H2. The proton
is a spin-half fermion, and thus the two protons can either be in a nuclear spin singlet
state (parahydrogen) or in a nuclear spin triplet (orthohydrogen). Apart from the nuclear
spin, the two protons can also orbit each other, and much analogous to this exercise, it
turns out that the nuclear spin state a�ects the allowed orbital states, which leads to a
di�erent ground state energy for ortho- and parahydrogen. In the production of liquid
hydrogen one often uses a catalyst to speed the conversion to the lowest energy state.

3.3 The social life of fermions and bosons

Suppose that |ψa〉 and |ψb〉 are two orthonormal single-particle states. One possible
two-particle state for two distinguishable particles would be |ψdist〉 = |ψa〉1|ψb〉2, meaning
that particle 1 is in state ψa and particle 2 is in state ψb. Let X1 and X2 be the position
operator of particle 1 and 2, respectively. The operator (X1−X2)

2 (or (X1⊗ 1̂2− 1̂1⊗X2)
2

in a more elaborate notation) would thus measure the (square) distance between the two
particles. Let |ψBose〉 be the two-particle symmetrized state based on |ψa〉 and |ψb〉, and
let |ψFermi〉 be the two-particle anti-symmetrized state.

(a) Write 〈ψdist|(X1 − X2)
2|ψdist〉 in terms of the single-particle expectations 〈ψa|(X −

〈ψa|X|ψa〉)2|ψa〉, 〈ψb|(X − 〈ψb|X|ψb〉)2|ψb〉, and (〈ψa|X|ψa〉 − 〈ψb|X|ψb〉)2. (2 points)

(b) Do the same for 〈ψBose|(X1 −X2)
2|ψBose〉.

Hint: Compared to (a) a new term appears. (2 points)

(c) Finally determine 〈ψFermi|(X1 −X2)
2|ψFermi〉. It is often stated that bosons are very

`social' and tend to cluster, while fermions tend to avoid each other. How do the above
results �t with these claims? (2 points)
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