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Advanced Quantum Mechanics
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Exercise sheet 4 (Due: Monday November, 14th.)

4.1 Labelling of particles versus the occupation number representation
So far we have discussed collections of identical particles by labelling them, and fol-

lowed the rule that the state has to be totally symmetric or totally anti-symmetric depend-
ing on whether we have bosons or fermions. In the Fock representation (or occupation
number representation) we do instead specify how a collection of (orthogonal) single-
particle states are occupied. This method of describing the system does not involve any
labelling of particles, and there is no need for symmetrization or anti-symmetization. As
you most likely will notice, this method tends to give a more compact notation. In the
following, let φα, φβ, φγ, φδ, and φε be a collection of (orthonormal) single particle states.

(a) Let |0,2,1,0,1〉 be a bosonic Fock state with respect to the ordering of the single-particle
states indicated above. (Hence, there are two quanta in state φβ, one in φγ and one in
φε.) Determine the multi-particle wave-function ψ(x1, x2, x3, x4)=〈x1, x2, x3, x4|0,2,1,0,1〉
in terms of the wave functions φα(x), φβ(x), etc. (2 points)

(b) Consider the following totally anti-symmetric state over three particles

|ψa〉 =
1√
6

(
|φα〉1|φβ〉2|φδ〉3 + |φδ〉1|φα〉2|φβ〉3 + |φβ〉1|φδ〉2|φα〉3

− |φβ〉1|φα〉2|φδ〉3 − |φδ〉1|φβ〉2|φα〉3 − |φα〉1|φδ〉2|φβ〉3
)
.

Write down the corresponding Fock-representation, with respect to the ordering of the
single-particle states indicated above. (2 points)

4.2 Transformations of creation and annihilation operators

Suppose that we have a collection of annihilation operators a1, . . . , aK (corresponding
to orthogonal single-particle states), and imagine that we create a new collection of oper-

ators b1, . . . , bK via bl =
∑K

k=1Ql,kak for l = 1, . . . , K, where Q is a complex K times K
matrix Q ∈ CK×K .

(a) If a1, . . . , aK satisfy the bosonic commutation relations, �nd the necessary and su�-
cient conditions on Q for b1, . . . , bK to satisfy the bosonic commutation relations.

(3 points)

Remark: A change of (orthonormal) basis among the single-particle states (to which
the annihilation operators are associated) causes a transformation of this type. It may
also correspond to an active physical evolution, as we shall see in exercise 4.3.

(b) In the previous exercise we investigated transformations that only mix the collection
of annihilation operators within themselves (and in parallel mix the creation operators).
However, one can consider an even more general type of transformation that combines
both annihilation and creation operators. For the sake of simplicity we here only consider
the transformation of a single pair a, a† into a new pair b, b†. Let a, a† be a bosonic
annihilation and creation operator, and let A,B ∈ C. Find the necessary and su�cient
conditions on A and B such that b, b† de�ned by b = Aa+Ba†, and b† = A∗a† +B∗a are
bosonic annihilation and creation operators. (3 points)

Remark: This is sometimes called a Bogoliubov transformation, and can be used to
diagonalise certain types of many-body Hamiltonians.
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4.3 Beam-splitters (or another study of the social life of fermions and bosons)

A beam splitter is an optical device that acts like a half-transparent mirror that par-
tially re�ects and partially lets photons through. We can model this via a unitary operator
U that maps the state of two input modes in1, in2 to the state of two output modes out1,
out2. When a photon impinges on the beam-splitter, e.g. from in1, one obtains a super-
position of the photon propagating in out1 and out2, and similarly if the photon instead
comes from in2. This can be written in the occupation number representation as

U |1in1 , 0in2〉 =
1√
2
(|1out1 , 0out2〉+ |0out1 , 1out2〉),

U |0in1 , 1in2〉 =
1√
2
(|1out1 , 0out2〉 − |0out1 , 1out2〉).

(1)

in1

in2

out1

out2

(The sign di�erence between the two lines in (1) is necessary for U to be unitary.)
Equation (1) only tells us what happens if we send a single particle onto the beam-

splitter, but what happens if we send several? In the following we shall investigate a more
general model, where we instead specify how U acts on the creation operators a†

in1
, a†

in2
,

a†out1 , a
†
out2

of the input and output modes. We assume that

Ua†
in1
U † =

1√
2
(a†out1 + a†out2), Ua†

in2
U † =

1√
2
(a†out1 − a

†
out2

), U |0in1 , 0in2〉 = |0out1 , 0out2〉,

(2)

where the last equality says that if there are no particles in the input, then there will be
no particles in the output. In an actual optical setting we deal with photons, and the
creation operators would be bosonic. However, in the following we shall also consider the
fermionic case, and a purely classical model.

(a) The �rst equality in (2) says that the creation of a particle in the input in1 has the

same e�ect as applying 1√
2
(a†out1 + a†out2) to the output. This looks suspiciously like the

the creation of the superposition in the �rst row of (1). Con�rm this suspicion by showing
that (2) implies (1). Does it matter whether the particle is a boson or a fermion?

Hint: Since U is unitary, it is the case that U †U = 1̂. (2 points)

(b) Let us now imagine a classical probabilistic model of the beam splitter, where a
particle that impinges from in1 with 50% probability ends up in out1 and 50% probability
ends up in out2. The same happens if a particle enters from in2. We moreover assume
that particles do not interact with each other. Assume that one particle is sent through
in2 and another through in2. What is the probability that both particles end up in out1?
What is the probability that both end up in out2? What is the probability that one ends
up in out1 and one in out2? (2 points)

(c) Suppose that we have two bosons in the input state |1in1 , 1in2〉. Use (2) to determine
the output state U |1in1 , 1in2〉. What is the probability that we would detect both bosons
in out1? What is the probability that both would be detected in out2? What is the
probability that one is detected in out1 and one in out2? (3 points)

(d) Suppose that we instead have two fermions in the input state |1in1 , 1in2〉. Determine
the output state U |1in1 , 1in2〉. What is the probability that we would detect both fermions
in out1? What is the probability that both would be detected in out2? What is the
probability that one is detected in out1 and one in out2? Compare with the results in (b)
and (c). (3 points)

Remark: These e�ects are often referred to as �bunching� and �anti-bunching�, and is
another example of the behaviour of fermions and bosons that we studied in exercise 3.3.
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