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Advanced Quantum Mechanics

Prof. Dr. J. Krug, Dr. J. Åberg

Exercise sheet 8 (Due: Monday December, 12th.)

8.1 Gauge invariance

The starting point in the lecture for the quantization of the electromagnetic �eld
was the classical electromagnetic �eld expressed in the Coulomb gauge. Here we recall
some facts about gauge symmetry of the classical electromagnetic �eld. The electric and
magnetic �elds ~E(~x, t) and ~B(~x, t) depend on the scalar and vector potentials φ(~x, t) and
~A(~x, t) via the equations

~E = −∇φ− 1

c

∂ ~A

∂t
, ~B = ∇× ~A. (1)

(a) Show that (the classical) �elds ~E and ~B as in (1) stay invariant under the gauge
transformation

φ′ = φ− 1

c

∂f

∂t
, ~A′ = ~A+∇f, (2)

where f(~x, t) is a function. (2 points)

(b) In a semiclassical model of a charged particle interacting with the electromagnetic
�eld, we treat the particle as a quantum object, but still treat the potential φ and the
vector potential ~A as classical (i.e., just being real and vector-valued functions of position

~x and time t). A standard choice of Hamiltonian is H = 1
2m

(
~P − e

c
~A( ~X, t)

)2
+ eφ( ~X, t),

and the time-dependent Schrödinger equation does in this case become

i~
∂

∂t
ψ(~x, t) =

1

2m

(
− i~∇− e

c
~A(~x, t)

)2
ψ(~x, t) + eφ(~x, t)ψ(~x, t). (3)

Suppose that ψ(~x, t) is a solution to (3). Show that ψ′(~x, t) = ei
e
~cf(~x,t)ψ(~x, t) is a solution

to

i~
∂

∂t
ψ′(~x, t) =

1

2m

(
− i~∇− e

c
~A′(~x, t)

)2
ψ′(~x, t) + eφ′(~x, t)ψ′(~x, t), (4)

where φ′ and ~A′ are as in (2). Hence, when doing a gauge transformation of the �elds, the
wave-function of the particle also has to be transformed.

Hint: Keep in mind that(
− i~∇− e

c
~A(~x, t)

)2
ψ(~x, t) =

(
− i~∇− e

c
~A(~x, t)

)
·
(
− i~∇− e

c
~A(~x, t)

)
ψ(~x, t), and that

one should be careful to let the ∇ operate on everything they should operate on.
(4 points)
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8.2 Momentum of a single mode of the quantized electromagnetic �eld
In the previous exercise the electromagnetic �eld was treated classically. Here we shall

investigate the quantized �eld. In the lecture we have considered free space (no charges
and no currents), and used the usual trick of enclosing the �eld in a square box of volume
V with periodic boundary conditions. Within the Coulomb gauge we found that the quan-
tized vector potential ~A(~x, t) becomes ~A(~r, t) =

∑
~k,λ

~A~k,λ(~r, t), where the contribution

from the mode with wave vector ~k and polarization λ (which can take two values) is

~A~k,λ(~r, t) =

√
2π~c
V ‖~k‖

~e~k,λ

(
ei(
~k·~r−ω~kt)a~k,λ + e−i(

~k·~r−ω~kt)a†~k,λ

)
. (5)

Classically, the momentum carried by an electromagnetic wave is given by

~P =
1

4πc

∫
V

~E × ~B d3r. (6)

Use the expression (6) to show that the contribution to the momentum from mode ~k, λ
in the quantum case can be written

~P~k,λ = ~~k(a†~k,λa~k,λ +
1

2
1̂). (7)

Hint: Apply (1) to (5) with φ(~r, t) = 0 (there are no charges) to obtain the operators
~E~k,λ(~x, t) and

~B~k,λ(~x, t). Next, insert the result into (6), and keep in mind the following

relations: If f(~r) is a scalar function, and ~v is a vector that is independent of ~r, then

∇× f(~r)~v = [∇f ]×~v. Also keep in mind the relation ~a× (~b×~c) = ~b(~a ·~c)−~c(~a ·~b). Note
also that the polarization vector ~e~k,λ is normalized, and orthogonal to ~k. (6 points)

8.3 Phase operators

A classical oscillation (think e.g. of a standing wave) has an amplitude (the strength
of the oscillation) and a phase (where in the oscillatory cycle it is). Since this is a very
basic concept, it would be nice to have some corresponding notion in the quantum case.

In the lecture you de�ned the phase operators êiφ and ˆe−iφ, as well as the observables
ˆcosφ and ˆsinφ for a single bosonic mode, and in this exercise we are going to explore the
properties of these. Before starting, it is probably a good idea to read about them in the
lecture notes, for example to �nd out their de�nitions. (For the sake of avoiding confusion
we here put aˆon the operators, including the number operator n̂.)

(a) Show the following commutation relations

[n̂, ˆcosφ] = −i ˆsinφ, [n̂, ˆsinφ] = i ˆcosφ, (8)

where n̂ is the number operator.

Hint: Make use of the relations that you proved in 7.1(a). (4 points)

(b)

1. With respect to the number basis {|l〉}∞l=0, show that the only non-zero matrix ele-

ment of the commutator [êiφ, ˆe−iφ] is 〈0|[êiφ, ˆe−iφ]|0〉 = 1.

2. Show that [êiφ, ˆe−iφ] = |0〉〈0|, and ˆe−iφêiφ = 1̂− |0〉〈0|

3. Show that [ ˆcosφ, ˆsinφ] = i
2
|0〉〈0|.

4. Find a simple expression for the operator ( ˆcosφ)2 + ( ˆsinφ)2.

(4 points)
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