Quantum Field Theory II
 Problem Set 1

Please hand in your solution of the exercise marked with $\left.*^{*}\right)$, for which we offer correction, in the mail box until Monday 12am.

1. The Klein-Gordon equation

Consider the field theory of a complex field obeying the Lagrangian

$$
\mathcal{L}=\left(\partial_{\mu} \phi^{*} \partial^{\mu} \phi-m^{2} \phi^{*} \phi\right) .
$$

ϕ and ϕ^{*} can be treated as independent fields.
a) Derive the Klein-Gordon equation using the Euler-Lagrange equation of motion for the fields.
b) Show the continuity equation of $\partial_{\mu} j^{\mu}=0$ for the current $j^{\mu}=i\left[\left(\partial^{\mu} \phi^{*}\right) \phi-\phi^{*}\left(\partial^{\mu} \phi\right)\right]$.
c) Find the conjugate momenta $\Pi=\partial \mathcal{L} / \partial\left(\partial_{t} \phi\right)$ and $\Pi^{*}=\partial \mathcal{L} / \partial\left(\partial_{t} \phi^{*}\right)$ to $\phi(x)$ and $\phi^{*}(x)$, respectively. Construct the Hamiltonian density $\mathcal{H} \equiv \Pi\left(\partial_{t} \phi\right)+\Pi^{*}\left(\partial_{t} \phi^{*}\right)-\mathcal{L}$ in terms of ϕ, Π and ϕ^{*}, Π^{*} and their derivatives.

2. The Dirac equation

Use the Dirac equation

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)=0,
$$

to prove the continuity equation $\partial_{\mu} j^{\mu}=0$ for the current $j^{\mu}=\bar{\psi}(x) \gamma^{\mu} \psi(x)$.

3. Generator of the Lorentz group (*)

a) The Lorentz group is the (Lie-)group of rotations and boosts Λ in space-time. Generally, such a Lie group is generated by the exponential of its corresponding generators J, i.e.,

$$
\Lambda=e^{i \phi J}=1+i \phi J+O\left(\phi^{2}\right) .
$$

$J^{0 i}$ generate boosts in direction x_{i} and $J^{i j}$ generates rotations around the axis perpendicular to x_{i} and $x_{j}(i \neq j)$. For the boost in the x direction, Λ can be written as

$$
\Lambda=\left(\begin{array}{cccc}
\cosh (\phi) & \sinh (\phi) & 0 & 0 \tag{1}\\
\sinh (\phi) & \cosh (\phi) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

ϕ is called rapidity. What is the generator J^{01} of this transformation? How does ϕ depend on v / c ?
b) The generator $J^{\mu \nu}$ fulfills the Lorentz-algebra

$$
\left[J^{\mu \nu}, J^{\rho \sigma}\right]=i\left(g^{\nu \rho} J^{\mu \sigma}-g^{\mu \rho} J^{\nu \sigma}-g^{\nu \sigma} J^{\mu \rho}+g^{\mu \sigma} J^{\nu \rho}\right) .
$$

The generators which describe the transformation properties $\left(\psi \rightarrow e^{i \phi S} \psi\right)$ of 4component spinors are

$$
S^{\mu \nu}=\frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right] .
$$

Show that it fullfills the Lorentz-algebra. You may use identities

$$
[A, B C]=[A, B] C+B[A, C], \quad[A, B C]=\{A, B\} C-B\{A, C\}
$$

and a relation of γ matrices

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}
$$

c) The spinor for a particle at rest is given by

$$
\begin{equation*}
\psi(x)=e^{-i m t}\binom{\xi}{\xi} \tag{2}
\end{equation*}
$$

where ξ is an arbitrary two-component spinor. What is the spinor for a particle moving in x direction with rapidity ϕ ?

