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Quantum Field Theory II
Problem Set 10

Please hand in your solution of the exercise marked with (*), for which we offer correction,
in the mail box until Monday 12am.

1. The Josephson tunnel junction (*)

Consider two superconducting quantum dots separated by a tunneling barrier. Each dot is
described by the action
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where W!, = ( fxT’ 73 ¢)T are Nambu spinors, the index ¢ labels the dot, a labels single-particle

states of the system, A is the superconducting gap that is assumed to be constant, o; Pauli
matrices in particle-hole space, and ¢;(7) are the phase of the superconducting order parameter
on dot i.
We assume that the interaction between dots is ”capacitative”
Ec
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where N; and Na are the numbers of electrons in dots 1 and 2 (expressed with the Nambu
spinors as N; = Y, Ul 030"). Finally, the tunneling term between the two dots can be written
as
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a) Use a Hubbard-Stratonovich transformation (H-S field V) to get rid of the interaction
term. Then, use a gauge transformation
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to remove the phase dependence from the superconducting order parameter. Derive the
effective action
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and S, = [drV?/(4E¢).



b) We now want to find a saddle point for ¢1 and ¢ with arbitrary V' which we parameterize
by V = ¢. For vanishing hopping t.3, set

P11 = —¢+0d1,
P2 = ¢+ 092,
and show that terms linear in d¢; and d¢s have the form of foﬁ dr¢ x const = 0 and

vanish.

c) Set approximately d¢; = 0. (To get a more accurate result one can alternatively inte-
grate out d¢; perturbatively.) The mean-field solution implies the so-called Josephson

condition: ‘ ' '

P2 — ¢1 =2V = 2¢.
Expand the action to second order in the tunneling and show that S = S.+ Siyn @] + S0,
where
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Here Go(7) is the Fourier transform of Gjaw, = (iwy — a0z — Aop) L. Sp is the action
independent of ¢. We assume that the hopping parameters t,3 do not depend on the
single-particle states.

d) Let us calculate Syyn[¢]. First, notice that the Green’s function has both a diagonal
(Gia,q) and an off-diagonal (Gjq,0) component. It turns out that up to small corrections,
the diagonal terms vanish in (5), so you may safely concentrate on the off-diagonal com-
ponents.

Noting that Gj,(7) has the form of Gio(7) = 01Gio(7) (Gio(r) is the iden-
tity in the particle-hole space) and using the assumption of a low-frequency
limit of ¢ compared with the gap A satisfying ) . éla’o(T)éga/,o(—T) =
S aar 07) [A11G10,0(T1)Gour o(—T1) = AS(T), derive the celebrated action for a Joseph-

son junction of
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Here v = 2|t|? A.

2. The Ginzburg-Landau action

Let’s consider a more generalized version of the Ginzburg-Landau action of
1
S = /drdgr (;|A|2 +5- (VAP + |0, AP) + %mr‘ + aA*87A> . (7)

Note that the last term is added compared with the lecture. In the decomposition of A =
(Ag + 6)e’® with a real Higgs field 6 and a goldstone mode ¢, expand the action to the second
order in § and ¢. Here the time and position-independent Ag is set to the value to minimize
the Mexican-hat potential. What is the new term coming from the last term? Prove that the
goldstone mode ¢ is still massless.



