Quantum Field Theory II
 Problem Set 4

Please hand in your solution of the exercise marked with $\left(^{*}\right)$, for which we offer correction, in the mail box until Monday 12am.

1. Lattice gauge theory (*)

Let us consider a two-dimensional lattice gauge model described by the Hamiltonain

$$
\begin{equation*}
H=-\sum_{\langle i, j\rangle} u_{i j} c_{i}^{\dagger} c_{j} . \tag{1}
\end{equation*}
$$

Here c_{i} is the operator to annihilate a fermion residing in site $\mathbf{r}_{i}=(x, y)$ and the $\langle i, j\rangle$ represent summation on nearest neighbour pairs. $u_{i j}$ is written in terms of a vector potential \mathbf{A} as

$$
\begin{equation*}
u_{i j}=\exp \left(i \int_{\mathbf{r}_{j}}^{\mathbf{r}_{i}} \mathbf{A} \cdot d \mathbf{r}\right) . \tag{2}
\end{equation*}
$$

a) Show that the Hamiltonian is invariant under the local $U(1)$ gauge transformations of

$$
\begin{equation*}
c_{i} \rightarrow e^{i \phi\left(\mathbf{r}_{i}\right)} c_{i} \quad \mathbf{A} \rightarrow \mathbf{A}+\nabla \phi\left(\mathbf{r}_{i}\right) . \tag{3}
\end{equation*}
$$

b) Let us define an operator

$$
\begin{equation*}
U(\square)=\left(u_{i, i+a \mathbf{y}}\right)\left(u_{i+a \mathbf{y}, i+a \mathbf{x}+a \mathbf{y}}\right)\left(u_{i+a \mathbf{x}+a \mathbf{y}, i+a \mathbf{x}}\right)\left(u_{i+a \mathbf{x}, i}\right) . \tag{4}
\end{equation*}
$$

for an elementary plaquettein lattice unit directions \mathbf{x} and \mathbf{y}. Here a is the lattice constant. Show that the Hamiltonian

$$
\begin{equation*}
H_{g}=-g \sum_{\square} U(\square)+\text { h.c. } \tag{5}
\end{equation*}
$$

is gauge invariant. Here \sum_{\square} is the sum over all elementary plaquettes. Rewrite $U(\square)$ in terms of A and expand for small area a^{2}. Show that

$$
\begin{equation*}
H_{g}=\text { const. }+g a^{2} \int d^{2} \mathbf{r} B_{z}^{2}(\mathbf{r}) . \tag{6}
\end{equation*}
$$

c) Let us generalize it to the $S U(N)$ case. Then, c_{i} becomes an N component fermion field $c_{i}=\left(c_{i, \alpha}\right)$ where $i=1, \ldots, N$, and $u_{i j}$ becomes $S U(N)$ rotation matrix. Show that the bare Hamilonian (Eq. (1)) and $\operatorname{Tr}[U(\square)]$ are gauge invariant under the gauge transformation

$$
\begin{equation*}
u_{i j} \rightarrow U\left(\mathbf{r}_{i}\right) u_{i j} U^{\dagger}\left(\mathbf{r}_{j}\right), \quad c_{i} \rightarrow U\left(\mathbf{r}_{i}\right) c_{i} . \tag{7}
\end{equation*}
$$

2. Bound states with linear potential

Confinement leads to a linear potential between particles. Here we want to estimate the properties of the bound states. We first consider two massive particles with mass m in the nonrelativistic limit, where the Schrödinger equation for the relative coordinate is given by

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 \mu} \partial_{x}^{2} \psi(x)+\lambda|x| \psi(x)=E \psi(x), \tag{8}
\end{equation*}
$$

with the effective mass $\mu=m / 2$.
a) For given size L of the bound states, the kinetic energy cost is estimated as $\hbar^{2} /\left(2 \mu L^{2}\right)$ and the potential energy estimated as λL. Estimate the magnitude of the binding energy and L minimizing the total energy.
A side remark: The exact solutions of Eq. (8) is given as

$$
\begin{equation*}
E_{n}=z_{n}\left(\frac{\hbar^{2} \lambda^{2}}{\mu}\right)^{1 / 3}, \tag{9}
\end{equation*}
$$

with integer $n=1,2,3 \ldots$ The z_{n} 's are the negative zeros of the Airy function of the first kind with $z_{1}=2.338$.
b) Can you make estimate the binding energy for two massless particles? Estimate for which value of λ one can use the non-relativistic approximation. Note that about 99% of the mass of proton is from the binding energy.

3. Confinement in a $1+1$ dimensional system

In $1+1$ dimensions, a gauge field $A_{\mu}(\mu=0,1)$ is coupled to a charge matter with current density j^{μ}. The action is written as

$$
\begin{equation*}
S=\int d x d t\left(-\frac{F_{01} F^{01}}{2}+j^{\mu} A_{\mu}\right) \tag{10}
\end{equation*}
$$

The corresponding field strength has just a single component F_{01}, the electric field in x direction.
a) Show that the equation of motion for A_{0} leads to

$$
\begin{equation*}
j^{0}=\partial_{x} F^{01} \tag{11}
\end{equation*}
$$

b) Consider a point charge e at position $x=-L / 2$ and a charge $-e$ at position $x=L / 2$. Then the charge density is written as $j^{0}=e[\delta(x+L / 2)-\delta(x-L / 2)]$. Solve Eq. (11) with a boundary condition that the electric field vanishes at $x \rightarrow \pm \infty$, obtaining

$$
\begin{align*}
F^{01} & =e & & (-L / 2<x<L / 2) \\
& =0 & & (|x|>L / 2) . \tag{12}
\end{align*}
$$

c) Show that the energy stored in the electric field

$$
\begin{equation*}
H=\frac{1}{2} \int d x\left(F^{01}\right)^{2} \tag{13}
\end{equation*}
$$

is linear in the separation L. Electrical charges in $1+1$ dimensions are classically confined. Actually, we have seen this phenomena in a parallel plate capacitor where the electric field between the plates is constant and thus the stored energy is linear in the distance between the plates.

