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Quantum Field Theory II

Problem Set 7
Please hand in your solution of the exercise marked with (*), for which we offer correction,

in the mail box until Monday 12am.

1. Magnetism in the Hubbard model: Spin-waves (*)

On the last exercise sheet, the following effective action for a three-dimensional Hubbard model
was derived:

SHS[c, c∗,φ] =

∫ β

0
dτ

∑
ij

c∗iα

((
(∂τ − µ) δαα′ + φi(τ) · σαα

′

2

)
δij − tijδαα′

)
cjα′ +

1

2J

∑
i

φi(τ)2

 .

(1)

Here c∗ and c are Grassmann numbers to describe the local electron creation and annihilation,
φ is a three-component real Hubbard-Stratonovich field, and J = 4U/3 is related to the on-site
interaction strength.
a) Integrating out c and c∗ to arrive at the expression

S[φ] =

∫ β

0
dτ

(
1

2J

∑
i

φi(τ)2

)
− Tr log(−G−1).

Here G−1 is a matrix. What is the form of the matrix (in imaginary time space)?

b) For the ferromagnetic solution of the Hubbard model, we will assume a spatially homo-
geneous and τ -independent mean-field and make the ansatz,

φ0 =

 0
0
φ0


Derive the saddle-point equation determining φ0. Derive the expression of the Green’s
function G in the momentum and the frequency space.
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c) Assuming that the dominant contribution to the action comes from the mean-field and
its Gaussian fluctuations, make the substitution

φ ≈ φ0 + δφ = φ0 +

δφxδφy
δφz


and expand the action to second order in δφ. Show that the action for δφ has the form
of

S[δφ] =
∑

`,`′=x,y,z

∑
Ωn

∑
p

δφ`(iΩn,p)χ−1
``′ (iΩn,p)δφ`′(−iΩn,−p), (2)

with bosonic Matsubara frequencies Ωn = 2πn/β.

d) Show that the retarded correlation functions (χ−1
R )zz, (χ−1

R )xx, and (χ−1
R )xy are written

as

(χ−1
R )zz(Ω,p) =

1

2J
+

1

4

∑
k

1

Ω− εk+p + εk + iη

(
nF (εk − φ0/2)− nF (εk+p − φ0/2)

+ nF (εk + φ0/2)− nF (εk+p + φ0/2)
)
, (3)

(χ−1
R )xx(Ω,p) =

1

2J
+

1

4

∑
k

(
1

Ω− εk+p + εk − φ0 + iη
(nF (εk − φ0/2)− nF (εk+p + φ0/2))

+
1

Ω− εk+p + εk + φ0 + iη
(nF (εk+p + φ0/2)− nF (εk+p − φ0/2))

)
,

(4)

(χ−1
R )xy(Ω,p) = − i

4

∑
k

(
1

Ω− εk+p + εk − φ0 + iη
(nF (εk − φ0/2)− nF (εk+p + φ0/2))

− 1

Ω− εk+p + εk + φ0 + iη
(nF (εk+p + φ0/2)− nF (εk+p − φ0/2))

)
.

(5)

Here εk = −2t(cos(kxa) + cos(kya) + cos(kza))− µ is the energy of a bare electron with
momentum k. You may use a nice sum rule

1

β

∑
ωn

1

iωn − ε
= nF (ε), (6)

for fermionic Matsubara frequencies ωn. The retarded correlation functions are obtained
from analytic continuation (χ−1

R )``′ = χ−1
``′ (iΩ→ Ω + iη).

e) Show that in the limit of Ω → 0 and p → 0, (χ−1
R )xx and (χ−1

R )xy go to zero. Use
the saddle point equation for φ0. Also show that in the limit, (χ−1

R )zz becomes finite.
Note that it implies that the longitudinal fluctuation is massive while the transverse
fluctuation (i.e. goldstone mode) is massless.
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f) The physical interpretation of the fluctuations on top of the mean-field solution is spin-
waves. Expand (χ−1

R )xx and (χ−1
R )xy in small p and Ω and show that χ−1

R for x and y
directions has the form of

χ−1
R ≡

(
(χ−1
R )xx (χ−1

R )xy
(χ−1
R )yx (χ−1

R )yy

)
'
(
ap2 ibΩ
−ibΩ ap2

)
, (7)

with constants a and b. Notice that χR has a pole structure at Ω = ±
√

a
bp

2 to reflect
the dispersion relation of the goldstone mode.
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