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Quantum Field Theory II
Problem Set 8

Please hand in your solution of the exercise marked with (*), for which we offer correction,
in the mail box until Monday 12am.

1. Quantum phase transition: self-consistent one-loop approxi-
mation (*)

The goal of this exercise is to draw a phase diagram as a function of temperature T and a
parameter (g in this exercise) under the self-consistent Hartree-Fock approximation. To this
end, we consider an action for a single-component bosonic field ¢y (iwy,), written as
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Here z is called ”dynamical critical exponent” with, e.g., z = 1 for an antiferromagnetic transi-
tion in an insulator while z = 2 in a metal due to the friction from electrons (Landau-damping).
In small ¢g limit, the first-order perturbation is taken. Taking into account the Hartree-Fock

diagram, the full Green’s function for the field is given by
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where the Hartree-Fock contribution to the self energy is just a number independent of w,, and
k given by
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and redefine a parameter r = ro—dr. r§ is defined as r§ = or(r = 0,7 = 0). With this definition,
r vanishes for ro = r§ at T' = 0.
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Let us consider the zero temperature case. How does r depend on 79 — r§? At zero
temperature, the summation % > i, becomes the integral form of [ (dw/2m). You may

use the identity
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D is a numerical constant. This identity implies that a quantum theory in d dimension
is related to a classical theory in d + z dimension. The integral of the right hand side
of Eq. (4) is approximately computed by the division of the integral
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and setting the denominator
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Show that it leads to the self-consistent equation
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C' is a numerical constant and you do not need to compute C'. The condition d + z > 2
is needed to avoid the singularity at r» = 0.

Now we are interested in the static susceptibility x(k = 0,w = 0) = 1/r. Show that
depending on the condition of the exponent d + z, x(k = 0,w = 0) in small r limit has
different scalings in 1/(r§ —79). What is the scaling of x(k = 0,w = 0) for two different
cases d+z >4 and 2 < d+ 2z <4?

The correlation length £ is determined by ¢ = 1/4/r from the right hand side of Eq. (2).
Find the scaling exponent v of £ in 1/(r§ — 7o) for the different cases d + z > 4 and
2<d+ 2z <4

Properties at 7' > 0 can be obtained from the T dependence of dr. But it is tedious
to find the T dependence of dr using the Matsubara summation. Instead, we use a
dimensional analysis to know the T" dependence of dr. For the case of d+z > 4, estimate
T. assuming this T" dependence is valid in T" ~ T.. What is the scaling exponent v in
the formula T. ~ (r§ — r9)¥? A schematic phase diagram (7. as a function of rg) is
drawn in Fig. 1.



Figure 1: A schematic phase diagram of T, as a function of rg.



