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1. An instructive integral
First determine the saddle points (SPs). The SP-equation reads:

eα(x2+x4) −→ ∂

∂x
α
(
x2 + x4) = α

(
2x+ 4x3) != 0

⇒ x = 0 ∨ x = ± 1√
2

x = 0 is a local minimum since d2

dx2α
(
x2 + x4) |x=0 = 2α > 0. Thus we have two SPs at x = ± 1√

2 . Now the
integral reads:

I(α) =
∫ ∞
−∞

eα(x2+x4) dx =
∫ ∞
−∞

e
α

(
1
4−2
(
x− 1√

2

)2√
8
(
x− 1√

2

)3
−
(
x− 1√

2

)4
)

dx

= eα4√
α

∫ ∞
−∞

e−2y2−
√

8
αy

3− y
4
α dy ,

where we substituted y :=
√
α
(
x− 1√

2

)
⇒ dx = 1√

α
dy in the last equality. Up to now everything was exact.

Now we will Taylor-expand the integrand around 1√
α
≈ 0, up to order O

( 1
α

)
. This implicitly assumes that

|y| � α (see the integrand). The expansion is thus akin to a SP-approximation (indeed the SP-approximation
is the leading term). We therefore have to do the series expansion around each of the SPs and add the integrals.
Fortunately, in this case, both are equal and we only get an overall factor of 2.

I(α) ≈ 2 eα4√
α

∫ ∞
−∞

e−2y2

(
1−

√
8
α
y3 + 1

α
y4 (4y2 − 1

))
dy =

√
2π eα4√
α

(
1 + 3

4α

)
The y3-term vanishes identically, since it is odd in y and integrated over all of R. Note that much of the
calculation was only done to extract the dominant e

α
4√
α
-factor. Before that, expanding around 1√

α
≈ 0 (or

α ≈ ∞) would not have worked.
Now to compare our approximation with numerical results:

α num. appr.
1 2.761 5.632
10 10.726 10.380
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In the figure we can see that our assumption |y| � α brakes down below α ≈ 5. For lower α, values of y with
|y| & α become important to the integral, decreasing the accuracy of our approximation. Note that the integral
can actually be computed to be exactly

I(α) = π√
8

eα/8
(
I 1

4

(α
8

)
+ I− 1

4

(α
8

))
,

where In(z) is the modified Bessel function of the first kind.
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2. Central limit theorem
a) Rewrite P (X) by first inserting the integral representation of the delta function.

P (X) =
∫
δ

(
X − 1

N

∑
i

xi

)∏
i

p (xi) dxi =
∫∫

eiλ((X− 1
N

∑
i
xi) dλ

2π
∏
i

p (xi) dxi

=
∫

eiλX
∏
i

(∫
e− iλxi/N p (xi) dxi

)
︸ ︷︷ ︸

=e−S[ λN ]

dλ
2π =

∫
eiλX−S[ λN ] dλ

2π

For the second line we used the definition of S from the exercise sheet with α = λ
N . The SP-equation then

reads:
d

dλ

(
iλX − S

[
λ

N

])
!= 0,

of which the solution λs is complex. The largest contribution to the integral then comes from around Re (λs).

b) Expanding the exponent of the integrand around λ = 0 gives:

iλX − S
[
λ

N

]
= iλX − S[0]− d

dλ S

[
λ

N

]∣∣∣∣
λ=0

λ− 1
2

d2

dλ2 S

[
λ

N

]∣∣∣∣
λ=0

λ2 +O
(
λ3) .

Before calculating each of these terms, observe:

e−S[α] =
∏
i

(∫
e− iαxi p (xi) dxi

)
=
(∫

e− iαx p (x) dx
)N

e−S[0] =
(∫

e− i0x p (x) dx
)N

=
(∫

p (x) dx
)

︸ ︷︷ ︸
=1 (normalization)

N

= 1

⇒ S[0] = 0

− d
dλ S

[
λ

N

]∣∣∣∣
λ=0

=
[
eS[ λN ] d

dλ e−S[ λN ]
]
λ=0

def. of S=
[(∫

. . .

)−N
N

(∫
. . .

)N−1 ∫
− i x

N
e− iλx/N p (x) dx

]
λ=0

= − i
∫
x e0 p (x) dx∫
e0 p (x) dx︸ ︷︷ ︸

=1

= − i
∫
xp (x) dx = − i〈x〉p(x) =: − iµ

− d2

dλ2 S

[
λ

N

]∣∣∣∣
λ=0

=
[

d
dλ eS[ λN ] d

dλ e−S[ λN ]
]
λ=0

=
[
− i d

dλ

∫
x e− iλx/N p (x) dx∫
e− iλx/N p (x) dx

]
λ=0

= − 1
N

(∫
x2 e0 p (x) dx∫

e0 p (x) dx
−
(∫
x e0 p (x) dx

)2(∫
e0 p (x) dx

)2

)
= −

〈
x2〉

p(x) − 〈x〉
2
p(x)

N
=: −σ

2

N
,

where µ and σ are the mean and standard deviation of the original distribution p(x) respectively. Thus we get:

iλX − S
[
λ

N

]
≈ iλX − iµλ− σ2

2N λ2

Now we can perform the integral over λ to get:

P (X) ≈
∫

eiλX−iµλ− σ2
2N λ

2 dλ
2π =

√
N

2πσ2 e−N
(X−µ)2

2σ2 = 1√
2π
(
σ/
√
N
)2

e
− (X−µ)2

2(σ/√N)2 .

Comparing to the formula for a Gaussian distribution, we immediately see:

〈X〉P (X) = 〈x〉p(x) = µ

σ2
P :=

〈
X2〉

P (X) − 〈X〉
2
P (X) = σ2

N
.
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c) To answer the question of why the expansions around the SP and around λ = 0 give almost the same result,
let us first recall the SP-equation:

d
dλ

(
iλX − S

[
λ

N

])∣∣∣∣
λ=λs

!= 0⇒ iX = d
dλS

[
λ

N

]∣∣∣∣
λ=λs

as in b)= i
∫
x e− iλsx/N p (x) dx∫
e− iλsx/N p (x) dx

.

Now let us assume that λs
N =: αs � 1 (or rather |αs| � |µ+ σ|), which we will self-consistently justify below.

Then we can expand the exponentials up to second order in αs to get:

X ≈
∫
x
(
1− ixαs − 1

2x
2α2

s

)
p (x) dx∫ (

1− ixαs − 1
2x

2α2
s

)
p (x) dx

=
µ− iαs

〈
x2〉− 1

2α
2
s

〈
x3〉

1− iαsµ− 1
2α

2
s 〈x2〉

= µ− i
(〈
x2〉− µ2)αs + 1

2
(
−
〈
x3〉+ 3

〈
x2〉µ− 2µ3)α2

s +O
(
α3
s

)
= µ− imIσ2αs +O

(
α3
s

)
⇒ αs ≈ iX − µ

σ2 = iZ 1
σ
√
N

.

In the last step we defined the new variable Z := X−µ
σ/
√
N
. We see that the SP is approximately purely imaginary,

so that Re{λs} ≈ 0, which hints at why expanding around λ = 0 might be a good approximation. Before we go
on, though, let us check self-consistently that αs is actually small. For this we first examine Z. From the central
limit theorem we know that 〈X〉P (X) = µ and

〈
X2〉

P (X) − 〈X〉
2
P (X) = σ2

N . Using this it is easy to show that
mean(Z) = 0 and variance(Z) = 1. In a random-variable sense Z does therefore not scale with N : Z ∼ N0.
And consequently:

αs ≈ iZ 1
σ
√
N
∼ 1√

N
,

which justifies our assumption that αs is small in the large N limit. To elaborate a bit on the scaling behavior,
we can take two different views. Above, we implicitly viewed X as a random variable for fixed N . Consequently
Z was seen as a random variable of order 1, and αs as a random variable of order 1/

√
N −→

N→∞
0. An alternative

viewpoint would be to consider P a simple function of X, which would imply αs = Θ
(
N0). However, the

approximations we do to calculate P (X) are actually only justified when X is close to µ, or more accurately
|X − µ| . 2σ√

N
⇔ |Z| . 2. In this regime αs ≈ i Z︸︷︷︸

.2

/
(
σ
√
N
)
∼ 1/

√
N as before.

Finally we can do a proper expansion around the SP, to show the connection to λ ≈ 0:

iλX − S
[
λ

N

]
≈

λ≈λs

(
iλsX − S

[
λs
N

])
+
(

iXN − S′
[
λs
N

])
(λ− λs)

N
+ 1

2

(
−S′′

[
λs
N

])
(λ− λs)2

N2 .

Noting that λ
N = αs small, and (λ−λs)

N = λ
N − αs, we can continue by expanding the various derivatives of S

around αs ≈ 0 to second order, which is justified in the large N limit (and this is why we did the analysis
above):

iλX − S
[
λ

N

]
αs�1
≈

λ≈λs

−S[0]︸ ︷︷ ︸
0

+ (iXN − S′[0]) λ
N︸ ︷︷ ︸

1

− 1
2S
′′[0] λ

2

N2︸ ︷︷ ︸
2



+

iXN − S′[0]︸ ︷︷ ︸
0

− iXN + S′[0]− S′′[0] λ
N︸ ︷︷ ︸

1

+S′′[0] λ
N
− 1

2S
′′′[0] λ

2

N2︸ ︷︷ ︸
2

αs

+ 1
2

−S′′[0]︸ ︷︷ ︸
0

+ 2S′′[0]− S′′′[0] λ
N︸ ︷︷ ︸

1

−S′′[0] + 2S′′′[0] λ
N
− 1

2S
′′′′[0] λ

2

N2︸ ︷︷ ︸
2

α2
s.

The numbers below the braces mark which order of (λ−λs)
N the various terms correspond to. It is immediately

obvious that most terms cancel, and indeed, assuming that S is infinitely differentiable (an assumption that is
actually very restrictive on the original distribution p(x)), one can show that all terms beyond zeroth order in
αs cancel. Finally, by dropping all orders of αs we get

iλX − S
[
λ

N

]
αs�1
≈

λ≈λs
−S[0] + iλX − S′[0] λ

N
− 1

2S
′′[0] λ

2

N2 ,
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which is just the same as an expansion around λ ≈ 0. So to answer the original question, the two expansions
give approximately the same result because αs is small, and the approximation becomes exact in the limit
N →∞, because then αs → 0 as per our analysis above.

3. Hubbard-Stratonovich transformation
a) Starting with the right-hand side of the desired relation and expanding, we get (sums over Greek indices
sum over {↑, ↓}, sums over i or j sum over sites, sums over a or b sum over components):

−2
3S2

i + 1
2 (ni,↑ + ni,↓) = −1

6

3∑
a=1

∑
αβγδ

c†i,ασ
a
αβci,βc

†
i,γσ

a
γδci,δ + 1

2
∑
α

ni,α

= −1
6
∑
αβγδ

(δαδδβγ − δαβδγδ) c†i,αci,βc
†
i,γci,δ + 1

2
∑
α

ni,α

= −1
3
∑
αβ

c†i,αci,βc
†
i,βci,α + 1

6
∑
αγ

c†i,αci,αc
†
i,γci,γ + 1

2
∑
α

ni,α

= −1
3
∑
αβ

c†i,α

(
−c†i,βci,β + 1

)
ci,α + 1

6
∑
αβ

ni,αni,β + 1
2
∑
α

ni,α

=
(

1
2 −

2
3

)∑
α

ni,α + 1
3
∑
α 6=β

c†i,αc
†
i,βci,βci,α + 1

6
∑
α6=β

ni,αni,β + 1
6
∑
α

ni,αni,α

=
(

1
3 + 1

6

)∑
α6=β

ni,αni,β

= 1
2 (ni,↑ni,↓ + ni,↓ni,↑)

= ni,↑ni,↓

Notes:
line 1: insert definition of S

line 2: use equation (3) of the exercise sheet

line 3: expand and execute two sums each

line 4: reorder first term, use definition of n

line 5: reorder terms, note that the now second term is 0 if α = β since ci,αci,α = 0, split n2-term

line 6: first and last term cancel since ni,αni,α = ni,α for fermions, second term reorders to be identical to third
since α 6= β

b) First, let us rewrite the action a little

SH [c] =
∫ β

0
dτ

∑
i

∑
α

c†i,α∂τ ci,α −
∑
〈i,j〉

∑
α

tijc
†
i,αcj,α + U

∑
i

ni,↑ni,↓ − µ0
∑
i

∑
α

ni,α



=
∫ β

0
dτ


∑
ijαα′

c†i,α (δijδαα′ (∂τ − µ0)− δαα′tij) cj,α′ + U
∑
i

ni,↑ni,↓︸ ︷︷ ︸
=:SU [c]

 ,

where we defined tij = 0 except for nearest neighbors. Now focusing on the exponentiated on-site interaction
term, use the relation from a)

exp (−SU [c]) = exp
(∫ β

0
U
∑
i

(
2
3S2

i −
1
2 (ni,↑ + ni,↓)

)
dτ
)

= exp

− ∫ β

0

∑
ijab

(iSai )︸ ︷︷ ︸
A∗

(
2
3Uδabδij

)
︸ ︷︷ ︸

V

(
iSbj
)︸ ︷︷ ︸

B

dτ

 exp
(
−
∫ β

0

∑
i

U

2 (ni,↑ + ni,↓) dτ
)
.
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Now using the Hubbard-Stratonovich transformation

e−A
∗V B =

∫
Dφ e−φ

∗V −1φ+iA∗φ+iφ∗B

on the first term (using a three-component real field), and writing the second term in terms of ci,α, c†i,α, gives

N
∫
Dφ exp

∫ β

0
−
∑
ijab

φ∗ai
3

2U δabδijφbj −
∑
ia

Sai φai −
∑
ia

Sai φ
∗
ai dτ

 exp

−∫ β

0

∑
ijαα′

c†i,α

(
U

2 δijδαα
′

)
cj,α′ dτ


=N

∫
Dφ exp

∫ β

0
−
∑
ia

φ2
ai

3
8U −

∑
ia

Sai φai −
∑
ijαα′

c†i,α

(
U

2 δijδαα
′

)
cj,α′ dτ

,

where we did a variable transformation φ → 1
2φ and used that φ is actually real. Including the other terms of

SH , and using the definition of S gives:

SH [c, φ] =
∫ β

0
dτ

∑
ijαα′

c†i,α

δijδαα′
∂τ −µ0 + U

2︸ ︷︷ ︸
=:−µ

− δαα′tij + δij
1
2
∑
a

σaαα′φai

 cj,α′ + 3
8U
∑
ia

φ2
ai


=
∫ β

0
dτ

∑
ijαα′

c†i,α

((
(∂τ − µ) δαα′ + 1

2
∑
a

φaiσ
a
αα′

)
δij − tijδαα′

)
cj,α′ + 3

8U
∑
ia

φ2
ai

 ,

which is the desired result.

c) Looking again at the exponentiated on-site interaction term, we do the Hubbard-Stratonovich transforma-
tion directly with a one-component complex field φ without using a)

exp (−SU [c]) = exp
(
−
∫ β

0
U
∑
i

ni,↑ni,↓ dτ
)

= exp

−∫ β

0

∑
ij

ni,↑︸︷︷︸
A∗

(δijU)︸ ︷︷ ︸
V

nj,↓︸︷︷︸
B

dτ


= N

∫
D (φ∗, φ) exp

∫ β

0
−
∑
ij

φ∗i (δijU)−1
φj +

∑
i

(ini,↑φi + iφ∗ini,↓) dτ


= N

∫
D (φ∗, φ) exp

(
−
∫ β

0

∑
i

(
1
U
|φi|2 − (ini,↑φi1 − ni,↑φi2 + iφi1ni,↓ + φi2ni,↓)

)
dτ
)

= N
∫
D (φ∗, φ) exp

(
−
∫ β

0

∑
i

(
1
U
|φi|2 − (i(ni,↑ + ni,↓)φi1 − (ni,↑ − ni,↓)φi2)

)
dτ
)

= N
∫
D (φ∗, φ) exp

(
−
∫ β

0

∑
i

(
1
U
|φi|2 − iniφi1 + 2Szi φi2

)
dτ
)
.

The real part of the Hubbard-Stratonovich field (φi1) now couples to ni,↑ + ni,↓ = ni, the occupation number.
The imaginary part (φi2), on the other hand, couples to ni,↑ − ni,↓ = 2Szi , (twice) the spin in z-direction.
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