Solution to Exercise 8: Quantum Phase Transition

Vivek Lohani

December 7, 2019

Solution to 1(d): Dimensional Analysis

$$
\begin{aligned}
S= & \sum_{\mathbf{k}, \omega_{n}} \phi_{\mathbf{k}}^{*}\left(i \omega_{n}\right)\left(r_{0}+\mathbf{k}^{2}+\left|\omega_{n}\right|^{\frac{2}{z}}\right) \phi_{\mathbf{k}}\left(i \omega_{n}\right) \\
& +\frac{g}{4 \beta \mathcal{V}_{\omega_{n_{1}}, \omega_{n_{2}}, \omega_{n_{3}}} \sum_{\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}} \phi_{\mathbf{k}_{1}}^{*}\left(i \omega_{n_{1}}\right) \phi_{\mathbf{k}_{\mathbf{2}}}^{*}\left(i \omega_{n_{2}}\right) \phi_{\mathbf{k}_{\mathbf{3}}}\left(i \omega_{n_{3}}\right) \phi_{\mathbf{k}_{1}+\mathbf{k}_{2}-\mathbf{k}_{3}}\left(i \omega_{n_{1}}+i \omega_{n_{2}}-i \omega_{n_{3}}\right)}
\end{aligned}
$$

where β is the temperature and \mathcal{V} is the volume.
The dimensional analysis needs to start from the action itself. Each term in the action is dimensionless (we've set $\hbar=1$). We have the following three conclusions then:

1. \mathbf{k} and $\omega_{n}^{\frac{1}{\tilde{z}}}$ have the same dimension, and ω_{n} scales like the temperature T. This means \mathbf{k} and $T^{\frac{1}{z}}$ have the same dimension. We must therefore demand that $\left[L^{-1}\right]$ and $\left[T^{\frac{1}{z}}\right]$ have the same dimension. (Important: This leads to an anomalous time dimension in general, since T is inverse time, effectively leading to a model in $d+z$ dimensions instead of $d+1$!)
2. The first term has the dimension: $\frac{1}{L^{2}}[\phi]^{2}$. In order to be dimensionless, $[\phi]$ must have the dimensions of L or $T^{-\frac{1}{z}}$.
3. The second term has the dimensions of $\frac{[g \mid T}{L^{d}}[\phi]^{4}$. This implies the dimensions of g are same as that of $\frac{L^{d}}{T}[\phi]^{-4}$ or $T^{\frac{4-(d+z)}{z}}$.

We next analyze the Dyson equation. In the self consistent Hartree-Fock method we have,

$$
\begin{equation*}
r_{0}-r=\delta r(r, T)=\Sigma_{S C}=-\frac{g}{\beta \mathcal{V}} \sum_{\mathbf{k}, \omega_{n}} G_{\mathbf{k}}\left(i \omega_{n}\right) . \tag{1}
\end{equation*}
$$

Therefore, $\delta r(r, T)$ has the dimensions of $T^{\frac{2}{z}}$.
Remembering that $\delta r(r, T)$ is a function of two variables, and that for small r and small T, one can write the mass correction as

$$
\delta r(r, T)=\delta r(r, T=0)+\underbrace{f(r, T) g}_{\text {Finite temp correction }}+\ldots,
$$

where $f(r, T)$ is some function of r and T.

Observe that we arranged the mass correction due to interaction in powers of g, but chose to retain only the first order term in g - this is a reflection of the fact that we're doing first order perturbation theory (self-consistently, however). Furthermore, we can set $r=0$ and $T=T_{c}$ in $f(r, T)$ since we are interested in criticality. Keeping this in mind we write,

$$
\begin{equation*}
\delta r\left(0, T_{c}\right) \approx \delta r(0, T=0)+\underbrace{a\left(T_{c}\right) g}_{\text {Finite temp correction }} \tag{2}
\end{equation*}
$$

The dimension of $a\left(T_{c}\right)=f\left(r=0, T_{c}\right)$ must, therefore, be same as the dimension of $\frac{\delta r\left(0, T_{c}\right)}{g}$, or simply $T^{\frac{(d+z)-2}{z}}$. Just from dimensional analysis, we conclude that

$$
\begin{equation*}
a\left(T_{c}\right)=\kappa T_{c}^{\frac{(d+z)-2}{z}}, \tag{3}
\end{equation*}
$$

for some constant κ.
From previous parts in the tutorial sheet, we also know that $\delta r(0, T=0)=r_{0}^{c}$ at $T=0$. Hence,

$$
\begin{equation*}
\delta r\left(0, T_{c}\right) \approx r_{0}^{c}+\kappa T_{c}^{\frac{(d+z)-2}{z}} g \tag{4}
\end{equation*}
$$

Feeding this into the criticality condition, $r_{0}=\delta r(0, T)$, we obtain,

$$
r_{0} \approx r_{0}^{c}+\kappa T_{c}^{\frac{(d+z)-2}{z}} g
$$

Thus we conclude,

$$
T_{c} \propto\left|r_{0}-r_{0}^{c}\right|^{\frac{z}{d+z-2}}
$$

thereby yielding $\psi=\frac{z}{d+z-2}$.
This matches with the result in Achim's paper on magnetic instabilities of Fermi systems.
In this case, recall that we restricted ourselves to $d+z>4-$ this is necessary because only then higher order corrections in g will not become dimensionally stronger at low temperatues.

For $z=1$, one can also do an explicit calculation (I wrote an incorrect result of the Matsubara summation in the tutorial in this case). The correct calculation is as follows:

$$
\begin{aligned}
\delta(r, T) & =-\frac{g}{\beta \mathcal{V}} \sum_{\mathbf{k}, \omega_{n}} \frac{1}{r+\mathbf{k}^{2}+\left|\omega_{n}\right|^{2}} \\
& =-\frac{g}{\mathcal{V}} \sum_{\mathbf{k}} \frac{1+2 n_{B}\left(\sqrt{r+\mathbf{k}^{2}}\right)}{2 \sqrt{r+\mathbf{k}^{2}}} \\
& =-\frac{g}{(2 \pi)^{d}} \int_{\mathbf{k}} \frac{1+2 n_{B}\left(\sqrt{r+\mathbf{k}^{2}}\right)}{2 \sqrt{r+\mathbf{k}^{2}}}
\end{aligned}
$$

where n_{B} is the Bosonic distribution function.
Observe the two contributions: the former is independent of temperature (zero-temperature contribution) and the latter goes to zero as $T \rightarrow 0$. We want to find the scaling of the latter when $r=0$. To this end, note

$$
\int_{\mathbf{k}} \frac{n_{B}\left(\sqrt{\mathbf{k}^{2}}\right)}{2 \sqrt{\mathbf{k}^{2}}} \propto T^{d-1}
$$

in d dimensions, consistent with the result of our dimensional analysis for $z=1$.

