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Solution to 1(d): Dimensional Analysis
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∑
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where β is the temperature and V is the volume.

The dimensional analysis needs to start from the action itself. Each term in the action is dimensionless
(we’ve set ~ = 1). We have the following three conclusions then:

1. k and ω
1
z
n have the same dimension, and ωn scales like the temperature T . This means k and

T
1
z have the same dimension. We must therefore demand that [L−1] and [T 1

z ] have the same
dimension. (Important: This leads to an anomalous time dimension in general, since T is inverse
time, effectively leading to a model in d+ z dimensions instead of d+ 1!)

2. The first term has the dimension: 1
L2 [φ]2. In order to be dimensionless, [φ] must have the

dimensions of L or T− 1
z .

3. The second term has the dimensions of [g]T
Ld [φ]4. This implies the dimensions of g are same as

that of L
d

T [φ]−4 or T
4−(d+z)

z .

We next analyze the Dyson equation. In the self consistent Hartree-Fock method we have,

r0 − r = δr(r, T ) = ΣSC = − g

βV
∑
k,ωn

Gk(iωn). (1)

Therefore, δr(r, T ) has the dimensions of T 2
z .

Remembering that δr(r, T ) is a function of two variables, and that for small r and small T , one can
write the mass correction as

δr(r, T ) = δr(r, T = 0) + f(r, T )g︸ ︷︷ ︸
Finite temp correction

+ . . . ,

where f(r, T ) is some function of r and T .
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Observe that we arranged the mass correction due to interaction in powers of g, but chose to retain
only the first order term in g − this is a reflection of the fact that we’re doing first order perturbation
theory (self-consistently, however). Furthermore, we can set r = 0 and T = Tc in f(r, T ) since we are
interested in criticality. Keeping this in mind we write,

δr(0, Tc) ≈ δr(0, T = 0) + a(Tc)g︸ ︷︷ ︸
Finite temp correction

. (2)

The dimension of a(Tc) = f(r = 0, Tc) must, therefore, be same as the dimension of δr(0,Tc)
g , or simply

T
(d+z)−2

z . Just from dimensional analysis, we conclude that

a(Tc) = κT
(d+z)−2

z
c , (3)

for some constant κ.

From previous parts in the tutorial sheet, we also know that δr(0, T = 0) = rc0 at T = 0. Hence,

δr(0, Tc) ≈ rc0 + κT
(d+z)−2

z
c g. (4)

Feeding this into the criticality condition, r0 = δr(0, T ), we obtain,

r0 ≈ rc0 + κT
(d+z)−2

z
c g.

Thus we conclude,
Tc ∝ |r0 − rc0|

z
d+z−2

thereby yielding ψ = z
d+z−2 .

This matches with the result in Achim’s paper on magnetic instabilities of Fermi systems.

In this case, recall that we restricted ourselves to d + z > 4 − this is necessary because only then
higher order corrections in g will not become dimensionally stronger at low temperatues.

For z = 1, one can also do an explicit calculation (I wrote an incorrect result of the Matsubara
summation in the tutorial in this case). The correct calculation is as follows:

δ(r, T ) = − g

βV
∑
k,ωn

1
r + k2 + |ωn|2

= − g
V

∑
k

1 + 2nB(
√
r + k2)

2
√
r + k2

= − g

(2π)d

∫
k

1 + 2nB(
√
r + k2)

2
√
r + k2

where nB is the Bosonic distribution function.

Observe the two contributions: the former is independent of temperature (zero-temperature contribu-
tion) and the latter goes to zero as T → 0. We want to find the scaling of the latter when r = 0. To
this end, note ∫

k

nB(
√

k2)
2
√

k2
∝ T d−1

in d dimensions, consistent with the result of our dimensional analysis for z = 1.
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