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Solution to 1(d): Dimensional Analysis
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where ( is the temperature and V is the volume.

The dimensional analysis needs to start from the action itself. Each term in the action is dimensionless
(we've set i = 1). We have the following three conclusions then:

1
1. k and w;; have the same dimension, and w, scales like the temperature 7. This means k and
1 1
T= have the same dimension. We must therefore demand that [L~!] and [T'=] have the same

dimension. (Important: This leads to an anomalous time dimension in general, since T is inverse
time, effectively leading to a model in d 4+ z dimensions instead of d + 1!)

2. The first term has the dimension: +5[¢]?. In order to be dimensionless, [¢] must have the
dimensions of L or T~ %.

3. The second term has the dimensions of %[qﬁ]‘l. This implies the dimensions of g are same as
4—(d+z)

that of L%[gb]_“ or T
We next analyze the Dyson equation. In the self consistent Hartree-Fock method we have,

ro—r=0or(r,T)=%sc = _ﬂiV Z G(iwn). (1)
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Therefore, dr(r, T) has the dimensions of T°%.

Remembering that ér(r,T) is a function of two variables, and that for small » and small T, one can
write the mass correction as

or(r,T) = 6r(r,T =0) + f(r,T)g +...,
———

Finite temp correction

where f(r,T) is some function of r and 7.



Observe that we arranged the mass correction due to interaction in powers of g, but chose to retain
only the first order term in g — this is a reflection of the fact that we’re doing first order perturbation
theory (self-consistently, however). Furthermore, we can set r = 0 and T = T, in f(r,T) since we are
interested in criticality. Keeping this in mind we write,

or(0,Te) =~ 0r(0,T = 0) + a(Te)g . (2)
——

Finite temp correction

)

The dimension of a(T.) = f(r = 0,T.) must, therefore, be same as the dimension of M(O%, or simply
7“2 Just from dimensional analysis, we conclude that
(d42)—2

a(T.) =rkTc = (3)

for some constant .
From previous parts in the tutorial sheet, we also know that §r(0,7 = 0) = r§ at T = 0. Hence,
(d+z)—2
or(0,T.) =15+ kTe = g. (4)
Feeding this into the criticality condition, ro = ér(0,T), we obtain,

. (d+2)—2
ro~rg+rle * g

Thus we conclude,

T, o |ro — r§|a7=—2

thereby yielding ¢ = 7==.

This matches with the result in Achim’s paper on magnetic instabilities of Fermi systems.

In this case, recall that we restricted ourselves to d + z > 4 — this is necessary because only then
higher order corrections in g will not become dimensionally stronger at low temperatues.

For z = 1, one can also do an explicit calculation (I wrote an incorrect result of the Matsubara
summation in the tutorial in this case). The correct calculation is as follows:
1
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where np is the Bosonic distribution function.

Observe the two contributions: the former is independent of temperature (zero-temperature contribu-
tion) and the latter goes to zero as T — 0. We want to find the scaling of the latter when r = 0. To
this end, note

/nB(\/ﬁ) o T4 1
x 2vk?

in d dimensions, consistent with the result of our dimensional analysis for z = 1.



