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Problem 3: An introduction to the 1d Ising Model.

The Ising model is, perhaps, the most studied model in statistical physics. As introduced in the lecture,
it consists of a discrete set of magnetic degrees of freedom (or spins) si. In this case, the system is
uniaxial anisotropic, which means that the spins align along an unique axis (for example the z-axis).
We say then that si = ±1. In the case of a 1d system (an spins chain), the system is completely
solvable (Ising 1926) and this is what we will explore in this exercise. Consider a one-dimensional
Ising model with nearest-neighbor interactions, in the absence of a magnetic field. The Hamiltonian
of this system is

H = −J
N∑
i=1

sisi+1 (1)

with si = ±1 and J > 0. A given spin state consists of domains, i.e., contiguous stretches of up or
down spins. The domains are separated by boundaries called domain walls, which are marked by dots
in Fig. 1. The system has two ground states, in which all spins are aligned and there are no domain
walls.

Figure 1: A configuration of spins (arrows) and of domain walls (dots) in the one-dimensional Ising
model.

(a) Show that the energy of a spin state depends only on the number of domain walls, M , and compute
the excitation energy ∆EM = EM−E0, where E0 is the ground state energy. Compute the number
of states with M domain walls (note that each configuration of domain walls corresponds to exactly
two spin states).

Hint: The computation is easier if one assumes free boundary conditions for the spins. Alterna-
tively one can assume periodic boundary conditions ( positions N + 1 and 1 are identical).This
forces an even number of domain walls. The leading behavior in the thermodynamic limit (N � 1)
will not depend on the boundary conditions.

(b) Compute the partition function Z at inverse temperature β as a sum over domain wall configura-
tions.

(c) Compute the mean density of domain walls, ρ = 〈M/N〉, the mean energy density u = U/N , and
the specific heat per unit length, c, at temperature β−1. Evaluate the asymptotic behavior of
these quantities in the low-temperature limit.
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(d) The spin-spin correlation function is defined by

C(r) ≡ N−1
N∑
i=1

〈sisi+r〉. (2)

Using the domain wall representation, show that this correlation depends exponentially on the
distance,

C(r) ∼ exp(−|r|/ξ), (3)

and compute the correlation length as a function of the domain wall density, ξ(ρ). Using the result
of (c), then compute ξ(β−1) and evaluate the asymptotic behavior in the low-temperature limit.

Hint : First convince yourself that the correlation function can be written as an inhomogeneous
magnetisation with a constraint for one of the spins, sk = 1:

C(r) = 〈sk+r〉
∣∣
sk=1

≡ m(r). (4)

Define the vector pr with two components p+r and p−r = 1− p+r , which denote the probabilities of
the two spin states at position r. Write down a recursion relation pr = T pr−1 with a 2x2 matrix
T and express the coefficients of this matrix in terms of the domain wall density ρ. Simplify to a
recursion for the position-dependent magnetisation m(r) = p+r − p−r and solve this recursion.

(e) More generally, the recursive formalism covers the entire statistics of the system. Consider the

partition function Zσ,σ
′

N in a system of size N with constrained boundary spins, s1 = σ and
sN+1 = σ′. Compute the 2x2 matrix

T =

(
Z++
1 Z+−

1

Z−+1 Z−−1

)
, (5)

which is called the transfer matrix of the system (each of these partition functions consists of a
single term). By complete induction, show that the partition functions in a system of size N with
constrained boundary spins are simply related to the transfer matrix,(

Z++
N Z+−

N

Z−+N Z−−N

)
= TN (6)

(it is useful to write out the matrix product TN explicitly for, say, N = 2, 3). In particular, the
partition function with periodic boundary conditions takes the form ZN = TrTN . Compute ZN
using the asymptotic identity TrAN ' λN1 , where λ1 is the largest eigenvalue of A, and recover
the result of (b).

Problem 4: Mean Field Theory of the XY−model

The Ising model discussed above is a particular case of a broader type of systems with many magnetic
degrees of freedom, in which the spins tend to align along a particular axis, e.g the z−axis, such that
sz = ±1. Alternatively, unit-length spins may prefer to lay down on a plane, e.g. the xy−plane, from
which follows that (sx)2 + (sy)2 = 1. This is known as the planar or XY−model, for which we discuss
the mean field theory in this exercise.

(a) Starting with the Hamiltonian

H = −
∑
~r,~r′

J(~r − ~r′)~s~r · ~s~r′ − ~h ·
∑
~r

~s~r (7)

and defining the magnetisation vector ~M = (Mx,My), expand the spin vector functions to first
order around the magnetisation and rewrite the mean field hamiltonian HMF in terms of the norm
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Figure 2: At each site in position ~r there is a spin ~s~r that lies down on the xy−plane. In this figure,
we define the angle between ~s~r and the x−axis as φ~r. On the same plane lies the magnetisation vector
~M . We define the angle between ~M and the x−axis as θ. For convenience, the external magnetic field
~h lies along the x−axis.

of the magnetisation M and the corresponding angles θ and φ~r (See the figure above).
Hint: As has been done before, define J ≡

∑
~r J(~r−~r′). As shown in the picture, for convenience,

one can define the coordinates such that the external magnetic field lies down along the x−axis,
~h = hx̂.

(b) Write the mean field partition function ZMF . In particular, think about how to properly define
the sum over all the configurations in this case.

(c) Using the following integral ∫ 2π

0
ea cos(θ)+b sin(θ)dθ = 2πI0(

√
a2 + b2) (8)

with I0(x) the modified Bessel function of the first class, calculate the free energy of the system
FMF .

(d) Argue that the mean field values for the critical exponents of the XY−model are the same as
those for the Ising model that were calculated in the lecture.

To be discussed on: Mon, November 11

Course information: http://www.thp.uni-koeln.de/~lassig/teaching.html
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