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Correlated Random Networks
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We develop a statistical theory of networks. A network is a set of vertices and links given by its
adjacency matrix c, and the relevant statistical ensembles are defined in terms of a partition function
Z �

P
c exp���H �c��. The simplest cases are uncorrelated random networks such as the well-known

Erdös-Rényi graphs. Here we study more general interactions H �c� which lead to correlations, for
example, between the connectivities of adjacent vertices. In particular, such correlations occur in
optimized networks described by partition functions in the limit � ! 1. They are argued to be a
crucial signature of evolutionary design in biological networks.
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connectivities, dij between vertices,
P

i;jhdiji=N
2 
 logN�, in any
Networks describe structures as diverse as the interac-
tion links between proteins in a cell, the wiring of the
brain, or the connections of the internet. Recent theoreti-
cal work [1,2] has focused on communication networks,
and a wealth of quantitative data is now becoming avail-
able on networks in molecular biology. Examples include
control networks in gene transcription [3], the interaction
map of proteins [4], and the pathways of cell metabolism
[5]. All these systems consist of many different kinds of
molecules linked by complex interactions. Network mod-
els are a simplified description, which neglects quantita-
tive aspects of these interactions and focuses solely on
their pathways.

A network is a set of vertices i � 1; . . . ; N connected
by links. It is uniquely defined by the adjacency matrix c,
whose entries are cij � 1 if there is a link from i to j and
cij � 0 otherwise. We consider here networks with undir-
ected links, where c is symmetric. The connectivity or
degree of a vertex is then defined as the total number of
links connected to it, ki 	

P
j cij. The distance dij be-

tween two vertices i and j is the number of links along the
shortest path connecting them [6]. We assume the vertices
are labeled (for example, by their biochemical identity),
so that the correspondence between adjacency matrix c
and its graph is one-to-one [7].

Networks with an irregular wiring naturally lend
themselves to a statistical description [6]. We discuss
here the equilibrium statistics of networks. The partition
function Z can be defined as a sum over all graphs with a
fixed number N of vertices and a fixed number M �P

i<j cij � Tr c2=2 of links

Z �
Y
i<j

X1
cij�0


�M� Tr c2=2� exp���H �c�� : (1)

Averages over this ensemble are denoted by h� � �i.
Alternatively, one can define Z with an arbitrary number
of links adjusted by a suitable chemical potential. The
ensembles of relevance here have a finite average con-
nectivity � 	 2M=N. For fixed �, the distribution of
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p�k� 	
1

N

XN
i�1

h
�ki � k�i ; (2)

becomes asymptotically independent of N, implying that
typical adjacency matrices c become sparse for large N.
This is the case of interest for applications.

A satisfactory mathematical theory exists to date only
for what we call uncorrelated random networks [9,10]. In
this case, the Hamiltonian depends only on single-point
connectivities,

H 1�c� �
XN
i�1

f�ki� ; (3)

leading to p�k� 
 exp���f�k� ��k�=k! where the con-
stant of proportionality is fixed by normalization and � is
adjusted to give the correct average connectivity. Since
all graphs with the same connectivities k1; . . . ; kN have
the same statistical weight, this ensemble ensures the
maximally random wiring compatible with the distribu-
tion p�k�. The simplest example is the well-known Erdös-
Rényi graphs, where �H � 0 and p�k� is a Poissonian.

Many natural networks are, however, not of this type.
The simplest kind of correlations occur if the joint dis-
tribution of connectivities for neighboring vertices,

q�k; k0� 	
1

�N

XN
i;j�1

h
�ki � k�cij
�kj � k0�i ; (4)

differs from its form for uncorrelated random networks,
q0�k; k0� � �kk0=�2�p�k�p�k0�. Higher correlations can be
defined in a similar way [11]. Connectivity correlations
have been found in growth models of communication
networks [12,13] as well as in data of genetic and protein
networks [14,15].

These observations call for a statistical theory of more
general ensembles called correlated random networks,
which is the subject of this Letter. The ensembles of
interest are characterized by finite distributions p�k�
and q�k; k0� in the limit of large N. One then expects a
universal logarithmic scaling of the average distance

�
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FIG. 1. Optimized networks, obtained from local interac-
tions (left) and nonlocal interactions for large �. Hubs of
high connectivity (solid circles) are preferentially connected
to peripheral vertices of low connectivity (open circles).
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connected component � with N� nodes [16]. This is
consistent with our numerical findings. Hence, correlated
random networks maintain a sparse connectivity matrix
and are locally treelike. The ‘‘inverse temperature’’ � in
(1) measures the deviation from Erdös-Rényi graphs.
Quite remarkably, these structural properties are pre-
served in the limit � ! 1, where we obtain nontrivial
optimized networks. Ensembles of this kind generically
have strong correlations.

The simplest type of Hamiltonian producing correla-
tions has nearest-neighbor connectivity interactions,

H 2�c� �
X
i<j

cijg�ki; kj� ; (5)

where g�k; k0� is some function of the connectivities. The
resulting class of graph ensembles can be seen as a show-
case for correlated random networks where analytic ex-
pressions can be derived. Higher order correlations are
generated by Hamiltonians with next-nearest neighbor
interactions, etc., We also study a Hamiltonian H �
H 1 � �H d with a nonlocal part,

H d�c� �
XN
i<j

dij ; (6)

often called the diameter of the graph. For � > 0 and a
suitable scaling �
 1=�N logN�, this Hamiltonian is
found to generate compactified networks with finite p�k�
and q�k; k0�, provided the extra term H 1 stabilizes the
network against collapse to a star.

Compactified networks occur in communication and
transport [17], and may play a role in biology [18,19]. For
example, distance-optimized networks obtained from (6)
show an abundance of high-connectivity vertices (hubs)
228701-2
which are preferentially connected to peripheral vertices
of low connectivity. A very similar structure (with even
more pronounced hubs) can also be obtained from local
interactions of the form (5). Typical graphs are shown
in Fig. 1.

To establish these results, we first discuss the analytical
treatment of local interactions, choosing a generic
Hamiltonian of the form H � H 1 �H 2 given by (3)
and (5). From the partition function (1), the free energy is
derived by using an integral representation for the con-
straints due to the connectivity ki at each vertex and
making a Hubbard-Stratonovich transformation. The re-
sulting integral can be evaluated in a saddle-point ap-
proximation, yielding the reduced free energy per vertex
in the thermodynamic limit,
��f	 lim
N!1

1

N
logZ�

�
2
logN�

�
2
�log��1��

�
2
log

�X
k;k0

QkG
�1
kk0Qk0 �e�2�

�
�log

"X
k

�Qk�e���k

k!
exp���f�k��

#
: (7)
The ‘‘order parameters’’ Qk and the chemical poten-
tial � have to be determined self-consistently from the
saddle-point condition. This form is closely related to a
field-theoretic approach [10,20,21], where networks ap-
pear as the Feynman diagrams of a Gaussian integral
with a propagator matrix Gkk0 � exp���g�k; k0�� � 1
and interactions as specified by the last term in (7).
Notice the superextensive scaling of the entropy,
��=2� logN, which reflects that unlike in a regular lattice,
each vertex can be connected to all N � 1 other vertices.
The last term in (7) is directly related to the degree
distribution,

p�k� � C
�Qk � e���k

k!
exp���f�k��; (8)

where C is a normalization constant. For example, a
power-law tail in p�k� may be generated by a suitable
choice of the weights f�k� but it is not generic.
A more detailed account of networks with generic
local interactions will be published elsewhere [8].
Here we turn to the simplest Hamiltonian with local
interactions producing nontrivial optimized net-
works, see Fig. 1. It has the form H L � H 1 �H 2

with H 1�c� � ��1=2�
P

i k
2
i � �

P
i k

3
i and H 2�c� �

�
P

i<j 
ki;1cij
kj;1. The first term �1=2�
P

i k
2
i �

�1=2�
P

ijk cikckj gives the number of paths of length two
on the graph. It rewards the formation of hubs, i.e., highly
connected vertices, which in turn lead to short distances.
In fact this term has the maximally compact, starlike
configuration as its ground state. The collapse to a star,
where the connectivity of the central vertex scales with
the size of the graph, however, is prevented by the regu-
larization term �

P
i k

3
i . The correlation term H 2 with

� ! 1 suppresses single, isolated links connecting two
vertices of connectivity 1. Without this term an extensive
228701-2
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FIG. 2 (color online). Statistical features of correlated
random networks with local interactions (left) and nonlocal
interactions (right). (a) Single-point connectivity distribution
p�k� for various values of �. The Poisson form (dotted line),
data for intermediate � (open circles) and large � (solid
squares), and analytical values (8) for the case of local
interactions (solid lines). (b) Neighbor connectivity distribu-
tion q�k; k0�. Left: Local interactions, analytical form (9)
for � � 3. Right: Nonlocal interactions, numerical results
for � � 15. (c) Average relative entropy hS�q̂qjq̂q0�i (circles),
compared to the average sampling entropy hS0�q̂q0�i (squares)
and its standard deviation h�S0�q̂q0�i, see text. (d) Average
inverse distance K as a function of � (open circles), com-
pared to the same quantity for the equivalent uncor-
related network (open squares) and for the equivalent
locally correlated network (right figure, open diamonds);
see text.
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number of isolated links remains even in the limit � ! 1
leading to graphs with a large number of disconnected
parts. A minimal connectivity of 1 of each vertex is
enforced. For this Hamiltonian, the free energy (7) con-
tains only one nonzero order parameter Q1 given by
p�1� � ��Q1=�Q1 � e����. The chemical potential � is
determined by

P
k kp�k� � �. Remarkably, the connec-

tivity correlation can be obtained from H 2 and single-
vertex quantities,

q�k; k0� 
 kp�k�tkk
0p�k0�tk0 exp���g�k; k0��: (9)

The constant of proportionality is fixed by normalization
and the tk are determined by the marginal distributionP

k0 q�k; k
0� � kp�k�=�, giving t1 � �=fT��� p�1��g and

tk � T �
�����������������������������������������������
1� p�1�2=��� p�1��2

p
for k > 1.

The properties of optimized networks resulting from
the Hamiltonian H L are readily inferred from Eqs. (8)
and (9). At finite values � one finds that the degree
distribution (8) has an exponentially decaying tail. In
order to analyze the limit � ! 1, we replace the sum
over k in (7) by an integral. One finds that the vertices
arrange themselves into hubs of connectivity

k� � �1� 2��=4� (10)

and peripheral vertices of connectivity 1. The peripheral
vertices are connected only to hubs, while the hubs form
an uncorrelated random network.

A remarkably similar structure is found for compacti-
fied networks generated by the Hamiltonian with non-
local interactions H � H1 � �Hd with Hd given by (6)
and H 1 � �

P
i k

3
i . For � > 0, the nonlocal part H d

favors networks with short distances, while H 1 prevents
the collapse to a star as before. Hence, by choosing � �
2=�N logN�, one obtains a well-defined thermodynamic
limit with the average distance between vertices scaling
as logN. We have studied this ensemble, as well as the
case of local interactions H L, by a Monte-Carlo link
dynamics. Starting, for example, from an Erdös-Renyi
graph, randomly chosen links are moved to previ-
ously unlinked vertex pairs with probability p �
min�1; exp����H �� where �H denotes the corre-
sponding change in the Hamiltonian. The minimum de-
gree of 1 is enforced throughout, self-links are excluded
[7]. No dependence on the initial conditions has been
found. For the local Hamiltonian we use a network
with N � 200, � � 2:4, � � 0:03, for the nonlocal
Hamiltonian we use N � 100, � � 2:4, � � 0:001. We
averaged over 100 samples. Figure 2 juxtaposes analytical
and numerical results for local interactions on the left
with numerical results for nonlocal interactions on the
right. The connectivity distribution p�k� shows the for-
mation of high-connectivity hubs in both cases.

For local interactions the hub connectivity is given
by (10), for nonlocal interaction the distribution re-
mains broad even in the limit � ! 1 [Fig. 2(a)] [22].
228701-3 228701-3
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Low-connectivity vertices are preferentially attached to
hubs as indicated by the peaks at q�1; k�� for local inter-
actions and the corresponding peaks of q�k; k0� for non-
local interactions [Fig. 2(b)]. The deviation from
uncorrelated random networks is measured by the relative
entropy S�qjq0� �

P
k;k0 q�k; k

0� log�q�k; k0�=q0�k; k0��. In a
single network of size N, we obtain the estimate S�q̂qjq̂q0�
from the observed frequencies q̂q�k; k0� and p̂p�k�, with
q̂q0�k; k

0� � �kk0=�2�p̂p�k�p̂p�k0�. We then generate a suffi-
cient number of uncorrelated random networks [23]
labeled by " with frequencies q̂q"�k; k0� and sampling
entropies S�q̂q"jq̂q0�; their average and standard deviation
are denoted by S0�q̂q0� and �S0�q̂q0�, respectively.
Connectivity correlations in the original network are
significant if S�q̂qjq̂q0� � S0�q̂q0� * �S0�q̂q0�. This is typi-
cally the case from a certain optimization degree � on,
as shown by the ensemble averages over ten samples
hS�q̂qjq̂q0�i, hS0�q̂q0�i, and h�S0�q̂q0�i of Fig. 2(c).

Both kinds of networks become more compactified
with increasing �, as shown by the average inverse dis-
tance K 	 �2=N�N � 1��

P
i<j d

�1
ij [Fig. 2(d)] [24]. We

also plot K for the equivalent uncorrelated random net-
works; no such compactification is seen. Hence, the one-
point distribution p�k� may miss important functional
properties. On the other hand, the nonlocally interacting
networks and their equivalent locally interacting counter-
parts [constructed to have the same p�k� and q�k; k0�]
have a very similar degree of compactification [23].
This illustrates how optimization induces correlations.

In summary, we have shown how interactions shape the
structure of a network. Hamiltonians beyond the ‘‘single-
vertex’’ form (3) generate correlations such as a neighbor
connectivity distribution q�k; k0� which differs from that
in uncorrelated networks. Higher correlations can be de-
fined in a similar way [11]. These correlations provide a
more detailed fingerprint of the interactions present than
the single-point connectivity distribution p�k�. This ob-
servation should carry over to the dynamical rules for
nonequilibrium ensembles such as the well-known
growth models [1,12].

In transcription control networks, structural motifs
have been identified that can be expressed in terms of
connectivity correlations [14]. Such correlations have also
been observed in protein networks [15]. In view of our
findings for optimized networks, they appear to be a
natural consequence of the underlying dynamics and
functional optimization. We expect the data to give im-
portant information on the underlying design principles
of networks and on the selective forces governing their
evolution. Reverse engineering seems feasible, with the
aim of inferring the relevant dynamics from the data. The
nonequilibrium theory of correlated random networks
will thus be an important avenue for future research.

Many thanks to Sergei Maslov for fruitful discussions
and for making [15] available prior to publication.
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