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The complexity of an organism is only weakly
linked with its number of genes. Homo sapiens has
about 25000 genes and the roundworm C. elegans

about 19000 [1, 2], despite the different level of com-
plexity. Not only the gene numbers are similar, the
genes themselves are frequently shared across species.
Even distantly related organisms have a high fraction
of genes which stem from their common ancestor (or-
thologs): more than 90% of genes are shared between
human and mouse and at least 30% of genes of the
yeast S. cerevisiae have orthologs in human [3].

This result is an important outcome of the recent
genome sequencing projects. It has put the spotlight
on the interactions between genes: changes in the
complex networks of gene regulation, or in the in-
teractions between proteins, may be a major cause
of phenotypic variation, more so than changes in the
genes themselves [4]. The molecular basis of these
interactions includes specific binding sites on regula-
tory DNA and binding domains in proteins. Binding
sites can change quickly generating new interactions
or deleting old ones [5, 6, 7, 8].

The resulting interest in biological interactions has
been matched by the development of novel experi-
mental techniques to measure protein–DNA interac-
tions and protein–protein interactions. In particular,
high-throughput methods have been developed, facil-
itating measurements on a genome-wide scale rather
than for individual genes. Some of the ingenious
methods for experimentally determining biological
interactions will be briefly reviewed in the next sec-
tion.

This experimental development is akin to the tran-
sition from sequencing small parts of the DNA of an
organism to the determination of full genomes. The
growth of sequencing capabilities has been driving
the development of computational methods for se-
quence analysis for the past three decades. Virtually
all methods for sequence analysis rely on statistics as
a tool to infer function. Examples are the detection
of genes, or of regulatory modules, or the identifi-
cation of correlations between evolutionarily related
sequences [9].

The corresponding development of computational
network biology is still in its infancy. It will require
new tools to address specific issues of biological net-
works. These are characterized by a peculiar inter-
play of stochasticity and function, and in many ways
epitomize our current lack of understanding of biolog-
ical systems. With this caveat, the point of view we
take in this article is that statistics will again play a
decisive role in our understanding of network biology,
and we point out some currently available links be-
tween network statistics and function. The merit of
a statistical approach may not seem obvious from an
engineering perspective, where networks are seen as
deterministic processing machines producing a well-
defined input–output relation. Indeed, biological net-
works sometimes work in a surprisingly deterministic
way: for example, a network of a few dozen major
genes generates a well-defined spatiotemporal devel-
opment pattern in the eukaryotic embryo. However,
the underlying network structures are fundamentally
stochastic, since they arise from the manifold tinker-
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ing and feedback processes of biological evolution.
Explaining deterministic function from a stochastic
evolution requires a statistical, dynamical theory.

One important aspect of this challenge is to pre-
dict different functional units in networks. Differ-
ent functions are reflected in a different evolutionary
dynamics, and hence in different statistical charac-
teristics of network parts. In this sense, the global

statistics of a biological network, e.g., its connectivity
distribution, provides a background, and local devi-

ations from this background signal functional units.
In the computational analysis of biological networks,
we thus typically have to discriminate between dif-
ferent statistical models governing different parts of
the dataset. The nature of these models depends on
the biological question asked. We illustrate this ra-
tionale here with three examples: identification of
functional parts as highly connected network clusters,
finding network motifs, which occur in a similar form
at different places in the network, and the analysis of
cross-species network correlations, which reflect evo-
lutionary dynamics between species.

1. Measuring biological networks

A wide range of experimental methods has been de-
veloped to measure interactions between proteins, in-
teractions between proteins and regulatory DNA, and
expression levels of genes. Only a brief review is pos-
sible here.

In the yeast-two-hybrid (Y2H) method, the pair-
wise interaction between two proteins is tested by
creating two fusion proteins [10]. One protein is con-
structed with a DNA-binding domain attached to its
end, and its potential binding partner is fused to an
activation domain. If the two proteins interact, the
binding will form a transcriptional activator (gener-
ally consisting of a DNA-binding domain and an ac-
tivation domain). The presence of an intact activator
leads to the transcription of an easily detectable re-
porter gene. (The reporter gene may for instance pro-
duce a fluorescent protein.) In principle, the amount
of the reporter gene produced can serve as a mea-
sure of the affinity between the two proteins. The
Y2H-method has been used to measure the protein
interaction networks of yeast [10], C. elegans [11],
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Figure 1: Deviation from a uniform global statis-

tics in biological networks. a) A network cluster is
distinguished by an enhanced number of intra-cluster in-
teractions. b) A network motif is a set of subgraphs with
correlated interactions. In a limiting case, all subgraphs
have the same topology. c) Cross-species correlations
characterize evolutionarily conserved parts of networks.

D. melanogaster [12], and human [13]. The Y2H-
datasets are known to contain a large number of false
positive and false negative results. False negatives
arise when the fusion proteins fail to localize in the
yeast nucleus, or fail to fold properly once the new
domains are attached. False positives may be linked
to high expression levels of the hybrid in yeast, which
are never reached in vivo.

Alternative approaches include pull-down assays,
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where one protein type is immobilized on a gel, and
‘pulls down’ binding partners from a solution. Bind-
ing partners may then be identified by various tags.
Mass spectrometry is also used to identify the in-
teracting protein pairs identified by such an affinity
analysis [14]. While more accurate than the Y2H-
method, these approaches have not yet been scaled
up to provide high throughputs.

Binding of proteins, specifically transcription fac-
tors, to regulatory DNA has long been investigated
by electrophoresis, where the motility of a DNA-
fragment is altered by a protein bound to it. Chro-
matin immunoprecipitation (ChIP) is an alternative
procedure, which uses specific antibodies to isolate
a protein and then amplifies DNA that may have
been isolated together (co-precipitated) with the pro-
tein. By running many such experiments in parallel
on a microarray, this method can be scaled up to high
throughputs (ChIP-on-chip, [15]).

Gene expression levels can be measured on DNA-
microarrays, densely packed samples of known nu-
cleotides, each a few tens of base-pairs long. Cur-
rently more than 106 such samples, or probes, can
be placed on a single microarray. The array is then
washed with a fluorescently labeled sample. Binding
of DNA in the sample to complementary DNA on the
probe can be detected under a microscope from the
resulting fluorescence pattern. Genome-wide expres-
sion levels can thus be measured on a single array.
Many other applications of microarrays are being de-
veloped — for instance microarrays to measures in-
teractions between transcription factors and regula-
tory DNA. DNA-microarrays are also making major
inroads as diagnostic tools, from characterizing the
microbial communities in dentistry [16] to the early
detection of cancer [17].

2. Random networks in biology

Randomly generated networks are very useful to an-
alyze simple characteristics of biological networks.
For instance, typical distances on a randomly gen-
erated network generally scale logarithmically with
the number of network nodes. Finding such short
distances also in biological network data is therefore
not a surprising result and does not require a bio-

logical explanation. Another frequent observation in
biological networks is a distribution of node connec-
tivities with a broad tail, which is shared by specific
ensembles of random networks. This has motivated
a number of statistical models explaining the connec-
tivity distribution in terms of the underlying evolu-
tionary dynamics [18, 19, 20]. Thus, ensembles of
random networks can be tuned to fit certain charac-
teristics of biological network data. Does that mean
the actual network is random? This is clearly not the
case: other observables may differ from what is ex-
pected in the random network ensemble, and we will
see that these deviations from the “null model” are
particularly interesting as signals of biological func-
tion. Hence, random network ensembles play an im-
portant role in quantifying the most unbiased back-
ground statistics of a “functionless” network. Their
choice is a subtle issue: it has to be motivated by
what we consider as not important for the biological
function in question. Let us now turn to a few such
models.

A network is specified by its adjacency matrix a =
(aii′ ). For binary networks aii′ = 1 if there is a link
between nodes i and i′, and aii′ = 0 if there is no
link. Networks with undirected links are represented
by a symmetric adjacency matrix. The in and out

connectivities of a node, k+
i =

∑

i′ ai′i and k−
i =

∑

i′ aii′ , are defined as the number of in- and outgoing
links, respectively. The total number of directed links
is given by K =

∑

i,i′ aii′ .
To focus on a specific part of the network we de-

fine an ordered subset A of n nodes {r1, . . . rn} (see
Fig. 1a). The subset A induces a pattern â(A) on
the network, represented by the restricted adjacency
matrix containing only links internal to node subset
A. â is thus an n× n matrix with entries âij = arirj

(i, j = 1, . . . , n). Together, subset of nodes A and its
pattern â(A) form a subgraph.

The simplest ensemble of random networks is gen-
erated by connecting all pairs of nodes independently
with the same probability w. Given a subset of
nodes A, the probability of generating pattern â is
then given by P0(a) =

∏n
i,i′∈A(1 − w)1−aii′ waii′ (for

undirected networks the sum is restricted to i ≤ i′).
This well-known ensemble, named after the pioneers
of graph theory P. Erdős and A. Rényi, leads to a
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Poissonian distribution of connectivities. The only
free parameter of the Erdős–Rényi (ER) model, the
link probability w between a given pair of nodes, can
be tuned so that typical graphs taken from the ER-
ensemble have the same number of links as the empir-
ical data. If the subset of nodes A contains all n = N
nodes of the network, w = K/N2. Considering con-
nected subgraphs with n < N , w will in general be
higher than K/N2. Then the value of w can be deter-
mined by generating all connected subgraphs of size n
from the empirical dataset and choosing w such that
the average number of links in the ER model equals
the average number of links in connected subgraphs
in the data.

However, in biological networks the connectivity
distribution often differs markedly from that of the
Erdős–Rényi-model. If we have reasons to assume
that a biological function is not tightly linked to
connectivity at the level of individual nodes, we
should include the connectivity distribution in our
null model. Indeed, we can easily construct a ran-
dom ensemble matching the connectivity distribution
of the dataset. In this ensemble, the probability wii′

of finding a link between a pair of nodes i, i′ depends
on the connectivities of the nodes. Assuming links be-
tween different node pairs to be uncorrelated, a given
subset of nodes A has a pattern â with probability

P0(â) =
n

∏

i,i′∈A

(1 − wii′ )
1−aii′ w

aii′

ii′ . (1)

For n = N , when A includes the entire network, the
probability of finding a directed link between nodes i
and i′ is approximately wii′ = k−

ri
k+

ri′
/K, that of an

undirected link wii′ = kri
kri′

/K [21]. If we further-
more impose the constraint that the null model de-
scribe the statistics of a connected dataset, the proba-
bilities in (1) are increased by a factor that can be de-
termined from the data as described above. The null
model constructed in this way is maximally unbiased
with respect to all patterns in the dataset beyond its
connectivity distribution.

3. Network clusters

A first trace of functionality in biological networks
are strong inhomogeneities in their link statistics,
which are not captured by the null model. Exam-
ples are protein aggregates of several proteins held
together by mutual interactions, which show up as
highly connected clusters in protein interaction net-
works, and sets co-regulated genes (for instance by
an oncogene [22]), leading to clusters in co-expression
networks. How can we identify these clusters statis-
tically?

Clusters are subgraphs with a significantly in-
creased number of internal links compared to the
background of the network, see Figure 1a). The fea-
ture distinguishing clusters is the number of internal
links,

L(â) =

n
∑

i,i′∈A

âii′ . (2)

The statistics of clusters is then described by an en-
semble

Qσ(â) = Z−1
σ exp[σL(â)] P0(â) (3)

of the same form as (1), but with a bias towards a
high number of internal links. The average number
of internal links is determined by the value of the
link reward σ. We have introduced the normalization
factor Zσ =

∏n
ii′

∑

âii′=0,1 exp[σL(â)] P0(â), which

ensures that Qσ(â) summed over all patterns â gives
unity.

Is a given pattern â more likely part of a cluster as
described by the model (3), or is it more likely part
of the background described by the null model (1)?
To address this question, we define the so-called log-

likelihood score

S(A, σ) = log

(

Qσ(â)

P0(â)

)

= σL(â(A)) − log Zσ . (4)

A positive score results if it is more likely for the
pattern â(A) to arise in the model describing clus-
ters than in the alternative null model. High scores
indicate strong deviations from the null model. Of
course this an attractive property for the algorithmic
search for deviations from the null model. As shown
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in the appendix, the form of the score (4) is related in
a simple way to the probability that pattern â comes
from the model describing clusters.

Patterns with a high score (4) are bona fide clus-
ters. The first term of the score weighs the total num-
ber of links. As expected, a pattern with many inter-
nal links yields a high score. The second term acts as
a threshold and assigns a negative score to a pattern
with a too small number of internal links. This term
takes into account the connectivities of the nodes:
highly connected nodes have more internal links al-
ready in the null model. Node subsets with highly
connected nodes tend to give lower scores. The score
(4) thus goes beyond simple measures of clustering,
such as the number of internal links, and provides a
statistical basis for cluster detection.

Given the scoring parameter σ, the maximum-score
node subset A?(σ) is defined by

A?(σ) = argmaxAS(A, σ) . (5)

At this point, the scoring parameter σ is a free pa-
rameter, whose value needs to be inferred from the
data. This can be done by applying the principle
of maximum likelihood: σ is determined by the re-
quirement that the model describing clusters (3) opti-
mally describes the statistics of the maximum-score
pattern. For a given pattern â, the optimal fit is
defined by the so-called maximum likelihood value

σ? = argmaxσQσ(â(A)), which maximizes the likeli-
hood of generating pattern â(A) under the model (3).
Since log(x) is a monotonously increasing function,
the maximum likelihood value σ? coincides with the
maximum of the log-likelihood score (4) over σ. The
maximum-score node subset at the optimal scoring
parameter is then determined by the joint maximum
of the score over A and σ

S(A?, σ?) = max
σ

S(A?(σ), σ) = max
A,σ

S(A, σ) . (6)

One can easily show that the maximum-likelihood
value of σ sets the expected number of links in the
ensemble Qσ? equal to the actual number of links in
pattern â?: setting the derivative of (4) with respect
to σ equal to zero gives

〈L(â)〉Qσ? = L(â?) . (7)
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Figure 2: Scoring clusters in protein interaction

networks. a) The score S of the maximum-score node
subset A?(σ) is shown as a function of the scoring param-
eter σ. The dotted lines indicate the values of σ where
the maximum-score node subset changes. The maximum
of the score with respect to σ indicates the optimal scor-
ing parameter σ? = 6.6. The grey region 4.25 < σ < 7
indicates the values where A

?(σ) = A
?(σ?). b) The

maximum-score subgraphs for σ < 4.25, 4.25 < σ < 7,
7 < σ < 11,σ > 11 (left to right). The subgraph result-
ing from the optimal scoring parameter is highlighted in
grey. The maximum-score subgraphs for 7 < σ < 11 and
for σ > 11 are distinguished by the connectivities of their
nodes with the latter having a higher average connectiv-
ity. This accounts for the former having a higher score for
7 < σ < 11 despite the smaller number of internal links.

Clusters in protein interaction networks. We
use the scoring function (4) to identify clusters in the
protein interaction network of yeast, namely the high-
throughput dataset of Uetz et al. [10]. At a given
value of the scoring parameter σ, the maximum-score
node subset A?(σ) is identified using a simple Monte-
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Carlo algorithm. At different values of σ, different
node subsets A?(σ) yield the highest score (compared
to all other node subsets). The resulting subgraphs
are shown in Fig. 2a). At low values of σ, subgraphs
with many nodes, but comparatively few internal in-
teractions per node yield the highest score. At high
values of σ, subgraphs with many internal interac-
tions are favored. However these subgraphs tend
to be small. The interplay between subgraph size
and internal connectivity leads to a joint score maxi-
mum over A and σ at the optimal scoring parameter
σ? = 6.6, see Fig. 2a).

The maximum-score cluster A? ≡ A?(σ?) consists
of the proteins SNZ1,SNZ2,SNO1,SNO3, and SNO4,
highlighted in grey in Fig. 2 b). The proteins in this
cluster have a common function; they are involved in
the metabolism of pyridoxine and in the synthesis of
thiamin [23, 24]. Furthermore, SNZ1 and SNO1 have
been found to be co-regulated and their mRNA levels
increase in response to starvation for aminoacids A,
Ura, and Trp [25].

4. Network motifs

The topology of a subgraph may be associated with
a specific function. A possible example is a feed-
forward loop acting as a high-frequency filter in a
regulatory network [26]. If such a function is required
repeatedly in different parts of the network, there is
selection pressure for the creation and maintenance
of similar topologies in different parts of a network.
Such network motifs [27, 26] are families of subgraphs
distinguished from the null model by mutual correla-
tions between subgraphs, see Fig. 1 b).

To quantify these correlations, we need to specify
the parts of the network with correlated patterns. We
define a graph alignment A by a set of several node
subsets Aα (α = 1, . . . , p), each containing the same
number of n nodes, and a specific order of the nodes
{rα

1 , . . . , rα
n} in each node subset. An alignment as-

sociates each node in a node subset with exactly one
node in each of the other node subsets. The align-
ment can be visualized by n “strings”, each connect-
ing p nodes as shown in Fig. 1(b).

An alignment specifies a pattern âα ≡ â(Aα,A)
in each node subset. For any two aligned subsets of

nodes, Aα and Aβ , we can define the pairwise mis-

match of their patterns

M(âα, âβ) =

n
∑

i,i′=1

[âα
ii′(1− âβ

ii′ )+ (1− âα
ii′ )â

β
ii′ ] . (8)

The mismatch is a Hamming distance for aligned pat-
terns. The average mismatch over all pairs of aligned
patterns is termed the fuzziness of the alignment.

Frequently network motifs also have an enhanced
number of internal links [26, 27], providing the pos-
sibility of feedback or other faculties not available to
tree-like patterns. An ensemble describing p node
subsets with correlated patterns â1, . . . , âp with an
enhanced number of links is given by

Qµ,σ(â1, . . . , âp) = Z−1
µ,σ

p
∏

α=1

P0(â
α) (9)

× exp



−
µ

2p

p
∑

α,β=1

M(âα, âβ) + σ

p
∑

α=1

L(âα)



 .

The parameter µ ≥ 0 biases the ensemble (9)
towards patterns with small mutual mismatches
M(âα, âβ).

Given the null model (1) and the model (9) with
correlated patterns, we obtain a log-likelihood score
for network motifs

S(A, µ, σ)

= log

(

Qµ,σ(â1, . . . , âp)

P0(â1, . . . , âp)

)

= −
µ

2p

p
∑

α,β=1

M(âα, âβ) + σ

p
∑

α=1

L(âα)

− log Zµ,σ . (10)

High-scoring alignments A indicate bona fide network
motifs. The first and second term reward alignments
with a small mutual mismatch and a high number of
internal links, respectively. The term log Zσ,µ acts as
a threshold assigning a negative score to alignments
with too high fuzziness or too few internal links.

Again, both the alignment A and the scoring pa-
rameters µ and σ are a priori undetermined. For
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given scoring parameters, the maximum-score align-
ment

A?(µ, σ) = argmaxAS(A, µ, σ) (11)

occurs at some finite value of the number of sub-
graphs p?(µ, σ).

The scoring parameters µ and σ can again be de-
termined by maximum likelihood, which corresponds
to maximizing the score S(A?(µ, σ), µ, σ) with re-
spect to the scoring parameters. By differentiating
(10) with respect to the scoring parameters one finds
that at µ = µ? and σ = σ? the model (9) fits the
maximum-score network motifs: the expectation val-
ues of the internal number of links and the fuzziness
equal the corresponding values of the maximum-score
alignment.

Network motifs in regulatory networks. We
now apply the scoring function (10) to the identifica-
tion of network motifs in the gene regulatory network
of E. coli, taken from [26]. A full account and a score-
maximization algorithm are given in [28].

We first investigate the properties of the max-
imal score alignment at fixed scoring parameters.
Fig. 3 (a) shows the score S and the fuzziness M for
the highest-scoring alignment with a prescribed num-
ber p of subgraphs, plotted against p. The fuzziness
increases with p, and the score reaches its maximum
S?(σ, µ) at some value p?(σ, µ). For p < p?(σ, µ)
the score is lower, since the alignment contains fewer
subgraphs and for p > p?(σ, µ) it is lower since the
subgraphs have higher mutual mismatches.

The optimal scoring parameters µ and σ are again
inferred by maximum likelihood. The resulting opti-
mal alignment A? ≡ A?(µ?, σ?) is shown in Fig. 3 (b)
using the so-called consensus motif

a =
1

p

p
∑

α=1

âα(A?) . (12)

The consensus motif is a probabilistic pattern; the en-
try a denotes the probability that a given binary link
is present in the aligned subgraphs. The motif shown
in Fig. 3 (b) consists of 2 + 3 nodes forming an input
and an output layer, with links largely going from the
input to the output layer. Most genes in the input
layer code for transcription factors or are involved in
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aldB dcuB_
fumB araE 
fixABCX caiF 
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fdhF flgBCDEFGHIJK 
focA_pflB zwf 
soxR glpD 
marRAB rpoN 

arcA adhE ansB araJ caiF fdnGHI 
metA galS dctA deoCABD slp 
ompF fhlA fliLMNOPQR narL 
fumC nupC glpACB malXY ppsA 

fnr yhfA crp araC crp fnr 
fucPIKUR crp crp deoR 
rpoH himA glnALG fliAZY 
himA mdh himA crp 

acs prsA serA 
araBAD flhDC 
narK fucAO 
galETKM gltA 
tyrB ecfI 
ompR_envZ 
glnHPQ flhBAE 
ibpAB fpr 
glcDEFGB 
glpTQ purC uhpA 

idnDOTR nrdAB fnr crp hns 
narZYWV crp GalR arcA cytR 
cpxAR envY_ompT 
rpsU_dnaG_rpoD flhDC fnr 
speA arcA glpR moaABCDE cytR

Figure 3: Motifs in the regulatory network of E.

coli . (a) Score optimization at fixed scoring parameters
σ = 3.8 and µ = 4.0 for subgraphs of size n = 5. The total
score S (thick line) and the fuzziness M (thin line) are
shown for the highest-scoring alignment of p subgraphs,
plotted as a function of p. (b) The consensus motif of
the optimal alignment, and the identities of the genes
involved. The alignment consists of 18 subgraphs sharing
at most one node. The 5 grey values correspond to the
consensus motif a in the range 0.1−0.2, 0.2−0.4, 0.4−0.6,
0.6 − 0.8, 0.8 − 0.9.

signaling pathways. The output layer mainly consists
of genes coding for enzymes.

5. Cross-species analysis of networks

The motifs discussed above show correlation with-
out sharing a common evolutionary history. Larger
functional units may be distinguished by their evo-
lutionary conservation. Thus, we expect parts of the
network to maintain their topology and to form a
conserved core, while other parts show a more rapid
turnover of both nodes and interactions, see Fig-
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ure 1c). This conservation can be detected as topo-
logical correlation across species.

We assume that organisms evolve independently
after speciation, leading to divergence in their net-
work links as well as in the overall similarity of the
nucleotide sequences, the structure of proteins, and
the biochemical role of a metabolite. The relation-
ship between link and node similarity is non-trivial:
genes may retain their function and their interactions
with other genes despite considerable sequence diver-
gence. On the other hand, the change of a few nu-
cleotides can create or destroy a binding site, imply-
ing that genes with high overall sequence similarity
may have entirely different interactions. Hence, the
cross-species analysis has to take into account infor-
mation from both links and nodes.

A log-likelihood score assessing the link statistics of
node subsets in network A and in network B follows
directly from (10). This link score is given by

S`(A, µ, σA, σB) = −µM(â, b̂) (13)

+σ
(

L(â) + L(b̂)
)

− log Zµ,σ .

To assess the similarity of nodes, we consider a
measure θij , which describes the similarity of node i
in network A and node j in network B. The node sim-
ilarity measure may be a percentage sequence iden-
tity, or a distance measure of protein structures. The
information on node similarity can be incorporated
into the alignment score by contrasting a null model
with a model describing a statistics where node simi-
larity is correlated with the alignment. To construct
the null model, we assume that node similarities θij

for different node pairs i, j are identically and inde-
pendently distributed and denote their distribution
by pn

0 (θij). The model describing cross-species corre-
lations has to take into account that the distribution
of node similarities between aligned pairs of nodes fol-
lows a different statistics (typically generating higher
values of θ), denoted by qn

1 (θ). The distribution of
pairwise similarity coefficients between one aligned
node and nodes other than its alignment partner is
denoted by qn

2 (θ).

Assuming that the statistics of links and nodes
similarities are uncorrelated for a given alignment,

∆s
l(a,b) |a|

101.3-1.7

HMGN1/Parp2 HMGN1/HMGN1

0 0.5

a)                                                                     b)

Figure 4: Cross-species network alignment shows

conservation of gene clusters. (a) 7 genes from a clus-
ter of co-expressed genes (circle) together with 7 random
genes outside the cluster (straight line). Each node repre-
sents a pair of aligned genes in human and mouse. The
intensity of a link encodes the correlation value a in hu-
man. The color indicates the evolutionary conservation
of a link, with blue hues indicating strong conservation.
Th conservation is quantified by the excess link score con-
tribution, ∆s`, defined as the link score minus the aver-
age link score of links with the same correlation value.
(b) The same cluster, but with human-HMGN1 “falsely”
aligned to its ortholog mouse-HMGN1, with the red links
showing the poor expression overlap of this pair of genes.
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a simple calculation analogous to (4) yields the log-
likelihood score

S(A) = S`(A) + Sn(A) , (14)

with the information from node similarity contribut-
ing a node score

Sn(A) =
∑

i∈A

sn
1 (θii) +

∑

i ∈ A, j 6= i
j ∈ B, i /∈ A

sn
2 (θij) (15)

and sn
1 (θ) ≡ log (qn

1 (θ)/pn
0 (θ)) and sn

2 (θ) ≡
log (qn

2 (θ)/pn
0 (θ)).

The scoring parameters entering (14) need to be
determined from the data. Provided there are not
too many scoring parameters, this can again be done
by maximum likelihood as outlined in the preceding
sections. Particular examples are networks with bi-
nary links and course-grained measures of sequence
similarity. (As an extreme case, node similarity may
be considered a binary variable, when nodes either
have significant similarity or not. Then the ensem-
bles describing the node statistics are each described
by a single variable, see [29] for details.)

Alignment of co-expression networks. We com-
pare co-expression networks of H. sapiens and M.

musculus. In co-expression networks, the weighted
link aii′ ∈ [−1, 1] between a pair of genes i, j is given
by the correlation coefficient of their gene expression
profiles measured on a microarray chip. Genes which
tend to be expressed under similar conditions thus
have positive links. The score (13) can easily be gen-
eralized to weighted interactions, see [29].

The data of Su et al. [30] was used to construct net-
works of ∼ 2000 housekeeping genes. Human-mouse
orthologs were taken from the Ensembl database [23].
Details on the algorithm to maximize the score (13)
are given in [29].

We focus on strongly conserved parts of the two
networks. Figure 4 shows a cluster of co-expressed
genes which is highly conserved between human and
mouse (link conservation is shown in blue, changes
between the links in red).

With one exception, the aligned gene pairs in this
cluster have significant sequence similarity and are
thought to be orthologs, stemming from a common

ancestral gene. The exception is the aligned gene
pair human-HMGN1/mouse-Parp2. These genes are
aligned due to their matching links, quantified by
a high contribution to the link score (13) of S` =
25.1. The “false” alignment human-HMGN1/mouse-
HMGN1 respects sequence similarity but produces a
link mismatch (S` = −12.4); see Fig. 4(b). Human-
HMGN1 is known to be involved in chromatin mod-
ulation and acts as a transcription factor. The net-
work alignment predicts a similar role of Parp2 in
mouse, which is distinct from its known function in
the poly(ADP-ribosyl)ation of nuclear proteins. The
prediction is compatible with experiments on the ef-
fect of Parp-inhibition, which suggest that Parp genes
in mouse play a role in the chromatin modification
during development [31].

6. Towards an evolutionary theory

Different parts of biological networks have different
functions. Here we have applied a statistical ap-
proach to the detection of network clusters, network
motifs, and cross-species correlations. But the detec-
tion of deviations from a global background statistics
has a wider perspective, which includes the connec-
tion between different type of networks, the link be-
tween network topology and the underlying sequence,
and spatiotemporal changes of biological networks.
From an evolutionary point of view, these devia-
tions are created and maintained by selection pres-
sures which are both non-homogeneous and corre-
lated across the network. A quantitative theory of
biological networks will thus require a synthesis of
network statistics and population genetics, a largely
outstanding task to date. Here we give a brief outlook
on some of the challenges ahead.

Genetic interactions between different links.

Biological function is typically tied to modules con-
sisting of several nodes and links. As a result, there
are correlations between links across different species:
a species with a certain function will tend to have all
links associated with the specific function, a species
lacking the function will tend to have none of the
corresponding links. The network motifs discussed
above are only a special case of this phenomenon.
With data on biological networks becoming avail-
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able for an increasing number of species, it will be-
come feasible to infer these correlations and the cor-
responding functional modules from data. Scoring
functions constructed to detect genetic interactions
in multiple alignments will play an important role in
this undertaking.

Gene duplications. Following the duplication of
a gene, the daughter genes have the same function
and same interactions with other genes. Indepen-
dent evolution of the two genes may lead to the
non-functionalisation, and even the loss of one of
the duplicates, or to subfunctionalisation, with dif-
ferent functional roles being divided among the two
copies [32]. Tracing the dynamics of gene duplica-
tion at the level of interaction networks gives insights
into the evolutionary dynamics of networks [20, 33].
Scoring for jointly conserved subgroups of links can
be used to identify the different functional modules a
gene is involved in. This can be done both at the level
of single species, as well as in a cross-species analysis,
where gene duplications introduce one-to-many and
many-to-many alignments.

Neutral and selective dynamics. Biological net-
works show a great deal of plasticity, since the same
biological function can be carried out by different net-
works (see e.g. [34]). This flexibility leads to neutral
evolution as a population explores the space of net-
works corresponding to a given function. On the
other hand, networks may change as a new func-
tionality is acquired, or because of changing envi-
ronmental conditions. Disentangling neutral moves
and changes under selection is possible by contrast-
ing inter-species variability with intra-species vari-
ability [35]. Inferring the modes of network evolu-
tion and the relative weights of neutral and selective
dynamics remains an outstanding challenge for ex-
periment and theory.
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Appendix:

Bayesian analysis of network data

The detection of deviations from a null model can be
formulated as a problem of deciding between alterna-
tive hypotheses. The first hypothesis is that a given
node subset follows the statistics of the null model.
The alternative hypothesis is that the node subset fol-
lows a statistics different from the null model. This
statistics is called the Q-model.

The choice between these two alternatives can be
formulated probabilistically, by considering the poste-

rior probability P (Q|â,A). It describes the probabil-
ity that the node subset(s) specified by A follow the
Q-model (hypothesis Q), rather than the null model
(null-hypothesis P0). Denoting any prior knowledge
we may have about the probability with which the
two alternatives occur by P (Q) and P (P0), respec-
tively, one may use Bayes’ theorem to find

P (Q|â,A) =
P (â|Q,A)P (Q)

P (â|A)
(16)

=
P (â|Q,A)P (Q)

P (â|P0,A)P (P0) + P (â|Q,A)P (Q)

=
eS′(A)

1 + eS′(A)
.

P (â|Q,A) gives the probability of generating pat-
terns â under the Q-model (given, for instance, by
(3) or by (9)). P (â|P0,A) gives the probability of
generating the same pattern under the null model (1).
The posterior probability is thus a monotonously in-
creasing function of the log-likelihood score given by

S′(A) = log

(

P (â|Q,A)

P (â|P0,A)

)

+ log

(

P (Q)

P (P0)

)

= S(A) + const. (17)

Hence the score S(A) defined in (4) has a sound the-
oretical foundation: it is a measure of the posterior
probability that the node subset specified by A fol-
lows the Q-model rather than the null model.

This simple picture needs to be extended when the
parameters m of the Q-model and the alignment A
are unknown and are considered “hidden” variables
to be determined from the data. We construct a
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model for the entire network with adjacency matrix
a, with pattern â(A) following the Q-model, the re-
mainder of the network following the null model

P (a|A, m) = Q(â|A, m)P0(ã|A) . (18)

The matrix of links between nodes which are not both
part of A is denoted by ã. Using Bayes’ theorem one
can write the posterior probability of A and m, i.e.
the conditional probability of the hidden variables, in
the form

P (A, m|a) =
Q(a|A, m)P (A, m)

∑

A,m Q(a|A, m)P (A, m)
. (19)

We assume the prior probability P (A, m) to be flat.
Dropping the terms independent of A and m, the op-
timal alignment A? is obtained by maximizing the
posterior probability Q(A|a) ∼

∑

m Q(a|A, m) with
respect to A and similarly the optimal scoring param-
eters m? by maximizing Q(m|a) ∼

∑

A Q(a|A, m)
with respect to m. In the so-called Viterbi approx-
imation, A? and m? are inferred by jointly maxi-
mizing Q(a,b,Θ|A, m) with respect to A and m.
Assuming the sum

∑

A,m Q(a|A, m) can be split
into the term stemming from A?, m? and a remain-
der

∑

A6=A?,m 6=m? Q(a|A, m) ∼ P0(a), the posterior
probability (19) can again be written in the form
of (17). In this approximation, the maximum-score
alignment and the optimal scoring parameters are de-
termined by the maximum of the log-likelihood score
(4) over the alignments and over the scoring param-
eters.
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