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The Freezing of Random RNA
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We study secondary structures of random RNA molecules bynsefa renormalized field theory based
on an expansion in the sequence disorder. We show that theredntinuous phase transition fronmalten
phaseat higher temperatures to a low-temperatgiiess phaseThe primary freezing occurs above the critical
temperature, with local islands of stable folds forminghivithe molten phase. The size of these islands defines
the correlation length of the transition. Our results idecritical exponents at the transition and in the glass
phase.
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viral genomes, and has been attributed a key role in the ori-s¢-4
gin of life. RNA molecules fold intouniquecompact con-
figurations able to perform catalytic functions, and theg ca 7
act as templates for the readout of sequence information. In
this sense, they are nature’s compromise between DNA and 6 2
proteins, which explains their likely role in early evolutias

well as their ubiquity in today’s molecular biology. Typica
RNA folds at room temperature consist stems(i.e., parts  (b) go
of the molecule forming a helical double strand stabilizgd b
Watson-Crick base pairing) linked bgops(i.e., stretches of

unpaired monomers). These conformations are governed b4
the energies of base pairing and backbone bending as well as ¢4 ¢
by the entropy of the loops; their statistical physics istgjui

complicated. Yet, the problem is more tractable than pnotei

folding since the free energy of an RNA fold can be Separate?:IG 1: Secondary structures of a random RNA molecule aaulist

energetl‘():ally |nto_ that of |tsecondar)and_|tstert|ary struc- . Base pairings can be nested, sucpsag) and(s’, ¢'), or in-

ture [1,12]. Labeling the bases consecutively along the 'badeependent, such &s, ) and(s”, " ). The pairing overlap is defined

bone of the molecule from 1 té,, the secondary structure py the common base pairings between the left and right camafigu

of the fold is completely defined by the Watson-Crick pairstion (the corresponding bases are shown in black). (a) Alioythe

(s,t) (1 < s <t < Ly) subject to the constraint that differ- molecule contains conserved subfolds on scales up to thelation

ent pairs are either independent{ ¢ < s’ < t') or nested length¢ (marked by shading) apd i§ mollteln on larger scales. (b) Be-

(s < s < t' < t): see fig. 1. Thus, the secondary struc- low T, the molecule is Iocke_d into its minimum energy structure on

. N L . all scales, up to rare fluctuations (unshaded).

ture contains purely “topological” information about thodd,

which is independent of the spatial configuration. Due to the

constraint on base pairings, secondary structures caryslwa . .
. - The simplest class of such moleculeshismopolymers

be represented by planar diagrams as shown in fig. 1. Thvevhere all Watson-Crick pairgs,t) contribute an equal

interactions satisfying this constraint are often the dwnt b ' q

part of the free energy, so the secondary structure of a fol m%l;ﬂtfogg:;i?ke;eﬁgh?tgf %n;rf?a?g;g:; Wt:]e?i:?
can be determined self-consistently. There are efficigy-al ypically B poly P

. S . compact stem-loop folds. The fold of an individual polymer
rithms to compute the exact partition function of secondary, . . ) .
in the molten phase is not unique. It changes over time since

i o=l . irings iy . : ) .
structures fpr a given sequencz1[3, 4]. Base pairngs _at thermal fluctuations continuously build and undo its stems.
the constraint (so-callguseudoknolsas well as additional in- - o
teractions between paired bases are important for tharerti The pairing probabl_llty of wo bases decays as a power law

of their backbone distancg [7}; — s)~*°, with pg = 3/2. In

structure of the molecule (i.e., the full spatial arrangetiod . :
stems and loops) but they generate only small-scale regran aheteropolymerthe energy of a Watson-Cnck_p_a(lf, t) d_e-
pends on the nucleotides at the backbone positions paired. A

rel] . i i i . ) X
ments of the secondary structur=[1, 5]. While this sepanati important class isandomheteropolymers. In biological sys-

of energies is only approximate, it can be tuned experiment-ems such sequences result from evolutionéytral[l] mu-
tally by varying salt concentrations in the solutioh [1].ride, X d

) . . tations. For functional RNA, sequences and conformations a
a theory of secondary structures is an important startimgt po e . .
. . further modified byselection but random sequences remain
for understanding RNA conformations.

important as reference statistics. A well-known analytitea




scription of this case is to approximate the pairing freerene all temperature§” < T,, i.e., the exponent$* = p* govern
giesn(s,t) as independent Gaussian random variables givethe glass phase as well. The height fluctuations

by 2
S Ta W R r—r)%e (T >T,)
W0 = £, A D) 2 = 026(s—s)(t—t), (1) <“W‘h“”%”{@_w@*(Tgn> ®)

s et
o st Lo ansravesiTce win c- = 3/ ar Inked 1o the contact corlatons by
ulations [12, 13| 14, 15, L(Sh, 17] indicate that RNA randomthe exact scaling relatiod + p = 2 in all phases, which

- . follows from the continuum representation of thefield,
heteropolymers undergo a transition at a critical tempieeat o Lo : -
T, (about room temperature) from the molten phase to a Iowh_(r) N [0 ds [, dt (s, t) [23], and has been obtained pre-
temperaturgylass phase The nature of this phase is contro- viously in a <_:Iose|y relate(_JI context [26]. These ?(p(?nents
versial [12[18/_17], and the numerical studies may suftemfr 29'€€ well with the rjumverlcal valugsi.ss = 0.65 [12, |13]
significant finite-size effects [18]. The two phases can ise di andpglass = 1.3(4) [A3,127] forT = 0. e
tinguished by disorder-inducedplica correlations. Replicas Qur results show that the glass transition is of second order
are simply two secondary structures at distant times — i.e.'?‘ singular length scale
drawn independently from the thermal ensemble — of the same

RNA molecule, i.e., the same disorder configuratjos t) as
shown in fig. 1. Correlations between replicas are defined by, ose exponent* = 1/(2 — 0*) ~ 8/5 is determined by hy-
subsequent averaging over the disorder distribufibn (e T perscaling, describes the crossover scaling above andbelo
arguments ofi[11. 12] for thpairing overlap(defined as the = ihe critical point. The resulting freezing scenario of ramd
joint probability of two bases being paired in both replicas pna molecules is quite intricate. It is illustrated in fig. 1,
suggest that replicas become independent at large backbo@gere we show snapshots of the same molecule at two dis-
distances in the molten phase but are essentially lockedint {54t times for two different temperatures. Abdig the cor-
single conformation in the glass phase. relations [2), [[B) scale with their critical exponepts 6*, *

In this letter, we develop a systematic field theory of ran-yp to backbone distancés — s) resp.|r — | of order¢.
dom RNA secondary structures. This theory has two bapence an RNA fold has essentially frozen “islands” of size
sic fields. Thecontact field®(s,?) is defined to be 1 if ;¢ its replicas are locked) but is molten on larger scéits
the bases; and¢ are paired and 0 otherwise. Tloeerlap  rgpjicas become independent), see fig. 1(a)Z/mproaches
field between two replicas and 3, defined asbas(s,t) = 7 from above, the replica correlation lengttincreases ac-
Da(s,t)p(s, ), describes correlations between the replicascording to [3), and the turnover time between conformations
By means of théeight fielda(r) = Y°7_, 5°1°, .1 ®(s,t), by thermal fluctuations grows. We call this procgsinary
any secondary structure can be mapped onto a random wafleezing At criticality, there is still a power law distribution
h(r) (r = 0,..., Lo) with step sizei(r) — h(r — 1) = £1  of rare thermal fluctuationas discussed below. Lowering the
and boundary conditions(0) = h(Lo) = 0. This map- temperature below, the correlation length decreases again
ping relates random RNA folds to the simpler problems ofand even these rare fluctuations are removed from larger to
directed polymers in a disordered mediumi [19] and Kardarsmaller scales; this is callescondary freezingee fig. 1(b).
Parisi-Zhang surface growtn |20.121]. Generalizing exti  To derive our renormalization group, we write the sec-

field theoretic approacheis [22.123/) 24], we derive renormalpndary structure partition function of a given heteropofym
ization equations for the two fundamental variables oftiee t 35 a sum over the contact field configurations,

ory, thedisorder strengttand thebackbone lengthThe large-
distance scaling of pairing probability and replica ovprdae Z[n) = Z exp|—/3 Z n(s, 6)®(s,t)], (5)
given by the disorder-averaged expectation values ry 1<s<t<Lo

E~ T —T.|, @)

(P(s,1)) ~ (t = S)_pi’ (W(s,t) ~ (t=5)" (T>To), and study the disorder-averaged free energy =

(@(s,0)) ~ (t =), (U(s,0) ~ (t—35)"" (T<T).  _g-1Ty, log Z[] obtained from the distributiorCY1). In

() the replica formalism, this leads to a systempointeract-
Herepy = 3/2 andf, = 3 are the known exponents of the ing homopolymersz () = o o exp(_ﬁH(p)), whose
molten phase 1, 10]. AT, our renormalization group gives amiltonian 1l 1] b

first-order valueg* = 6* ~ 11/8. As will become clear

below, the equalityp* = 6* is an exact (though not rigor- () _ _9

ous) conclusion beyond first order provided the renormaliza " fo Xa: ; Pals?) 2 ;j ; Vap(s,t)  (6)
tion group scenario sketched in fig. 3 is qualitatively cotre

i.e., the true exponents are monotonicpirat fixede. This  is given in terms of the contact fields, (1 < « < p) and
equality implies that two replicas are essentially locke#d & the overlap fieldsl .5 (1 < o, 8 < p, a # () with the cou-
single conformation already at the transition. Hencelahd-  pling constantsfy, = f — 302 andgy = Bo?. The renor-
ing scaling is given by the minimum-energy configuration for malization of this theory is based on analytic continuation



the homopolymer exponepg, or equivalently, in the scaling
dimensiore := 2p, — 2 of the coupling constanf, [2§]. In
the limitp — 0, the free energyF® = —3~11og Z(®) re-
produces that of the random systef= lim,,_o F®) /p.

The noninteracting theory{ = 0) describes homopoly-
mers in the molten phase and is exactly solvable in the co
tinuum limit, i.e., for molecules of backbone length > 1.
The free energy for closed rings 1% = p pg log Ly [, [10].
The correlation function ofV contact fields®,, (s;,t;) de-
scribes constrained configurations of the molecule with
fixed pairings(s;,t;) (i = 1,...,N). These pairings gen-
erateN + 1 subrings of backbone lengths, ..., {n,lny1 =

n

R

point function(¥,s(s1,t1))o. (b) Two-replica two-point function
(Wap(s1,t1)Pap(s2,t2))0. (c) Three-replica two-point function
(Uap(s1,t1)Pay(s2,t2))0-

Lo — Z;V:l ¢;. Since the secondary structure fluctuations inThe resulting renormalization group flow takes a simple form

the subrings are independent, this correlation takes therfa
ized form

—Po —Po
0P

<q)a(317t1)---q)a(SN,tN)>O: Lapo

(7)

Overlap correlations factorize further into the contribu-

with respect to the renormalized scdle

_. 0

~Loor

The beta function is defined as the flow with respect to the

B(u) —eu+ Cpu® + O(u?), (11)

~r(u) Lo=1+(p—-Du+0®?. (12)

tions of the single replicas upon insertion of the definitionoriginal scaleLy,

Uas(8i,ti) = ®alsi, ti)Pa(si, ).

In the presence of interactions, we write the free energy as [3(u)

a perturbation series,

p(p—1)
2

F (g0, Lo) = Fo — [90/ (Tap(s1,t1))o
0<s1<ti<Lo

2 C
+90 ﬁ<31 <t <s2<t2< Lo (<\I/a5(51’ t)Wap(s2,t2))
or0<s1<sa2<ta<t1<Lo

+2(p = 2)(Was(s1,11) Wary (52 12))5 ) | + O(a8).  (8)
This series containsonnectedverlap correlations evaluated
at go = 0. The first-order term involves two, the second-
order terms involve two and three pairwise different regsic

respectively; see fig. 2(a)—(c). The integration over the-co

9
= Lo—u =
0Ly "

B(u) _ —eu+ Cpu? + O(u?)
yo(u) 1+ (p—1u+O0u2)

(13)
It has a nontrivial fixed point* = £/C), + O(£?) for generic
p, which is ultraviolet-unstable far > 0 and marks the RNA
glass transition for = 1, p — 0. Thee-expansion can
be analyzed at higher orders using thgerator product ex-
pansionof the fields® and ¥. Generalizing the arguments
of [22,124], we find that the theory is renormalizablejiand
L (for details, see [29]). The field is renormalized by a fac-
tor Zg = Z; *+0(u?) [30]. By the scaling relatiog+p = 2,
this implies “superdiffusive” height fluctuations with exp
nent(* = (o/v; +0(e?) forp < 1, wherey; = ., (u*) [30].
The renormalization o is tied to that of its conjugate cou-
pling g. Hence, the dimensions @ and ¥ at the transition

tact points in[(B) produces a singular dependence of the fregra two independent exponents

energy ory, as well as ultraviolet-divergent terms which are

regular ingg. Performing these integrals and expanding about ..

the point of marginality4 = 0), we obtain the leading singu-
lar part

U —1)Cpu?
F(uo, Lo) =p[10gL0+ (p— 1)?0 _ %

+O(5,u060,u3/5,u‘8’)} 9)
with the dimensionless coupling constant = goL,“ and
Cp, = 1—2(p —2). The poles in[(9) are absorbed into a
renormalized coupling = Z,go and a renormalized back-
bone lengthl. = Z; L, such that the free energy becomes al
analytic function of the dimensionless coupling= gL~¢.

In a minimal subtraction scheme, we extract frdth (9) thes
Z-factors to leading order,

Z, = 1_cpg+0(u2), Z7l = 1—(p—1)g+0(u2). (10)

14+¢e/2+2(p—1)e/Cp
14+ (p—1)e/C, Y

€
——1+(p_1)€/cp+...; (24)

po + L@L 10g YA .
Yo (u*)
—B'(u") =2

0" =2

the omitted terms are of ordgr- 2 ands2. These expressions
are valid within the constraint$* > p*, since two-replica
overlap correlations decay at least as fast as singleeeepli
ones, and,* > (y. The resulting dependence of the criti-
cal exponents op ande is shown in fig. 3. (a) Fop = 2, we
have shown that the theory @e-loop renormalizablei.e.,
the expressiond(10) t@_{13) arldi(14) #r are exactl[29].

Mhis reflects the exact summability of the partition funitio

as shown ini[12] foe = 1. We have generalized this solu-

Sion at the transition point to arbitraey giving ¢* = (, and

p* = po (the renormalization group results are subleading).
Fore = 1, we thus havé* = p* = 3/2. Hence, two repli-
cas are essentially locked into a single conformation direa
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FIG. 3: The critical exponentg™ and #* as a function ofe for
@p =2 (b)p =1, and (c)p = 0. Exact results (thick solid),
renormalization group results valid to all orders (thicksided) or
to first order (thin dashed), presumably exact values (sdettén
solid), reference lingo () (dotted).

at the transition. The borderline valag = 1 corresponds
to the upper critical dimensios,. = 4 of directed polymers
[22,131]. (b) Forp = 1, renormalization givegp* = pg ex-
actly to all orders, an@* = 2 — ¢ + O(£?). This produces
a borderline value,. ~ 2/3, beyond whichh* = p* =

coupling fixed point.
We thank R. Bundschuh and F. David for discussions.
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