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The Freezing of Random RNA
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We study secondary structures of random RNA molecules by means of a renormalized field theory based
on an expansion in the sequence disorder. We show that there is a continuous phase transition from amolten
phaseat higher temperatures to a low-temperatureglass phase. The primary freezing occurs above the critical
temperature, with local islands of stable folds forming within the molten phase. The size of these islands defines
the correlation length of the transition. Our results include critical exponents at the transition and in the glass
phase.
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RNA has various important functions in the cell, it forms
viral genomes, and has been attributed a key role in the ori-
gin of life. RNA molecules fold intouniquecompact con-
figurations able to perform catalytic functions, and they can
act as templates for the readout of sequence information. In
this sense, they are nature’s compromise between DNA and
proteins, which explains their likely role in early evolution as
well as their ubiquity in today’s molecular biology. Typical
RNA folds at room temperature consist ofstems(i.e., parts
of the molecule forming a helical double strand stabilized by
Watson-Crick base pairing) linked byloops(i.e., stretches of
unpaired monomers). These conformations are governed by
the energies of base pairing and backbone bending as well as
by the entropy of the loops; their statistical physics is quite
complicated. Yet, the problem is more tractable than protein
folding since the free energy of an RNA fold can be separated
energetically into that of itssecondaryand itstertiary struc-
ture [1, 2]. Labeling the bases consecutively along the back-
bone of the molecule from 1 toL0, the secondary structure
of the fold is completely defined by the Watson-Crick pairs
(s, t) (1 ≤ s < t ≤ L0) subject to the constraint that differ-
ent pairs are either independent (s < t < s′ < t′) or nested
(s < s′ < t′ < t); see fig. 1. Thus, the secondary struc-
ture contains purely “topological” information about the fold,
which is independent of the spatial configuration. Due to the
constraint on base pairings, secondary structures can always
be represented by planar diagrams as shown in fig. 1. The
interactions satisfying this constraint are often the dominant
part of the free energy, so the secondary structure of a fold
can be determined self-consistently. There are efficient algo-
rithms to compute the exact partition function of secondary
structures for a given sequence [3, 4]. Base pairings violating
the constraint (so-calledpseudoknots) as well as additional in-
teractions between paired bases are important for the tertiary
structure of the molecule (i.e., the full spatial arrangement of
stems and loops) but they generate only small-scale rearrange-
ments of the secondary structure [1, 5]. While this separation
of energies is only approximate, it can be tuned experimen-
tally by varying salt concentrations in the solution [1]. Hence,
a theory of secondary structures is an important starting point
for understanding RNA conformations.
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FIG. 1: Secondary structures of a random RNA molecule at distant
times. Base pairings can be nested, such as(s, t) and(s′, t′), or in-
dependent, such as(s, t) and(s′′, t′′). The pairing overlap is defined
by the common base pairings between the left and right configura-
tion (the corresponding bases are shown in black). (a) AboveTc, the
molecule contains conserved subfolds on scales up to the correlation
lengthξ (marked by shading) and is molten on larger scales. (b) Be-
low Tc, the molecule is locked into its minimum energy structure on
all scales, up to rare fluctuations (unshaded).

The simplest class of such molecules ishomopolymers,
where all Watson-Crick pairs(s, t) contribute an equal
amountf of free energy. At room temperature, wheref is
typically of orderkBT , homopolymers have amolten phaseof
compact stem-loop folds. The fold of an individual polymer
in the molten phase is not unique. It changes over time since
thermal fluctuations continuously build and undo its stems.
The pairing probability of two bases decays as a power law
of their backbone distance [7],(t − s)−ρ0 , with ρ0 = 3/2. In
a heteropolymer, the energy of a Watson-Crick pair(s, t) de-
pends on the nucleotides at the backbone positions paired. An
important class israndomheteropolymers. In biological sys-
tems, such sequences result from evolution byneutral[8] mu-
tations. For functional RNA, sequences and conformations are
further modified byselection, but random sequences remain
important as reference statistics. A well-known analytical de-
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scription of this case is to approximate the pairing free ener-
giesη(s, t) as independent Gaussian random variables given
by

η(s, t) = f, η(s, t)η(s′, t′)−f2 = σ2δ(s−s′)δ(t−t′), (1)

wheref andσ are of orderkBT [9]. Free energy-estimates
on the basis of this model [10, 11, 12] and numerical sim-
ulations [12, 13, 14, 15, 16, 17] indicate that RNA random
heteropolymers undergo a transition at a critical temperature
Tc (about room temperature) from the molten phase to a low-
temperatureglass phase. The nature of this phase is contro-
versial [12, 13, 17], and the numerical studies may suffer from
significant finite-size effects [18]. The two phases can be dis-
tinguished by disorder-inducedreplica correlations. Replicas
are simply two secondary structures at distant times – i.e.,
drawn independently from the thermal ensemble – of the same
RNA molecule, i.e., the same disorder configurationη(s, t) as
shown in fig. 1. Correlations between replicas are defined by
subsequent averaging over the disorder distribution (1). The
arguments of [11, 12] for thepairing overlap(defined as the
joint probability of two bases being paired in both replicas)
suggest that replicas become independent at large backbone
distances in the molten phase but are essentially locked into a
single conformation in the glass phase.

In this letter, we develop a systematic field theory of ran-
dom RNA secondary structures. This theory has two ba-
sic fields. Thecontact fieldΦ(s, t) is defined to be 1 if
the basess and t are paired and 0 otherwise. Theoverlap
field between two replicasα andβ, defined asΨαβ(s, t) =
Φα(s, t)Φβ(s, t), describes correlations between the replicas.
By means of theheight fieldh(r) ≡

∑r
s=1

∑L0

t=r+1 Φ(s, t),
any secondary structure can be mapped onto a random walk
h(r) (r = 0, . . . , L0) with step sizeh(r) − h(r − 1) = ±1
and boundary conditionsh(0) = h(L0) = 0. This map-
ping relates random RNA folds to the simpler problems of
directed polymers in a disordered medium [19] and Kardar-
Parisi-Zhang surface growth [20, 21]. Generalizing existing
field theoretic approaches [22, 23, 24], we derive renormal-
ization equations for the two fundamental variables of the the-
ory, thedisorder strengthand thebackbone length. The large-
distance scaling of pairing probability and replica overlap are
given by the disorder-averaged expectation values

〈Φ(s, t)〉 ∼ (t − s)−ρ0 , 〈Ψ(s, t)〉 ∼ (t − s)−θ0 (T > Tc),
〈Φ(s, t)〉 ∼ (t − s)−ρ∗

, 〈Ψ(s, t)〉 ∼ (t − s)−θ∗

(T ≤ Tc).
(2)

Hereρ0 = 3/2 andθ0 = 3 are the known exponents of the
molten phase [7, 10]. AtTc, our renormalization group gives
first-order valuesρ∗ = θ∗ ≈ 11/8. As will become clear
below, the equalityρ∗ = θ∗ is an exact (though not rigor-
ous) conclusion beyond first order provided the renormaliza-
tion group scenario sketched in fig. 3 is qualitatively correct,
i.e., the true exponents are monotonic inp at fixedε. This
equality implies that two replicas are essentially locked into a
single conformation already at the transition. Hence, thelead-
ing scaling is given by the minimum-energy configuration for

all temperaturesT ≤ Tc, i.e., the exponentsθ∗ = ρ∗ govern
the glass phase as well. The height fluctuations

〈(h(r) − h(r′))2〉 ∼

{

(r − r′)2ζ0 (T > Tc)
(r − r′)2ζ∗

(T ≤ Tc)
(3)

with ζ∗ ≈ 5/8 are linked to the contact correlations by
the exact scaling relationζ + ρ = 2 in all phases, which
follows from the continuum representation of theh field,
h(r) =

∫ r

0 ds
∫ L0

r dt Φ(s, t) [25], and has been obtained pre-
viously in a closely related context [26]. These exponents
agree well with the numerical valuesζglass = 0.65 [12, 13]
andρglass = 1.3(4) [13, 27] forT = 0.

Our results show that the glass transition is of second order.
A singular length scale

ξ ∼ |T − Tc|
−ν∗

, (4)

whose exponentν∗ = 1/(2− θ∗) ≈ 8/5 is determined by hy-
perscaling, describes the crossover scaling above and below
the critical point. The resulting freezing scenario of random
RNA molecules is quite intricate. It is illustrated in fig. 1,
where we show snapshots of the same molecule at two dis-
tant times for two different temperatures. AboveTc, the cor-
relations (2), (3) scale with their critical exponentsρ∗, θ∗, ζ∗

up to backbone distances(t − s) resp.|r − r′| of order ξ.
Hence, an RNA fold has essentially frozen “islands” of sizeξ
(i.e., its replicas are locked) but is molten on larger scales (its
replicas become independent), see fig. 1(a). AsT approaches
Tc from above, the replica correlation lengthξ increases ac-
cording to (4), and the turnover time between conformations
by thermal fluctuations grows. We call this processprimary
freezing. At criticality, there is still a power law distribution
of rare thermal fluctuationsas discussed below. Lowering the
temperature belowTc, the correlation length decreases again
and even these rare fluctuations are removed from larger to
smaller scales; this is calledsecondary freezing, see fig. 1(b).

To derive our renormalization group, we write the sec-
ondary structure partition function of a given heteropolymer
as a sum over the contact field configurations,

Z[η] =
∑

Φ

exp[−β
∑

1≤s<t≤L0

η(s, t)Φ(s, t)], (5)

and study the disorder-averaged free energyF =
−β−1Trη logZ[η] obtained from the distribution (1). In
the replica formalism, this leads to a system ofp interact-
ing homopolymers,Z(p) =

∑

Φ1,...,Φp
exp(−βH(p)), whose

Hamiltonian [11, 12]

H(p) = f0

∑

α

∑

s<t

Φα(s, t) −
g0

2

∑

α6=β

∑

s<t

Ψαβ(s, t) (6)

is given in terms of the contact fieldsΦα (1 ≤ α ≤ p) and
the overlap fieldsΨαβ (1 ≤ α, β ≤ p, α 6= β) with the cou-
pling constantsf0 = f − βσ2 andg0 = βσ2. The renor-
malization of this theory is based on analytic continuationin
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the homopolymer exponentρ0, or equivalently, in the scaling
dimensionε := 2ρ0 − 2 of the coupling constantg0 [28]. In
the limit p → 0, the free energyF (p) = −β−1 logZ(p) re-
produces that of the random system,F = limp→0 F

(p)/p.
The noninteracting theory (g0 = 0) describes homopoly-

mers in the molten phase and is exactly solvable in the con-
tinuum limit, i.e., for molecules of backbone lengthL0 ≫ 1.
The free energy for closed rings isF0 = p ρ0 log L0 [7, 10].
The correlation function ofN contact fieldsΦα(si, ti) de-
scribes constrained configurations of the molecule withN
fixed pairings(si, ti) (i = 1, . . . , N ). These pairings gen-
erateN +1 subrings of backbone lengthsℓ1, . . . , ℓN , ℓN+1 =

L0 −
∑N

j=1 ℓj . Since the secondary structure fluctuations in
the subrings are independent, this correlation takes the factor-
ized form

〈Φα(s1, t1) . . .Φα(sN , tN )〉0 =
ℓ−ρ0

1 . . . ℓ−ρ0

N+1

L−ρ0

0

. (7)

Overlap correlations factorize further into the contribu-
tions of the single replicas upon insertion of the definition
Ψαβ(si, ti) = Φα(si, ti)Φβ(si, ti).

In the presence of interactions, we write the free energy as
a perturbation series,

F(g0, L0) = F0 −
p(p−1)

2

[

g0

∫

0<s1<t1<L0

〈Ψαβ(s1, t1)〉0

+g2
0

∫

0<s1 <t1 <s2 <t2 <L0

or 0<s1<s2<t2<t1<L0

(

〈Ψαβ(s1, t1)Ψαβ(s2, t2)〉
c
0

+2(p − 2)〈Ψαβ(s1, t1)Ψαγ(s2, t2)〉
c
0

)]

+ O(g3
0). (8)

This series containsconnectedoverlap correlations evaluated
at g0 = 0. The first-order term involves two, the second-
order terms involve two and three pairwise different replicas,
respectively; see fig. 2(a)–(c). The integration over the con-
tact points in (8) produces a singular dependence of the free
energy ong0 as well as ultraviolet-divergent terms which are
regular ing0. Performing these integrals and expanding about
the point of marginality (ε = 0), we obtain the leading singu-
lar part

F(u0, L0) = p
[

log L0 + (p − 1)
u0

ε
−

(p − 1)Cpu
2
0

2ε2

+O
(

ε, u0ε
0, u2

0/ε, u3
0

)]

(9)

with the dimensionless coupling constantu0 = g0L
−ε
0 and

Cp = 1 − 2(p − 2). The poles in (9) are absorbed into a
renormalized couplingg = Zgg0 and a renormalized back-
bone lengthL = ZLL0, such that the free energy becomes an
analytic function of the dimensionless couplingu = gL−ε.
In a minimal subtraction scheme, we extract from (9) these
Z-factors to leading order,

Zg = 1−Cp
u

ε
+O(u2), Z−1

L = 1−(p−1)
u

ε
+O(u2). (10)

β
α

β
α

α
β

γ

(a) (b) (c)

FIG. 2: Overlap correlations in the series (8). (a) Two-replica one-
point function〈Ψαβ(s1, t1)〉0. (b) Two-replica two-point function
〈Ψαβ(s1, t1)Ψαβ(s2, t2)〉0. (c) Three-replica two-point function
〈Ψαβ(s1, t1)Ψαγ(s2, t2)〉0.

The resulting renormalization group flow takes a simple form
with respect to the renormalized scaleL,

β̃(u) ≡ L
∂

∂L
u = −εu + Cpu

2 + O(u3), (11)

γL(u) ≡
L

L0

∂

∂L
L0 = 1 + (p − 1)u + O(u2). (12)

The beta function is defined as the flow with respect to the
original scaleL0,

β(u) ≡ L0
∂

∂L0
u =

β̃(u)

γL(u)
=

−εu + Cpu
2 + O(u3)

1 + (p − 1)u + O(u2)
.

(13)
It has a nontrivial fixed pointu∗ = ε/Cp + O(ε2) for generic
p, which is ultraviolet-unstable forε > 0 and marks the RNA
glass transition forε = 1, p → 0. The ε-expansion can
be analyzed at higher orders using theoperator product ex-
pansionof the fieldsΦ andΨ. Generalizing the arguments
of [22, 24], we find that the theory is renormalizable ing and
L (for details, see [29]). The fieldΦ is renormalized by a fac-
torZΦ = Z−2

L +O(u2) [30]. By the scaling relationζ+ρ = 2,
this implies “superdiffusive” height fluctuations with expo-
nentζ∗ = ζ0/γ∗

L+O(ǫ2) for p < 1, whereγ∗
L ≡ γL(u∗) [30].

The renormalization ofΨ is tied to that of its conjugate cou-
pling g. Hence, the dimensions ofΦ andΨ at the transition
are two independent exponents,

ρ∗ =
ρ0 + L∂L log ZΦ

γL(u∗)
=

1 + ε/2 + 2(p − 1)ε/Cp

1 + (p − 1)ε/Cp
+ . . . ,

θ∗ = 2 − β′(u∗) = 2 −
ε

1 + (p − 1)ε/Cp
+ . . . ; (14)

the omitted terms are of orderp−2 andε2. These expressions
are valid within the constraintsθ∗ ≥ ρ∗, since two-replica
overlap correlations decay at least as fast as single-replica
ones, andζ∗ ≥ ζ0. The resulting dependence of the criti-
cal exponents onp andǫ is shown in fig. 3. (a) Forp = 2, we
have shown that the theory isone-loop renormalizable, i.e.,
the expressions (10) to (13) and (14) forθ∗ are exact [29].
This reflects the exact summability of the partition function
as shown in [12] forε = 1. We have generalized this solu-
tion at the transition point to arbitraryε, giving ζ∗ = ζ0 and
ρ∗ = ρ0 (the renormalization group results are subleading).
For ε = 1, we thus haveθ∗ = ρ∗ = 3/2. Hence, two repli-
cas are essentially locked into a single conformation already
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FIG. 3: The critical exponentsρ∗ and θ∗ as a function ofε for
(a) p = 2, (b) p = 1, and (c)p = 0. Exact results (thick solid),
renormalization group results valid to all orders (thick dashed) or
to first order (thin dashed), presumably exact values (see text, thin
solid), reference lineρ0(ε) (dotted).

at the transition. The borderline valueεc = 1 corresponds
to the upper critical dimensionduc = 4 of directed polymers
[22, 31]. (b) Forp = 1, renormalization givesρ∗ = ρ0 ex-
actly to all orders, andθ∗ = 2 − ε + O(ε2). This produces
a borderline valueεc ≈ 2/3, beyond whichθ∗ = ρ∗ = ρ0

exactly. (c) Forp = 0, the first-order eq. (14) produces an
even smaller value ofεc. For ε = 1, we find locked config-
urations withθ∗ = ρ∗ = 2 − ζ∗ ≈ 11/8 as reported above.
For ε > εc, the renormalization-group exponentθ∗ in (14)
describes asubleadingsingularity in the overlap correlations,
which is related to rare critical fluctuations within the locked
state [29], cf. [32] for directed polymers.

Despite its technical difficulties, our renormalization is
rather intuitive since it acts directly on the fold configurations
of Fig. 1. In a Wilson scheme, we would produce coarse-
grained folds with varying short-distance cutoffℓmin by inte-
grating out subconfigurations of backbone lengthℓ < ℓmin.
This leads to a scale-dependent backbone lengthL and cou-
pling constantg. For p > 1, the attractive replica interac-
tion produces additional short loops, which are cut off under
coarse-graining, i.e., the effective length isshorterthan with-

out interaction (L ∼ L
1/γ∗

L

0 with γ∗
L > 1). For p < 1, how-

ever, this effect is reversed (γ∗
L < 1): L becomeslongerand

the random walkh(r) becomes correlated with superdiffusive
fluctuations (ζ∗ = 1/2, γ∗

L > 1/2). Hence, the probability
of first return is shifted from small to large scales, i.e. there
are more pairings between distant nucleotides (ρ∗ < ρ0). The
locking of pairing correlations (θ∗ = ρ∗) at criticality means
that disorder has already its maximal effect on scaling, i.e.,
the same exponents govern the glass phase. This prediction
is remarkable in contrast to random directed polymers, where
the roughening transition has no locking for2 < d < duc

and the low-temperature physics is governed by a new strong-

coupling fixed point.
We thank R. Bundschuh and F. David for discussions.
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