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The renormalization group is viewed as a theory of the geometry of action space. A general
covariant relation between coupling constant and field renormalization is derived. As an applica-
tion, the crossover between the two-dimensional minimal modes M, and M, _, is calculated to
two-loop order in a minimal subtraction scheme.

1. Introduction

Recent years” work has revealed an amazing richness of critical phenomena in two
dimensions (for a review see ref. [1]). At a critical point and at distances much larger
than any microscopic scale, a system is described by a massless euclidean quantum
field theory which characterizes the universality class of the fixed point. In many
physically interesting cases, it can be solved exactly by analyzing its infinite-
dimensional conformal symmetry [2]. Thus one knows all scaling dimensions and
correlation functions of the critical theory directly and need not construct them
perturbatively from the gaussian theory.

What is then the rble of the renormalization group (RG)? It describes the
embedding scenario of the conformally invariant theories, which are its fixed points:
(a) locally, the field theories in the neighborhood of a fixed point represent its
scaling region and (b) globally, the attraction domains of the fixed points character-
ize the topology of the system’s phase diagram.

In two dimensions, one can prove under mild assumptions a striking property of
the RG flow, namely Zamolodchikov’s %-theorem [3]: there exists a function € on
the space of two-dimensional reflection-positive field theories which is monotoni-
cally decreasing along RG trajectories and is stationary only at fixed points, where
it equals the central charge ¢ of the corresponding conformal field theory. Thus the
central charge, which characterizes the symmetry of the system at a critical point, is
related to an entropy-like quantity away from criticality, where that symmetry is
broken. Moreover, as shown by Cardy [4], the difference in central charge between
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two fixed points linked by a RG trajectory can be measured in terms of correlation
functions of any noncritical theory on that trajectory.

Perhaps equally important, Zamolodchikov’s analysis also sheds a new light on
the RG scenario in a general dimension of space: the space of actions, the stage on
which the RG acts [5], is endowed with a metric that is nonsingular at the RG fixed
points. This suggests to reformulate the RG which, at present, exists in a multitude
of different schemes that correspond to different coordinate systems on action
space. Under coordinate transformations, physical quantities are covariant, but this
1s not obvious. New insight may be gained by conceiving the RG as the theory that
describes the geometry of action space in which the covariance of physical quanti-
ties 1s manifest.

The present paper is a step in this direction. In sect. 2, we outline the geometric
formulation and show that universal quantities are covariant. A simple but impor-
tant consequence is derived: there is always a geometric link between coupling
constant and field renormalization.

In sect. 3, we apply these ideas to a crossover between two-dimensional confor-
mally invariant fixed points that can be treated in perturbation theory [3]. An
asymptotic expansion can be performed with a small parameter ¢ whose geometric
significance is the distance between the (infrared-)unstable fixed point and the
stable fixed point*. This is quite remarkable since in general even the unstable fixed
point theory has, unlike the gaussian theory, a complicated structure of multipoint
correlation functions. Here we present a systematic minimal subtraction calculation
of the minimal model M, (m > 1), perturbed by its weakest relevant scaling field
(i.e. the one with the smallest positive RG eigenvalue). Consistently to the order of
two loops, we find that this perturbation induces a crossover to the fixed point
M, _,, which confirms Zamolodchikov’s result. This crossover is distinguished
geometrically by the fact that the RG trajectory joining the two fixed points is a
geodesic.

2. Geometry of the renormalization group

Critical phenomena occur at length scales R much larger than any microscopic
scale, where the system can be described by an euclidean quantum field theory. The
fundamental objects of a field theory are its (connected) correlation functions [3]

(6,(r) . u, (). (2.1)

The spatial coordinates r € R and the local fields ¢?(r) € R are conveniently taken
to be dimensionless quantities scaled by the length unit R that characterizes the

* The parameter in the usual e-expansion about the upper critical dimension can be interpreted in the
same way.
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observer rather than the system. The fields ¢“(r) span the infinite-dimensional
operator-algebra /. The k-point correlation functions are maps & AR, e
tensors of rank (0, k). (In the sequel, Latin letters a, b, ¢, ... are used as geometric
indices, Greek letters a, 8.v,... as coordinate indices; see ref. [6].) Since all
measurable quantities can be expressed in terms of the correlation functions, we
may define the field theory, independently of any functional integral description, as
the collection of all its correlation functions (2.1).

The measurements depend on a number of (scalar) intensive thermodynamic
parameters u*(a =1,..., n), which for simplicity are assumed to be in equilibrium,
i.e. spatially homogeneous. The set of field theories related to each other by a
continuous change of these experimental parameters is called the thermodynamic
state manifold # of the system. The u® are regarded as coordinates on .#. Their
choice is a gauge freedom; equivalent coordinate systems are related by diffeomor-
phisms.

Associated with these coordinates, there are local sources u%(r) and their conju-
gate rotation-scalar fields ¢,(r) €%/, by means of which the correlation functions
can be generated from a scalar functional*

124

(@a (1) - 00 (r)) F{u(r)}. (22)

- Su(ry)...8u"(ry) =t
It can be defined perturbatively in special “bare” coordinates u, on a neighborhood
of some point on .# (taken to be the coordinate origin) by the exponential mapping

F{uy(r))} =1n<expfu0"(r)¢0a(r)ddr> i (2.3)

uy=0

All fields may appear in the exponential; hence this formula defines a neighborhood
of the point u," =0 in an infinite-dimensional manifold % (parametrized by the
coordinates u,") in which the finite-dimensional manifold .# is embedded. The
space of zero-momentum fields ¢, = [¢,(r)d?r can be identified with the tangent
space T.%¥; that is, these fields act as derivative operators on the tensor fields (the
correlation functions). In particular, the bare coordinate derivatives 3075 a/duy’
read

3°,(6% (1) o 8% r) )y = (8%8%, (1) o 8%, (7)), - (2.4)

In general, this expression contains divergences that make the bare perturbation
series (2.3) meaningless. New renormalized coordinates have to be defined. To this

* The function F(u)= F{u(r)=u} on /4 is the grand canonical entropy of the system, the Legendre
transform of the entropy S({¢,)) with respect to the extensive thermodynamic parameters {(¢,) =
AF/du".
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end, it is convenient to express F as a functional integral

exp F{u(r)} =/.9<DexpS{(D(r),u(r)}. (2.5)

Here ®(r) represents a subset of &/ chosen as *“‘elementary” fields, in terms of
which the remaining fields are written as “composite” fields [3]. % is now
interpreted as the space of actions S, parameterized by the coupling constants u®.
(The choice of bare coordinates u," corresponds to the decomposition S =S, + S,
into an “unperturbed” action S, at the point u,* =0 and the perturbation S, =
Juo™(r)¢° (r)d“r.) The gauge freedom in the choice of coordinates is realized in the
functional integral as follows. Any transformation of variables ®(r)— @’(r) that
leaves the partition function (2.5) invariant induces a change in the action

ad(r)
ad(r)’

s{®)=s{e(®}} - [In (2.6)

that is, it acts as a diffeomorphism on . under which F transforms as a scalar and
the correlation functions (2.1) transform as tensors of rank (0, k).

Consider now a one-parameter group of diffeomorphisms with group parameter s
and generating vector field o =0%,. The differential change of a tensor field
w=by... b

= of rank (/, k) under this group of transformations is given by its Lie-deriva-

tive* with respect to the vector field o,

why b b e, by b by Z( . <')':'hl...h...h,_ Z ( . h)'—'hl_.,(‘.”h/
o'_'ulu_u/,..,u,‘_o V(“"ul,..a/,,..uA+ Vu, o "‘(11,,.(‘/.A.u,\ V( o ':'111“.(1 a;

FR

In particular, for the correlation functions (2.1) one obtains

(_ dis +$U) (6a,(r1) .- balr)).

d k
=(“+°C-vc+zY(,»)<¢al<n>-.-¢ak<rk>>u=0- (28)

ds i=1

Here v is the (1, 1)-tensor with components y,” = V,0¢ the index i indicates that it
multiplies the field ¢, (r,):

(Y9) o, (7)) =v, (1) - (2.9)

* A concise introduction can e.g. be found in ref. [6].
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Notice that the Lie-derivative does not depend on the connection v, (provided it is
torsion-free). Hence, at least formally, it may be evaluated using the coordinate
derivative operator (2.4),

05" 0% (8% (1) - 8% (r) ) = (0% (r) ... 6% (r) ). (2.10)

The functional integral (2.5) is meaningful only if it is regularized at distances
smaller than some scale ¢ < R. A RG transformation is a change of the observer’s
scale R at a fixed cutoff a (or equivalently [7], a change of a at fixed R) that leaves
F invariant, i.e. that acts a gauge transformation on the functional integral. We shall
assume that the cutoff in (2.5) is implicit in the form of the interaction (decaying
rapidly at momentum scales ¢ a~!) rather than given by a restriction on the
functional measure. As shown by Wegner [8], a RG transformation can then be
regarded as a transformation of the elementary fields with a judicious choice of
'{D}. It follows that the renormalization group is the one-parameter group of action
space diffeomorphisms X, with group parameter t =In(a/R). Its generating vector
field 8 = B%, is the trace of the stress—energy tensor; the components B8*=
(d/dt)u are called beta-functions. A gauge transformation of the functional
integral that leaves ¢ fixed is redundant [8] in the sense of the RG.

The finitely many thermodynamic parameters determine the long-distance behav-
ior of the system in a universal way. Therefore, the underlying field theory should be
renormalizable, i.e. in .% there exists a finite-dimensional submanifold .# which is
an attractor under the RG flow (and hence left invariant by it: §(u) € T.# for all
u € 4 ). This submanifold is to be identified with the thermodynamic manifold .#.

The correlation functions at scale R obey the Ward identity

(_ % +g0) <q§al(r1) g (1) >u

d k
=(_$+BC.VC+ ZYU) <¢‘11(r1)"‘¢ak(rk)>u=0, (211)
i=1

which may again be evaluated with the coordinate derivative (2.4),
Bo’ 3% (8% (r) - 9% (r) ) = (8% (n) . 6% (n)).  (212)

The (1, 1)-tensor
v (u) = v.B(u) (2.13)

is the representation of the RG on the dual vector space &/*. Since the RG is
abelian, v “ decomposes into one-dimensional irreducible representations, i.e. it is
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diagonalizable. Its eigenvalues are invariant under diffeomorphisms and are called
(anomalous) scaling dimensions; the corresponding eigenvectors are the scaling
fields.

At a fixed point u* of the RG, #(u*) vanishes and (2.11) expresses the scale
invariance of the correlation functions. The scaling dimensions at the fixed point,

y* = v.B(u*) (2.14)

are independent of the connection ¥, on action space. Renormalizability implies
that only finitely many of them are negative. One can define a metric on .% which is
regular at all RG fixed points by [3]

gus(u) = (9,(0)9,(1)), . (2.15)

and let v, denote its Christoffel connection. Then it is easy to show™ that the

structure constants C, “ of the operator algebra .7 at the fixed point u* are given
by**

Cpl=— Lv,,v;.B“(u*). (2.16)
27
Hence the covariant RG flow in the neighborhood of a fixed point contains all
information about the fixed point theory.
In the special case of a conformally invariant fixed point in d = 2, the metric and
the beta-functions determine the RG flow of Zamolodchikov’s #function***

d
57 € 1) =67 (u) g (u)B" (). (217)

The scaling dimensions (2.14) and the structure constants (2.16) can then be
expressed covariantly in terms of the %function,

1 1
Y= emetivvg(w). Gl = ogvvve(ut). (2.18).(2.19)

Consider now the crossover from an unstable fixed point u* to other fixed points
located at a finite distance from u*, defined by the metric (2.15). The bare
coordinates u,, in a neighborhood of u* are given in terms of generic coordinates u

* This follows from the one-loop beta-functions; a particularly straightforward derivation of them can
be found in ref. [9], sect. 6.4.
**Since [V, V.1BYwu*) = R, S (u*)BYu*) =0 at the fixed point u*, there is no factor ordering
ambiguity in eqgs. (2.16) and (2.19).
The numerical constant in this equation is determined by the normalization of the stress—energy
tensor; sec ref. [1].

b g 8 4
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by the nonlinear transformation

ug= lim e=""( &, (u) —u*). (2.20)

tg— 0

They are exactly Wegner’s scaling coordinates (he calls them scaling fields) that
linearize the beta-functions,

By = ug'y*,". (2.21)

Hence all the other fixed points are at infinity in these coordinates. This ties in with
the singularity of the coordinate derivative (2.4). But all covariant quantities remain
regular; these singularities are coordinate singularities*. They can be absorbed,
order by order in perturbation theory, into a coordinate transformation

w =27 (uwuy,  ¢,(r)=¢"(r)Z",(u) (2.22).(2.23)

to renormalized coordinates u® and fields ¢,(r). In the renormalized coordinates,
the other fixed points are at a finite coordinate distance. This transformation is a
matter of calculational convenience only since the interesting physical quantities
(2.14) and (2.16) are covariant. Different sets of renormalized coordinates are
related by diffeomorphisms that leave the other fixed points at a finite coordinate
distance. This is a residual gauge freedom that corresponds to the choice of the RG
scheme.

The Z-factors Z and Z determine the beta-functions B and the anomalous
dimensions v respectively. Hence, the important interpretation of eq. (2.13) is that
the fact that the coupling constants are coordinates and the fields are tangent vectors on
a manifold geometrically unifies their renormalization.

This fact can be put to use whenever the renormalization is carried out at the level
of the operator algebra, since then the field renormalization Z is relatively straight-
forward to compute, while the coupling constant renormalization Z is not directly
accessible. An example is given in the next section.

3. The crossover between minimal models

The two-dimensional minimal models M, are well-studied conformally invariant
[2] and reflection-positive [10] euclidean quantum field theories. The minimal
models for m = 3.4,5 have been argued to describe critical melting transitions of
atomic monolayers on crystal surfaces [12].

* Coordinate singularities are familiar in general relativity; the most famous example is Schwarzschild
coordinates at the event horizon of a Schwarzschild black hole [6].
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The diagonal series m =3,4,5,... represents the universality class of the
Landau-Ginzburg model

2m—2
f@@exp{-/ (vod) + Y u:d/: dzr} (3.1)
Jj=1
at its multicritical point ¥V =u? = ... =4@" % =0 [11]. The operator algebra

has a basis of spinless scaling fields. It consists of
(i) m(m —1)/2 primary fields ¢, ,, (1 <p<m—1,1<g<m, with the identifi-

cation @, ., =P, _p m+1-4)» having scaling dimensions

[(m+1)p—mgl’ =1
x”,_q)=2><
dm(m+ 1)

(3.2)

Of them, 2m — 4 fields have scaling dimension < 2; i.e. they are relevant in the
sense of the RG. They can be identified with the composite Landau—-Ginzburg
fields : @/: (1 <j < 2m — 4). The field : 2" 3: is redundant in the sense of the RG
and does not appear in the operator algebra of the conformal field theory.

(ii) infinitely many secondary fields generated from each primary field ¢, ,, by
the Virasoro generators L_; and L_; (j, j=1,2,3,...), with scaling dimensions
Xpp TN (N= 1,2,3,...). All rotation-scalar secondary fields are irrelevant in the
sense of the RG.

The two-point function of primary fields is (with a suitable normalization)

1
<¢a(”1)¢3(”2)>:m8a/3’ (3.3)

where r, = |r, — r,|. Hence, at the fixed point corresponding to M,,, the scaling
basis diagonalizes the metric (2.15) in the subspace of primary fields.

The existence of an operator algebra implies that all multipoint correlation
functions can be expressed in terms of two-point functions and operator product
coefficients; these are the basic constituents of the theory. For primary fields, one
obtains the three-point function

1
<¢a(r1)¢ﬂ(r2)¢y(r3)>: pXatXgT Xy pXgtxy— X +xo—Xg C"‘BY (34)
12

Y apXy
r23 r31

and the full four-point function (in boldface notation to distinguish it from its
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connected part)

xg+ X5 Xyt Xy

(9alr1) 96(r2) &,(13) #5(1)) = o Faga(0) . (3.9)
12 23 34 41

with p = (ry3r54)/(ryr4). The scaling function F,z 5(p) is a sum

FaﬁyB(p) = ZCaByvaSF(V)(p) (36)

in which each term F is in turn an infinite sum of two-point functions of the
primary field ¢, and its secondaries [2,13].
We wish to calculate the RG flow of the model M,, under the perturbation

S,= [ug4(r) d* (3.7)

with the relevant energy-like scaling field ¢°= ¢, 5 =:®>" *. Via (2.3), this
perturbation defines a one-dimensional submanifold .#, of .#. Two properties of
¢, .3y are important:

(1) it has a finite coupling C; 3y 31,1, = 1 to the identity ¢, ;, (corresponding to
the normalization (3.3) of the two-point function) and a finite self-coupling
Cu.3a.3a.3m = C. but decouples from all other relevant scaling fields ¢, (ie.
Ci1.3y0.3» = 0). This implies that .4, is a geodesic RG trajectory and can therefore
be left invariant by the transformation (2.22), (2.23) to renormalized coordinates
and fields. Within this subspace, the transformation then reads

u=Z(u)u,, o=¢"Z(u). (3.8),(3.9)
The Z-factors determine 8 and vy [7],
d d ~
B(u)= y*u/(l —u—1In Z) , y(u)=y*—-B—InZ. (3.10),(3.11)
du du

In this case, the relation (2.13), y = (d /du)B, can be integrated and yields a relation
between Z and Z:

z”=1—ui1nz Z. 3.12
1-wiomz]f @

(1) for m > 1, it becomes nearly marginal:

Xg5=2—4/(m+1)=2~¢. (3.13)
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Hence, at a distance of order ¢ from the unstable fixed point u* = 0, the trajectory
#, contains a nontrivial fixed point u** (the point uy,= 00).
We make an e-expansion by analytic continuation in the central charge

c=1—-6/m(m+1) (3.14)

to ¢ =1, the accumulation point of the sequence of minimal models. This replaces
the usual e-expansion about the upper critical spatial dimension.

From (2.5) one obtains the bare perturbation series for the two-point function to
order uj,

(8°(0)9°(1)),, = 1+ 1o [ (°(0)6°(1)6"(r,) ) d*r,
+ %“8/<¢0(0)¢0(1)¢0(”1)¢0(rz)> dz’ldz”z + O(“S)' (3.15)

Here the three-point function is of the form (3.4); it can be integrated exactly in
terms of gamma-functions. The four-point function is more difficult. Only in the
limit ¢ —1, it has a simple form and it can be constructed from its crossing
symmetry [2] and meromorphy properties (see appendix A). In general, each term
F® of the scaling function (3.6) is the square of a generalized hypergeometric
function (the solution of a third order differential equation) for which no closed
expression exists. Perhaps somewhat surprisingly, the singular part of the integral in
(3.15) may still be expressed in terms of gamma-functions. The resulting Laurent
series for the bare two-point function is

1072C? 37%C?
— +0(%) |ud+0(ud).
£ &

(¢°(0)¢°(1) ) =1+ o+

47C
— + O( 82)
£

(3.16)

This formula is derived in appendix B. Now the transformation (3.8), (3.9) has to be
constructed order by order in such a way that the renormalized two-point function

(6(0)(1)),=Z*(u){6°(0)6°(1) ). 7 1(uyu (3.17)

is regular. This determines the renormalized quantities only up to finite coordinate
reparametrizations. We fix this residual gauge freedom by choosing a minimal
subtraction scheme, i.e. by requiring that Z and Z have no regular part. Upon
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inserting (3.16) and (3.12) in (3.17), we then obtain to order u?

Zu) =1 2aC 3n?C? 377CP| Ol

=1- + +

u U 3 rrl +0(u?), (3.18)
7C 72C?

Z(u)y=1+—u— ur+ 0O(u?) (3.19)

&

and
(6(0)¢(1)), =1+ O(&?u, u?). (3.20)

Hence u is a normal coordinate on .#, about the fixed point u* =0 to order ¢’
From (3.10), (3.11), (3.18), (3.19), (3.20) and (2.17), we have

y(u)=—e—27Cu+ 37C*u” + O(u?), (3.21)
B(u)= —eu—aCu?+ LaC*u®+ O(u*), (3.22)
C(u) = C(u*=0)=67*[—teu’— LaCu® + Ln2C2u* + O(us)] . (3.23)

The beta-function has the infrared-stable fixed point

1
u**=E(—£+§£2+O(E3)), (3.24)
where
Y**=£+%82+O(£3)’ (3.25)
1 3
C(u**)— €(u*=0)= — FEB + F£4+ O(e’) = — et — 2t + O(¢%).
(3.26)

Comparison with (3.14) shows that ¥(u**) equals to the calculated order the
central charge of the fixed point M, _,. At this infrared-stable fixed point,
the perturbing field has to be irrelevant. Eqgs. (3.25) and (3.2) say that it becomes the
leading irrelevant scaling field ¢, ;). This is precisely what one would expect from
the Landau-Ginzburg interpretation.

I am indebted to John Cardy for many valuable comments throughout the course
of this work. I also enjoyed useful discussions with Andrea Cappelli, Philippe
Christe, Gautam Mandal and Giuseppe Mussardo. This work was supported by
NSF grant no. PHY 86-14185.
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Appendix A

In this appendix, the exact scaling function (3.6) of the perturbing field ¢°= b3
is constructed in the limit ¢ =1, where ¢, ;, becomes marginal (& =0).

The infinite conformal symmetry implies that, after reparametrizing r = (x, y) in
terms of complex coordinates (z = x + iy, Z = x — iy), each term F* of the scaling
function (3.6) factorizes into an analytic function of the holomorphic cross-ratio
{=(z,(z,—1))/((z, — 1)z,) and its complex conjugate function,

FOlp) = FO(S. ) =7 0(5).7(§). (A1)

No closed expressions are known in general for these “conformal blocks”, but they
may be computed as power series about any of their singular points 0, 1, and o0 [2].
In the case of the minimal models, the % are solutions of differential equations,
and there is a divergent contribution to the coefficients of the power series from the
null fields. After this has been projected out, the coefficients are well behaved, even
in the limit ¢=1.

Specifically for the field ¢, ;,, there are three conformal blocks corresponding to
the three intermediate channels v =(1,1), » =(1,3), and » = (1,5) in (3.6). A lengthy
calculation vields in the limit ¢ = 0 the power series about { =0,

FAD() =2 +2+420+ 187+ 0(87),
FUIE) =T+ 1+ 387+ 0(8),
75578 =82+ 0(8). (A2)
The important simplification for ¢ =0 is that the conformal blocks become mero-
morphic functions, which are completely determined by their poles. These poles are

at { =0, 1, and %0, and of first and second order; from (A.2), it is a mere algebraic
exercise to compute their coefficients,

FUD=¢ 24 W 1=¢) P+ 4(1-¢) '+ 1,
FOD =4 L1-0) 109 T

L

FLP=(1-0) " -200-¢) "+ 1. (A3)
The scaling function is then
o($.8) =F LI ELD(E) + CLE LY () ZL(8)

+CL T IO T, (A4)
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The as yet unknown couplings C = C; 31 3,13, and C= Ca.3y1.3a.,5) can be readily
determined by imposing crossing symmetry,

F_o($.85)=F_o(1-51-8)=¢ X2 (8708, (A.5)

One obtains the correct limit value of the expression known from Coulomb gas
methods [13], namely

Co=1, CV‘52=0 =3. (A.6)

The scaling function can now be written in a manifestly crossing-symmetric way as
a sum of its disconnected part and its connected part:

F_o(8.8) = FE,(8.8) + Foo(8. D), (A7)
where

2

Fa,(6.0) =8 X2+ (1-¢) 1-%) "+1, (A.8)
Foo(§.8) = hC22Re[t 2+ (1-0) 245 2(1-0) ]
PRt (1= 8) P21 -8) =g -8

T I [ LS (R R R RN o S R O R (S S R B
(A.9)

Appendix B

In this appendix, the Laurent expansion (3.16) for the integrals (3.15) is derived.
Consider first the integral

I(a,ﬁ,b,i))Eﬁazz"fa(z—l)h(f—l)zdzr, (B.1)

where a, a, b, bER (the bars do not denote complex conjugation) and, to ensure
univaluedness of the integrand, a — @ and b — b are integers. After a Wick contour
rotation in the complex Im z plane, the integral factorizes into the product of two
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one-dimensional real integrals that can be solved in terms of gamma-functions,

I'(-1—a-b)I(1+a)l'(1+b)

I(a,a,b,b)= — B.2
(a.a.b.b)=m T(—a)[(-b)[(2+a+b) (B.2)

It is easy to verify that this expression is real,
I(a,a,b,b)=1(a,a,b,b), (B.3)

and enjoys the symmetries

I(a,a,b,by=1(b,b,a,a)=I(-2~a—b,-2—a—b,b,b). (B.4)
They express the invariance of the integral under the group of conformal
reparametrizations generated by z—1—z and z~ z~! which permute the three
poles at 0, 1, and oo.

Thus one obtains for the integral over the three-point function, using (3.4)
and (3.13),

J(POEW () dr=1(—1+%e,~1+1e,—1+1e, 1+ L)
=4n/e+ O(&). (B.5)
To compute the integral over the four-point function
G(r,n)= <¢’O(O) ¢°(1)¢0(r1)¢0(r2)>

= (2, - 1) 725, 1) 2T e 2R (¢ D), (B.6)

an auxiliary function

Glror) =(z-1) 7" (5~ 1) 7?22 g2 E (4 D) (B.7)
is introduced with the following properties:

(i) the functions F,— F; are bounded by an integrable function;
(iiy £, > F, as e—>0.

Using Lebesgue’s theorem, one can then show that

[G(rn ) drdn = [G(n,r,) a2 d?r, + O(e). (B.8)
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The function F to be used in the sequel is
E(3.8) = [&C?+ O(e)|2Re[s24 (1 - ) *(1-8)
XEEH(1-¢) (=) (-0 (1-8)
(B.9)
+[3C2+ 0(e)|2Re[¢ 122 (1 - ) (1 - ) "

—1+e/2

+§—2+e§e(l _ §)€/2(1 _ g_-)

_§—1+e/2§e/2(1 _ §)—1—s/2(1 . §) s/2] (B.lO)
+ %Cz {—l+e/2§-~l+e/2 + (1 _ §)A1+E/2(1 . g—,)—1+e/2

4y e 2f - re2(] ) TI e ( 5)71”/2] . (B.11)

Property (1) may be checked by comparing the singularities of fs with the ones of F,
known from the operator product expansion. As ¢ — 0, we have F,— F,_,, and
(A.9) shows that P:E — F__,; this proves property (ii). Notice that }i cannot be the
true scaling function. This does not interfere with the argument. It is convenient to
change the integration variables,

fés("l»rz) d2r1d2r2= f’?_lﬂﬁ_l“(n“ 1)_5(71 - 1)_€(T7 - Sb)_e(ﬁ - E)ie

Lo d(E+8) d(E-¢) d(n+m) d(n—7)
2

X F($,¢) > > . (B12)

with 7 =(z,—1)/z,. A look at the group of terms (B.11) shows that for the first
two terms in this group the integral factorizes; the {- and n-integrals are both of the
form (B.1). The third term does not factorize in these coordinates, but it is related to
the second by the transformation r, <> r, and gives therefore the same contribution
to the integral. In the group of terms (B.9) and (B.10), the n-integral

_ . d(n+7) d(n -7
InEfn—us,,—,_m(n_1)-e(ﬁ_1)_e(n_§)_e(ﬁ_§) (n;n) (n2 n)

(B.13)

may be performed first, by noting that the singularities as n — 1 and 1 — { are weak
and the £~ -pole of the integral is determined only by the singularities as n — 0 and
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1 — co. Therefore,
=1(—1+e —1+e —2e —2¢e) +O(e°). (B.14)

The {-integrals are then again in their leading part of the form (B.1) and have a
finite limit as ¢ — 0. Taking everything together, we obtain

%fds(rl’rl)dzrlder
=&+ 0(e)|2[T1(—2+ €6, — 26, 2¢) + I( 26, — 26, — 2+ &, ¢)
+I(—2+ee,e,—2+¢e) +0(e)]

+1[icr+ 0(e)]21 [1(—1—E *E,s,—2+£)+[(—2+e,e —5,7173)
" 20 2 ) 2

/ 1 £ € ) 3 3 o ]
L e O 1
( 2’ 2 2 2) (2)

C2 o145 2148 f-1+5 2142
— -1+, 1=, e~ 14, - 14—, —e —
2 ( 2 ¢ 5)( 2 2 f E)

+

£ 3 3¢ 3e
+21(—s,—s,—1+*,—1+—)I(—1+£,—1+£,7— *‘)

2 2 272
(B.15)
~1lict ool T+ o(e)]
x[(2me + O(&?)) + (2me + O(&2)) + (27e + O(£%)) + O(e)]
#1027 o)
X[(=7+0(e)) + (—7+0(e)) = (7 +0(¢)) + O(e)]
+ ;;{(4—: +O(ez))(4—: + 0(52)) +2(4TW +o(52))(%77 +o(gz))]
(B.16)
_ 1072¢? B 372C? L o). (B.17)
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