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We studythe renormalizationgroupfor nearlymarginalperturbationsof a minimal conformal
field theory M~with p >> 1. To leading order in perturbation theory, we find a unique
one-parameterfamily of “hopping trajectories” that is characterizedby a staircase-likerenor-
malizationgroup flow of the C-function and the anomalousdimensionsand that is relatedto a
factorizable scattering theory recently solved by Al. B. Zamolodchikov. We argue that this
system is describedby interactionsof the form t4(l 3) t~(

3l). As a function of the releLant
parametert, it undergoesa phasetransition with new critical exponentssimultaneouslygov-
ernedby all fixed points M,,, M~_ ,.. ., M3. Integrablelattice modelsrepresentdifferent phases
of the same integrablesystemthat are distinguishedby the sign of the irreleant parameteri.

1. Introduction

The simplestscale-invariantfield theoriesin two dimensionsare the seriesof
minimal modelsM~(p = 3, 4,...) [21,which describethe universal(p — 1)-critical
behaviorof Landau—Ginzburgtheorieswith a singlebosonicfield and polynomial
interactions[3]. It is a difficult andwidely openproblem to revealthe embedding
renormalizationgroup (RG) scenarioof thesefixed points,which determinesthe
universalbehavioroff criticality as well as crossoverphenomena.An important
aspectof this problemis that in two dimensionsthe theoryhasan infinite number
of integrals of motion not only at the RG fixed points, where it is conformally
invariant [2], but on a larger submanifoldof theory space.The precise extent of
thismanifold of integrabilityis unknown,but it doescontainsomeperturbationsof
a critical point M~by a single scalingfield [4].

If such a perturbationis relevant, it will either induce a crossoverto another
critical point of lower criticality or leadto purelymassiveinfraredbehavior.In the
latter case, the exact factorizable S-matrix can be conjectured[4], which in

principle determinesall scalingfunctionsassociatedto that RG trajectory.At least
some properties of this scaling regime have indeed been predicted, such as
universalfinite-size effects [5—12]and amplitude relations[13]. The only known
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exampleof an integrablecrossoverfrom the model M~to anothercritical point is
generatedby the perturbation

(1.1)

where 4p(t3) is the weakestrelevantscalingfield, i.e. the field with the smallest
positive RG eigenvalue,and the (dimensionful) coupling constant t~ is positive.
This crossoverchangesthe orderof criticality by oneto M~

1this hasbeenshown
perturbativelyfor large values of p [14], by supersymmetryargumentsfor the

crossoverfrom the tricritical to the critical Ising model (the casep = 4) [15], and
more recently by thermodynamicBethe ansatzmethodsfor generalvaluesof p
[16]. Hence the manifold of (p — 1)-criticality is nestedinto all manifolds of
lower criticality, as one would expect from a mean-fieldanalysisof the Landau—
Ginzburg picture: ~ C ~_ C ... C ~ In contrast to mean-field arguments,
however,crossoverschangingthe order of criticality by morethanoneare induced
by fine-tuned linear combinationsof all scaling fields that are evenunder spin
reversal,andit is not clear if any of the interpolatingfield theoriesare integrable.

The manifold of integrabilityalso containsthe leading irrelevant scalingpertur-
bation of the critical theoriesM~*

.9~5~’~*tp
4~p(3~)~ (1.2)

at least to first order in perturbation theory [4,9]. While generically a linear
combinationof two integrableperturbationsdoesnot generatean integrablefield
theory off criticality ~ the perturbations(1.1) and (1.2) share infinitely many
integralsof motion so that evenan arbitrary linear combination

+ t~4~(
13)— tP4P(3t) (1.3)

shouldstill be integrable[9]. As will be arguedbelow,this fact is connectedto the
existenceof non-trivial integrablelattice modelsin two dimensions.The presence
of non-zero irrelevant coupling constantsin lattice models can drastically alter
their crossoverbehavior:sincethe (p — 1)-critical lattice model is characterizedby
a point on ~ different from the fixed point M~,the variationof a thermodynamic
parametercausingthe continuumtheoryM~to crossover to ~‘,,, (p’ <p) neednot
be tangentto at that point, which leavesthe perturbedlattice model on a less
critical manifold ~, (p” <p’) or in a massivephase.

* Thebar doesnot denotecomplexconjugation.
** The two-dimensionalIsing modelwas studied recently117] in the entire scaling region ,,~ ~ +

h4(l2)+ t4~(13),which is spannedby two integrableperturbations.The finite-size spectrumof the
transfer matrix obtained by the conformal truncation method [10—12]did not show any sign of
integrability expectfor h = 0 or t = 0.
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This paperstudiessuch crossoverphenomenaby analyzingthe renormalization
group flow in the neighborhoodof a minimal modelM~for p << 1, where a subset
of the scaling fields (including 4p(13) and ~p(31)) becomesnearly marginal. A
perturbationof M~canthenbe describedby the lagrangian

(1.4)

the running couplingconstantsU~andtheir conjugatefields cJ~aredefinedby an
expansionin the parameters = 4/(p + 1) (which is the RG eigenvalueof ~pt’3))

[14]. The s-expansioncan be trusted in a neighborhood~ = 0(s) of M~,which
containsinfinitely many otherfixed points ~ This is an importantdifferenceto
the usual s-expansionabout the uppercritical dimension, where only two fixed
points are at a distanceof 0(s). But at least on the trajectory linking M~and
M~.

1,this s-expansionhasbeenshownto be a consistentRG schemein minimal
subtractionto O(s2)[18].

To leading order in perturbationtheory, we find in particular a unique one-
parameterfamily of hopping trajectories U,~(O,O~)(where 0 is the RG “time”
varying along eachtrajectory and O~labels the trajectories).They come closeto
eachfixed point M~and areself-similar in the following sense:

+ O~,O~)= U~(O,Ofl). (1.5)

We identify thesetrajectorieswith theone-parameterfamily of integrabletrajecto-
ries that Al.B. Zamolodchikovrecentlyfound by solving the thermodynamicBethe
ansatzfor a simple factorizable scatteringtheory containing a single type of
massiveparticles[1]. The flow of the C-function C(6, O~)alongthesetrajectoriesis
computedand seento follow the characteristicstaircasepatternthat interpolates
betweenthe central chargescp. A similar pattern is found for the flow of the
anomalousdimensionsx

t’~(6,9~).We shall argue that the one-parameterfamily
M(0

0) of integrablefield theoriesdefinedby theseS-matricesis describedby a
langrangianof the form (1.3) wherebothcoupling constantst~and arepositive.

The samefamily of field theoriescan be consideredfor negativevaluesof
where the RG trajectoriesbehavevery differently: they comeclose to only two

neighboringfixed points M~andM~—~ and shoulddescribean integrablesystem
in a (p — 2)-phasecoexistenceregion. This is very likely to be the eight-vertex
solid-on-solidmodel of Andrews,Baxter and Forrester(ABF) [19] in the scaling
regionof the so-called regimeIV. The RG analysisthus establishesan intimate
connectionbetweenthis model andZamolodchikov’ssystem.

As a function of the relevanttemperature-likeparametert~,the systemunder-
goes a second-orderphasetransitionwith a rather intricatecritical behavior.For

<0 andany valueof t,,,, it is governedby the single fixed point M~.For t~> 0
and t~,<0, two neighboringfixed points determinethe exponents;the RG con-
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firms the scalingansatzproposedby Huse [20] to explain the exponentsin regime
IV of the ABF-model. For t~> 0 and ~> 0, they are determinedby all fixed
points M~,M~1,M~.2,. .. , M3 visited by the hoppingtrajectories.

This paperis organizedasfollows. In sect. 2, we write down the RG equations
and determinesome useful symmetry properties. Sect. 3 discussesthe hopping

trajectories.Sect.4 describesthe variousphasecoexistenceregionsandthe critical
behavioras a function of t~.Sect. 5 containsa discussionof the results.

2. First-orderrenormalization about a minimal model M~

To leadingorder in perturbationtheory, the RG equationsaboutthefixed point
M~canbe written in the form [14,21]*

~Ui=yjUi_~CjkUiUk, (2.1)

wherex~©= 2 — y(1) are the anomalousdimensionsandCk the structureconstants
of the scalingoperators4, = I~(U= 0), and yf = ~ In eq.(2.1), the indicesrun
over all scaling fields that transform as scalarsunder rotations, including pure
derivativefields ~ Hencethe RG actson a spaceof coupling constantswhose
dimensionality exceedsthat of the thermodynamicspaceof the system. At any
point U, thereare linear combinationsof the fields i’1(U) that areproportionalto
the purederivativefields 3~a/P~(U)andhencenot conjugateto anythermodynamic
parameter;thesefields generateredundant[22] directions in coupling constant
space.

The RG equationscan be restrictedto the “thermal” couplingsthat preserve

the L2-symmetry of M~under spin reversal. Further simplifications arise in an
expansionin the parameters = 4/(p + 1). Such an expansionis possible
sinceboth the structureconstantsandthe scalingdimensionsareanalytic in s. For
s —~ 0, the scalingfields ~, in the lower-left corner of the Kac table(shownin fig.
1) are spectrallyseparated:

(i) the primary fields with I m — n <1 havedimension x~”~~ 1/2 +

0(s),
(ii) the primary fields ~ ±2) and the (convenientlynormalized[14]) descen-

dant fields ~flfl) (xtn~ü)~aZ3S4(flfl)have dimension 2 R 0(s) and 2— 0(s2),
respectively,and

(iii) all other fields havedimension ~ 5/2 + 0(s) ~.

* From now on, the index p will be suppressedwhereno ambiguitiescan arise.

** The spectralseparationbreaksdownfor n = 0(p), but for the solutionsof theRG equationsto be
discussedin thesequel,the couplingsof thesefields are exponentiallysuppressed.
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Fig. 1. Positionsof the nearlymarginalthermaloperatorsin the Kac table of a unitaryminimal model
M,, for p>> 1. The operators41(,.~±2)are relevant, while the operators 4(~,1..2)and ~ are

irrelevant.

Hencethe couplingsU~”
2±2) and U~”’~becomemarginalin this limit, while all

other couplings remainstrictly relevantor irrelevant.To leadingorder in e, the
systemof equations(2.1) can be truncatedconsistentlyto the nearly marginal
couplingsU1 = 0(s), the othercouplingsremainof U(s2). A convenientrescaling
U’(O) = sul(sT)/(~C~~~li))then brings the RG equationsinto the form

= y]U~ — clkuu + 0(s), (2.2)

with = lim~~
0(yf/s)and ~ = limE

Theseequationsdeterminein particularthe renormalizablemanifold~ of M~,
i.e. the set of all trajectories

u~,(T) with u~(r)—*0 for r—s —~, (2.3)

andthe critical manifold ~ of M~,i.e. the set of all trajectories

u~(r) with u~(r) —~0 for r—~+~, (2.4)
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Fig. 2. Specialsolutionsof the RG equationsin thevicinity of M0~_1(schematic).(a) A trajectory in
.~‘,,. (b) A trajectory in ~ (c)A redundanttrajectory.

modulo the redundantcouplings(see fig. 2). The (p —p’)-dimensionalcrossover
manifold

~ =~ P (2.5)

describesthe (p — p ‘ )-parameterfamily of field theorieswhoseultraviolet asymp-
totics is determinedby M~andwhoseinfraredbehavioris determinedby ~ The
simplestsuchsolution is the uniquetrajectory~ [14]

exp(T—T )
m , u’(r)=O for i*(1,3), (2.6)

1 + exp(T — Tm)

where Tm is a free parameter.This trajectoryinterpolatesbetweenM~and the
infraredfixed point u~’

3~= 1 associatedto M~ ~.

Under a simultaneousRG time reversalandbasischangeinvolving a reflection
aboutthe diagonalof the Kac table

T —T, nl,n)~i4~i 4~(n,m)’ (2.7)

the equations(2.2) remain invariant since -yJ = —4 and cf-k = Cik. Henceto every
RG trajectoryu’(T), thereis a conjugatetrajectory u’(r) = _u1(_T), and to every
fixed point u’~, there is a conjugatefixed point ü~= —u~

1.For example, the
trajectoryconjugateto M~~_1interpolatesbetweenM~andthe ultraviolet fixed
point u~’~= — 1 associatedto ~ ~. Of particularimportancein the sequelwill
be the self-conjugatetrajectories,which satisfy

u’(T) = —u~(—T+T1) (2.8)

for somevalue of T1.
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In a small neighborhoodof the trajectory ~ ~, the RG equationscan be

linearizedin the othercouplingsv
1 u’ ~ 1 (i * (1, 3)). The equationfor u utt,3)

thendecouplesand u(T) is given by eq. (2.6); the equationsfor v’ takethe form

d,
~-v’=yj(u(T))v3, (2.9)

where 4(u) factorizesinto (3 x 3)-matrices

n+1

2

y(n)_ 0 0 0

n—i
0 0 2

n+3 n—i n+2 1/2

0
n+1 n+1 n

—2u n—i n+2 1/2 4 n+1 n—2 1/2 (2.10)
n + 1 ,.~ — 1 n — 1 n

n+i n—2 1/2 n—3
0

n—I n n—I

acting on the tripletsof couplings

,n±2)

vt’~= ~(nn) (2.11)

with n = 3, 5, 7
A basisof solutionsof eq. (2.9) is given by the trajectorieswith the definite RG

time reversalsymmetry

(Up(Tm — T), vp(Tm— r)) = (Üpi(Tm + T), ±~p_i(Tm + T)). (2.12)

where u~(T) is given by eq. (2.6). For eachvalue of n, there is preciselyone
linearly independentevensolution v,~© and two linearly independentodd solu-
tions v~© andv~°.The couplingsv~°areconjugateto thepurederivativefields
aZa/~(flfl)(u) of M~,~_

1andplay a redundantrole.
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For the asymptoticbehaviorof the trajectoriesas T —~ — ~ (i.e. u,~, u —s 0),
therearethreepossibilities.For everyvalueof n, thereis onelinearly independent
solution of (2.9),

2(n+3)
n+1

= ~ + U — 4(n — 1) n + 2 1/2 + 0(u2) , (2.13)

(n+3)(n+1) n

0 0

defining a renormalizabletrajectory(u~(T),v~’(u(T))) and onesolution

4 n+2 1/2

0

u~°(u)= 1 +~ n +1 ~ + 0(u2), (2.14)

4 n—2 1/2

0 — __ __

n—i n

defining a redundanttrajectory. Any solution that is linearly independentfrom
(2.13) and (2.14) describesa theory that is non-renormalizableabout M~.Con-
versely,thereis onelinearly independentsolution v~’~(u)that definesa trajectory
in ~ any solution that is linearly independentof v~~~c(u)and v~°(u)is of
lower criticality.

3. Self-similarhoppingtrajectories

In this section,we study the RG flow of a self-conjugateperturbationof the
fixed point M~,

u~(T=0)=Ü~,(T=0) ~+1, (3.1)

correspondingto a point in theoryspacethat is much closerto M~than anyof the
other fixed points~ We define the parameter

s u~’3~i~’31>0. (3.2)

It is easyto verify that there is a unique one-parameterfamily u~(T,s) of
trajectories that satisfy the conditions(3.1) and l2~(T,s) C~

1, i.e. can be
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-. (ci)
M~+1 M~ M~1

(b)

M~.i M~ M~_1
Fig. 3. Self-conjugatetrajectoriesin the vicinity of thefixed point M~(schematic).(a) A trajectory in

M~±1,~_1.(b) A self-similartrajectory.

expandedin the basis of triplets ~ and v~”~°~. Self-conjugacythen dictates
â~1,(T,s) ~ as well and therefore

~(T, s) CM~÷1~1. (3.3)

Any trajectoryin M0÷1~_1with a given value of s differs from 2~(r,s) only by
spurious couplings v~°,hence these trajectories (shown in fig. 3a) span the
two-dimensionalcrossovermanifold M~+1,~—1•

Considernow the one-parameterfamily i~(T, s) of trajectoriesthat satisfy the

condition(3.1) andare evenin the senseof eq.(2.12) up to spuriouscouplings,i.e.
vp canbe expandedin the basisof triplets v~~©and v1~’~°.The trajectory U~(T, s)

is self-similar (see fig. 3b) after a scaledRG time T0 = sO)) log(1/s) for small 5:

~_i(TO, s) = ~0, s) = ~ s). (3.4)

It comescloseto eachfixed point M~in the time interval

(p—p’—~)O�O~(p—p’+~)O~1 (3.5)

and up to a minimum distancegiven by the parameters~= s(1 + U(s)), where-
after it hopsto the next-lower fixed point. It is againeasy to check that up to

* For a givenvalueof s, onehasü~i~
3~~1/2 = — t2~ by eqs. (3.1) and(3.2). The remainingcouplings

are recursivelydeterminedby the equations

~ s)= a(~)C(s)v~,(u = ~I~2) + a(~)Q(s)L~(a = sl~2)

and the self-conjugacyconditions

t2~”~2~(0,s) = — O~±2~1)(0,s) and ~ s) = 0.

Analogousrecursionrelations hold for the trajectoriesu~,(r,s) below. Notice that both families and
everyvalueof n, the ratio of the relevantand theirrelevantcoupling u~~+2k0,s)/u~”~2~(0,s) in
the nth triplet goesto 0 as s —~0, hencethe couplingswith highern are stronglysuppressedfor small
s andr.
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:2~1.~ce~ ~1m1

Fig. 4. The C-function C(r, ~-~) of the uniqueself-similar trajectoryO~.,(r,s(r
0)): a stepin the staircase

pattern for ~ = 3.2, 3.6, 4.0 and 4.4 (solid lines). For larger values of r~,the steps get more
pronouncedasthesolutionstendtowardsthelimit trajectoryM,,,,1 (long-dashedline).

spuriouscouplings, this is the only self-similar trajectoryfor that valueof s. Thus
the trajectories i~(T, s = s(00)) define a unique one-parameterfamily of field
theoriesM(00).

The RG flow of the C-function [14]

~ +0(s~) (3.6)

for the theory M(00) satisfies

C(O, O~)—c~=C(O+O0,O~)—c~..1+0(s
4), (3.7)

and in particular for integerk

C(k0
0,6~)= c~,_,,+ U(s

4),

C((k + ~ O~)= c~k— ~(cPk — cPkl) + 0(e~), (3.8)

by eq.(3.4). A step of this self-repeatingstaircasepatternfor severalvaluesof ~ is
shown in fig. 4, which was obtainedby numericalintegrationof eq. (2.9) ~.

* Eqs. (3.3) and(3.4) alsoindicatethepossibility that thereexistsa two-parameterfamily of trajectories

u~.,(r,f, f) with u~,(r,§, f) —~ ii~,,(r,f) as § —~0 and u~,(r,§, §) —. t2~,(r,§) as § —~ 0, their C-function
being a staircasepatternwhereall steps have approximatelythe samelength exceptthe stepat c,,,

which is shorter.
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The anomalousdimensionsxt’~,i.e. the eigenvaluesof the matrix

2~— y~(u~,)= 2~— + 2sc~
1u~+ 0(s2) (3.9)

show a very similar pattern. For example, the spectral flow associatedto the
secondsubdiagonalsof the Kac tablesatisfies

x~’~
2~(O+ 6~,o~)=xt~2n)(e, O~)+ 0(52),

+ O~,O~)= x~2”0(O,O~)+ U(s2), (310)

andin particularfor integerk

x’2~(k6() O~)=x~2k 2—2/© + 0(s2) (2k <n),

x”~2~(kO
0,~ =x~2k2+2~ + 0(52) (2k> —n), (3.11)

and similar equationshold for the otherfields.
Thus the field theoriesM(00) behaveunderRG transformationsin a strikingly

similar way to the one-parameterfamily of integrablesystemswith a singletype of
massiveparticlescharacterizedby the factorizableS-matrix [i]

sinh p — i cosh20(
S(p,O~)= . (3.12)

sinh p + i cosh2O~

written in terms of the Lorentz-invariantrapidity differencep. Sincethe self-simi-
larity (3.4) is unique to the theoriesM(00), we are lead to identify them with this
type of integrablesystem. It is plausible that the hopping trajectories i~,(T, s)

describeintegrablesystemssince the barelagrangian~ ~ is
of the form (1.3) with ti.,> 0 and~ > 0, but it is difficult to makesuch a statement
precise within the s-expansionsince these trajectories are non-renormalizable
about any minimal model M0.

The following scalingargumentindicates,however,that the lagrangian

~ Et~~ (3.13)

for the theories M(00) is precisely (1.3) for any value of p. We define the
dimensionlessscalingvariables

~I t°~’~ ,~l ~1 (3 14p pp’ p pp’
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where and are the crossoverexponents

(i) (i)

w~—---~---, ~w—---~-, (3.15)

with

4 4y ~(t.3) = 53 y(3.t) = — — (3 16)
p p p+1’ p p

The theory ~ has = 0 for i * (1, 3) and .~. = 0 for i * (3, 1), while for
any finite value of 0~,the theory M(0

0) must have irrelevant couplings

s~<<1 forO0>>1, (3.17)

since its ultraviolet behavior differs from M~,and relevant couplings

s~1 <<1 for 00>> 1, (3.18)

since its infrared behavior differs from M~— ~. There is an analytic mapping
between the two sets of couplings(3.17) and (3.18), which is just a coordinate
transformation on theory space [18]. The most relevant coupling s~±~of the set
(3.18) and the most irrelevant coupling s~ s~±1of the set (3.17) determine the
logarithmic scale intervals (the RG time intervals) in which the theory M(00) is

governedby the fixed pointsM~and M~_1,respectively:

exp(~0~) (5~T)l/Y/r>> 1, exp(~0~1) (5re~_1/Y~i>> 1. (3.19)

Zamolodchikov’s solution [1] of the thermodynamicBetheansatzequationsfor the
S-matrix (3.12) says that eq. (3.5) is valid beyond perturbation theory, i.e. =

= 00. This dictates

1 1
= — — (3.20)

irr rel
yp Yp_j

which can be satisfiedonly if tjr v.1) and t~± ~ andhencey = — 4,/p =

—y~1by eq. (3.16).Repeatingthe argumentfor p’ =p + 1 then fixes the form of
the lagrangian(1.3). Hence from the lagrangian point of view, the scale hoppingof
the theories M(00) is causedby an intricateinterplayof the relevantfield ~13) and
the irrelevantfield ‘1(3,l) underthe renormalizationgroup.

The scaling parameters~, ~ (with w~ w~’~= (p + i)/p) can be ex-
pressedby

s~=g”,~~exp(53000) (3.21)
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in terms of 00 and the dimensionlesscoupling constants

g~=t
0~e~~, ~ (3.22)

Here ~pp~1 and denote the crossover length scales of ~ and M0~1~,
respectively. Unlike the running couplings, g~and are measurable parameters
related to universalamplitude relations [13]. By comparingthe solution of the
thermodynamicBethe ansatzwith conformal perturbationtheory, they can be
computedto arbitrarily high accuracy[6,16]. To leadingorder in the s-expansion,
one obtains*

g0=~~= (13) +0(s
2). (3.23)

4. Phasecoexistenceand critical behavior

The integrability of the theories given by the lagrangian (1.3) should not depend

on the sign of the two coupling constants tj,, and t~.However,the behaviorof the
RGtrajectories and hence the long-distance structurecrucially dependson these
signs: the four one-parameter families of field theories

M~(s~)= M(0
0(s~)), M~(s~), M~(s~), M~(s~), (4.1)

labeledby the scalingparameters~,andthe signsof t~and t0~describethe system

in different thermodynamicphaseswhich we discussbelow. The qualitative RG
scenarioandthe resultingphasediagramin the (tn, ~0)-planeareshown in fig. 5.
As a function of the relevantparametertX,,, the systemundergoesa secondorder
phase transition whose exponents depend on the phase.

4.1. THE THEORIESM~

For ti,> 0 and ~,> 0, the solutions of the RG equationsare the self-similar
hoppingtrajectories~. Following such a trajectory down to M3 shows that also
t3 > 0; the systemis in a disordered high-temperature phase. As t~,,—s 0, these
trajectories come arbitrarily close to all fixed points ~ This implies that the
leading thermodynamic singularities are governed by the fixed points M~with
p’ ~<p,while the other fixed points contribute corrections to scaling. Exact critical
exponents for these theorieswill be reportedin a forthcomingpublication [23].

* Henceto this order, s~,coincideswith the parameters definedin eq.(3.2).
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I M~,1

~p-1

M~_2 Up—2

- (b)

(p—1)—phuse~ _____________

coexisferice \ ~/ fp—1 Z~/// ~

Fig. 5. (a)The RG flow in the vicinity of M0. A self-similar trajectory representingM~ (solid line)
visits all fixed points, trajectoriesrepresentingM~ or ~ (long-dashedlines)visit two fixed points,
and a trajectory representingM (short-dashedline) visits only one fixed point. (b) The resulting

phasediagramin the (ta, i~)-plane.

4.2. THE THEORIESM~

The trajectories for ti,> 0 and <0 are obtained by analytically continuing the
solutions ü~= (ü~,i5~)of regime Ito (ü.~,—~,)in the neighborhoodof M~~_1,
i.e. at times 0 < 0 <0~(s);thesesolutions are still evenunderRG time reversal
according to eq. (2.12) up to spurious couplings. At times 0 � 00(s), they approach
the trajectory M~~1generated by the integrable perturbation (1.1) of M~.1with

1 <0 which describes the system in a low-temperature region of p — 2 coexist-
ing phases.It is likely that this one-parameterfamily of solutionssharesthe same
infrared behavior.Hencethey arevery different from the self-similar trajectories:
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theycomecloseto only two fixed pointsM~andM~ ~andrun away in both time
limits,

u~(0,s) —* —~ as 0 —~ —~, u~1(0,s) —* —~ as 0 —~ +x. (4.2)

An orderedphaseabovethe critical “temperature”t~= 0 is not to be expected
for the continuum theory, but it does occur in regime IV of the ABF lattice model.
It is easy to show that the aboverenormalization-grouppictureindeedreproduces
the correct order parameter exponents known from the exact solution. The
behaviorof the trajectoriesindicatesthat the theoriesM(s~) arecharacterized
by two length scales,the crossoverscale ~ and the inverse mass ~. Their
asymptotictemperaturedependenceis given by

(4.3)

and

“-exp 00=t~e~=ç~©/©’~’, (4.4)

as follows from eqs. (3.21) and (3.16). For the leading singular behaviorof the
order parameters

~p,p~-i ‘ (4.5)
~p,p—1

we obtain therefore

(~l~ptn,n)) ~ (4.6)

with 1g(n.n) = ~ which is preciselyHuse’s result [20]. We concludethat the
theoriesM~ describethe ABF model in the scalingregion of regimeIV. This
explains the phasestructureas a consequenceof the sameinterplayof ~ and
4~3,tthat causesthe scalehoppingof the theories~

4.3. THE THEORIES~

For t~< 0 and ~,> 0, the trajectoriesareconjugateto thoseof M~ andin fact
just those of M

1 they describethe systemin the (p — 1)-phase coexistence
region. At times —0~(s)~ 0 ~ 0, they come close to the fixed point ~ the
trajectory M~±t,p’ and the fixed point M~at largetimes, theyrun away,

—s —~ as 0 —* —~, up —s —~ as 0 —s +oc. (4.7)
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The critical behavioras t,, —* 0 is governedby the fixed point M~,with corrections
to scaling due to the irrelevantoperator~p(31)~

4.4. THE THEORIESM/

For tj,, <0 and <0 (hence s > 0), one expectssolutions that are again
self-conjugate,u~(0,s) = —ü~(—0,s),anddescribethesystemin the(p— 1)-phase
coexistenceregion. They comeclose only to onefixed point M~,andrun away at
largetimes,

j7(l.3) —s —~ as 0—* —~, u~’3~—~ —‘~ as 0 —‘ +o~. (4.8)

The theoriesM shoulddescribethe ABF modelsin the scalingregionof regime
III. The critical behavioris governedby M~,but the correctionsto scaling areof

oppositesign comparedto the theoriesM~.

5. Discussion

We have studiedperturbationsof a minimal conformal field theory M~by a
linear combination of the scaling fields ~(1,3) and ~(3,1)~ This generatesfour
one-parameterfamilies of massive integrablefield theoriesM~(s

0),M~(s~),
M~(s~)and M~(s~),which are labeled by the signs of the two coupling
constantsand the dimensionlessscalingparametersi,, and describethe systemin
different phasesoff criticality.

The disorderedhigh-temperaturephasecorrespondsto the theories
which are related to Zamolodchikov’sscatteringtheory (3.12), and show a novel
behaviorunder the renormalizationgroup: the trajectoriescome close to many
fixed pointsM~for a certain RG time interval 0),/s~),whereafterthey hop to the
next fixed point M~.1.The correlationfunctionsof thesetheoriesare character-
ized by a multitude of crossoverlength scales~ ~ any two subsequentsuch
scaleshavethe sameratio ~p1,p2/~p,pt = e°°.

To leadingorderin an s-expansion,we haveshownthat the RG equationshave
indeeda uniqueone-parameterfamily of solutionswith this behavior,which is tied
to the simultaneouspresenceof relevantand irrelevant coupling constantswith
scaling dimensions of 0(s).

The theories M~(s~)andM~(s~)are argued to describe the scaling region of
the ABF lattice models in regime III and IV, respectively. It would be interesting
to studythe correctionsto scalingin theseexactlysolvedmodels.Are all non-ana-
lytic correctionsdue to irrelevant operatorsin the family of 4(3()? This would

severelyrestrictthe possiblelattice effects.And is it possibleto find lattice models
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with the leading irrelevant coupling of opposite sign, that would hence be in
Zamolodchikov’sphase?

I enjoyedhelpful discussionswith JohnL. Cardy,who also gave the manuscript
a critical reading,andwith ReinhardLipowsky.

Note added

After the draft of this paperhadbeencompleted,I receiveda copy of ref. [24],
where Zamolodchikov’s S-matrix for antiperiodicboundaryconditions is associ-
ated to the D seriesof minimal models. This issue deservesfurther study. The
lagrangiandescriptionsuggeststhat integrablesystemswith scalehoppingtrajecto-
ries shouldexist in the A and D series.
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