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Abstraet We develop a renormalized cantinuurn field theory for a directed polymer interacting 
with a random medium and a single extended defect. The renormalization group is based on 
the operator algebra of the pinning potentixl: it has novel features due to the breakdown of 
hyperscaling in a random system. There is a second-order Itansition between a localized and a 
delocalized phase of the polymer: we obtain analytic results on its critical pinning strength and 
scaling exponents. Our results are directly related to spatially inhomogeneous Kardar-Parisi- 
Zhang surface growth. 

Low-dimensional manifolds in media with quenched disorder are objects encountered in a 
large variety of different physical systems. Obvious examples are interfaces in disordered 
bulk media and random field systems [ 1,2] or magnetic flux lines in dirty superconductors 
[3], but there is also a deep connection to the problem of non-equilibrium surface growth 
[4 ,5 ]  and randomly driven hydrodynamics [6]. Furthermore, the theory serves as a simple 
paradigm for more complicated, fully frustrated random systems such as spin glasses [7]. 

A one-dimensional manifold in a random medium is a phenomenological continuum 
model for a (single) magnetic flux line in type-I1 superconductors with impurities [3, 141, 
where the flux line interacts with an ensemble of quenched poinr defects (represented by 
a random potential). In addition to these point impurities there may also be extended (e.g 
columnar or planar) defects in the system. Experiments that systematically probe the effect 
of this kind of impurities have recently become possible in high-temperature superconductors 
[SI. The statistics of the line configurations is governed by an energetic competition point 
defects tend to roughen the flux line; it performs large transversal excursions in order to take 
advantage of locally favourable regions. An attractive extended defect, on the other hand, 
suppresses these excursions and, if it is sufficiently strong, localizes the line to within a finite 
transversal distance CL. The two regimes are separated by a second-order phase transition 
where the localization length Cl diverges. In contrast to temperature-driven transitions, 
it involves the competition of two different configuration energies rather than energy and 
entropy and is hence governed by a zero-temperature renormalization group fixed point. 

The system is described by an effective Hamiltonian 

- V(r ,  t )  + p @ ( r )  

Here r ( t )  denotes the displacement vector of the flux line (also called directed polymer) 
in d’ transversal dimensions, as a function of the longitudinal ‘timelike’ coordinate t .  
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The random potential V(r ,  I). Gauss- distributed with V ( r ,  t )  = 0 and V(r,  t)V(r' ,  f') = 
2u2 6"(r - r')J(t - f'), models the quenched point disorder. Averages over disorder are 
denoted by an overbar, thermal averages by angular brackets (. . .). The last term in thc 
Hamiltonian describes the interaction with the extended defect. In this paper, we concentrate 
on columnar defects, @(I) = S"(r(f)) ,  but most of the results can straightforwardly be 
generalized to planar defects. 

This model gains additional interest, since it is related to non-equilibrium critical 
phenomena [9]. If Z(r,  t )  denotes the restricted partition sum over all paths ending at 
a fixed given point (r, t ) ,  the 'height field' h(r, f )  = f l - ]  log Z ( r ,  f )  obeys the evolution 
equation 

H Kinzelbach and M Liissig 
- 

ah h - = U V2h + - (Vh)' + V - p f ( r )  
a t  2 

with LJ = (2fl)-' and I = 1. This is the Kardar-Parisi-Zhang (KPZ) equation of directed 
surface growtht with an additional term describing a local inhomogeneity in the rate of 
mass deposition onto the surface. 

Quite a few authors have studied these models. Early numerical work for d' = 1 
indicates a delocalization transition at afinite defect strength pc [IO, 111. In other large scale 
simulations [12], however, it is found that arbitrarily weak defects localize the polymer for 
d' = 1, but a finite defect strength is necessary for d' =- 1. This result is supported by 
an approximate renormalization treatment for the problem on a hierarchical lattice [12], by 
scaling arguments [13], and by an approximate functional renormalization [14]. In [15] 
a Wilson-type renormalization is discussed, but its consistency is unclear. All of these 
approaches rely on non-systematic approximations; and the status of the transition has 
remained controversial. The problem has so far defied attempts at an exact solution even 
for d' = I, in contrast to the related problem of disorder-induced depinning from a rigid 
wall [IO, 161. However, in a recent paper [17], the mapping onto the KPZ equation (2) is 
exploited to construct a mode coupling approximation in d' = 1, which leads to results in 
agreement with ours. 

Our paper is devoted to a field-theoretic study of the delocalization transition. The 
large-scale behaviour of directed lines in a random potential (with p = 0) is governed by 
a zero-temperature renormalization group fixed poina with two basic exponents [2], the 
roughness exponent and the anomalous dimension of the disorder-averaged free energy 
-U, whose definitions are recalled in equations (3) and (4) below. In a first step, we 
construct the renormalized continuum field theory for the zero-temperature fixed point. 
We then take this theory as the starting point for a systematic perturbation theory in the 
pinning potential, involving an .+expansion with borderline dimension d' = 1. In contrast 
to standard cases like qb4-theory, here even the unperturbed system is a field theory with 
complicated multipoint correlation functions, due to the non-thermal averaging over the 
disorder. Nevertheless, two fundamental properties of the local pinning field O ( f )  can be 
obtained in terms of the exponents t and w :  (i) its scaling dimension and (ii) the form of its 
operator product expansion, see equations (8) and (10) below. These properties determine 
the renormalization group equations for the pinning strength to leading order, and hence 
the phase diagram of the system. We find a transition at p = 0 for d' < 1, and at a finite 

t The two basic exponents of the KPZ universality class for p = 0, the roughness exponent x and the dynamical 
exponent Z. are defined by (((h(O.0) - h(r, I ) ) ' ) )  - lrlZX f (lIr-:I), and are related to the polymer exponents by 
x = U / {  and r = l /<.  
$ This statement is true for any finite strength u2 of the disorder if d' 6 2, which is assumed in what follows for 
notational simplicity. 
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(non-universal) pinning strength pc for d' = 2. The renormalization may equivalently be 
carried out in the framework of the KPZ dynamics. equation (2). This is discussed at the 
end of this paper, together with some implications for inhomogeneous growth processes. 

In the unperturbed random system (for p = 0), the large-scale asymptotics of disorder- 
averaged correlation functions is due to the sample-to-sample fluctuations of the polymer 
groundstates, i.e. the paths of minimal energy [lS]?. Typical transversal excursions of the 
paths, given, e.g., by the two-point function 

A2(tl - 22) ( ( ~ ( 2 1 )  - r(t2))*) - It, - r2Izf (3) 
are characterized by the roughness exponent < [2]. It is larger than for thermal fluctuations, 
namely ( = 2/3 for d' = 1 and < F= 518 for d' = 2 (see, e.g., [5] and references 
therein). The exponent -U is the anomalous dimension of the disorder-averaged free 
energy F = -p-'logTrexp(-BX). whose universal part has the scaling form 

- 
- 
F ( T ,  R)  - T " F ( R / T ' )  (41 

in a finite system of transversal size R and longitudinal size T [2]. A 'Galilei' invariance 
enforces the relation w = 2 5  - 1 between these exponents (see, e.g., [18,21,5]). In 
an ordinary universality class governed by thermal fluctuations, the universal free energy 
is scale-invariant (i.e. o = 0), which implies a set of hyperscaling  relations^ 1221. Such 
relations are no longer valid for quenched averages. 

In the continuum theory (I), the large-distance scaling (3) and (4) is reached in a 
crossover from free thermal behaviour described by the Gaussian fixed point (U* = p = 0) 
on small scales. This crossover is parametrized by the effective strength u2p3 of the 
randomness and has the characteristic longitudinal length $11 = B ( u * ~ ~ ) - * / ( * - ~ ' ) .  The 
transversal displacement and the finite-size free energy have the form A2(t ,  p - ' ,  m2) = 
p- ' tD(t /$ ,J  and F ( T ,  R ,  @-I. U') = /?- 'F(T/pR*, T/gl,), respectively, with scaling 
functions that are finite in the limit t ,  T << &. In the opposite limit t ,  T >> gi, comparison 
with (3) and (4) exhibits the singular dependence of F and A2 on the 'bare' parameters p-' 
and d. We absorb these singularities into the definition of the renormalized quantities 
rR = (B/BR)'/*r and ;"R = (p/&)F with PR = g;"' (recall that w = 2 1  - 1). 
This also entails a renormalization of the defect. OR = ad'(rR) = (p /pR)-d ' /2@ and 
p R  = ( p / p ~ ) ' + ~ ' / * p .  The renormalized displacement function and free energy remain 
finite in the continuum limit + 0 (i.e. p- '  + 0 or u2 + m), and the renormalized 
temperature j3;' is an irrelevant coupling constant of dimension -w. This is why the 
renormalized theorymay be called a zero-temperature fixed point. The existence of a zero- 
temperature continuum limit is crucial if the ensemble of ground states generated by the 
quenched disorder is to have universal features. 

The crossover respects the Galilei invariance. I n  particular, the connected displacement 
function can be shown to equal that of the Gaussian theory [18,21] 

 ti) - r(t2))2)c - p-' - t ~ i .  (5)  
This equation takes the identical form in renormalized variables. Hence at zero temperature, 
the full renormalized displacement function A i  equals its thermally disconnected part 
(rR(rZ) - rR(tl))?; the connected part (5 )  is a correction to scaling.obtained by expanding 
the renormalized crossover, form A i ( ? ,  = ltI2<fi(&'t-"') in the temperature p i ' ,  

A;(Z,  p i ' )  = jt12t + EP;' /r/?<-"' + . . . . (6) 

t In the framework of the continuum theory, one can show that two independent paths of minimal energy in B 

given sample occur with probability 0. Related questions are discussed in [I91 and on the lzttice in [ZO]. 
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The zero-temperature continuum field theory serves as the point of expansion for a 
perturbative renormalization of the defect problem along the lines of [23]. The variables 
rR, FR, &, *R, p~ now take the role of bare fields and couplings, and we drop the subscript. 
The universal part of the disorder-averaged free energy density 7 limr,m aTF in a 
system of transversal size R 

- 
Lc can be expanded in powers of the defect strength 

f ( p ,  L )  - T(0, L )  = Iim a, log 
- 

T+CC 

The scale L acts as infrared cutoff and will generate the renormalization group flow. 
A weak defect potential distorts the minimal energy paths of the unperturbed system; 

the dominant paths reorganize exploiting the low-lying excitations. The statistics of these 
excitations is encoded in the connected correlation functions of the local pinning field 4(t) 
at the disorder fixed point that appear in (7). To derive the renormalization group equation 
for the defect strength, we now - have to study the short-distance structure of these objects. 

The one-point function (40)) gives the probability density that at time t ,  the polymer 
is at the origin r = 0, averaged over thermal and disorder fluctuations. In the limit T + 00 
and with periodic boundary conditions in the transverse direction, one has by translational 
invariance - 

(a@)) = L-' with x = d'< (8) 
where the exponent x is the scaling dimension of the field 4 at the disorder fixed point. 

The full multipoint correlation functions (O(t1). . . @(tm)) give the probability density 
that a (single) path crosses the line r = 0 at given times t l , .  . . , tm. To discuss their 
short distance properties, specifically consider the two-point function F(t l )4 ( f2 ) )  for 
Itl - tzl << L. In this limit, it depends on the infrared cutoff as L-x, i.e. - in the same 
way as the one-point function (8). Hence asymptotically, it factorizes into (4(tl)) and the 
L-independent 'return probability' to the origin (which is simply the inverse spread of the 
paths - A(t)-d' given by (6)) 

Again the leading singularity is due to sample-to-sample fluctuations of the minimal energy 
paths, while the correction. term is due to thermal fluctuations around these paths. At zero 
temperature, the field 4(t) can be replaced by its thermal expectation value (a(?)); hence 
(@(t1)4(rz)) equals its thermally disconnected part ( @ ( t 1 ) ) ( 4 ( t 2 ) )  t and the connected part 
(4( t l )  4 ( t z ) ) C  vanishes, just as the connected displacement function (5) does. Only the 
subleading singularity survives in (a(?]) @ ( t ~ ) ) ~ :  An analogous argument applies to the 
singularities in any correlation function (. . . @(t)4( t ' )  . . .) as It - t'l + 0. Therefore the 
relation 

@(t )@( t ' )  - c p - ' I t  - ~' l - ' -~ o(r) (10) 
(with a constant c > 0) is valid as an operator identity, i.e. inserted in an arbitrary connected 
comelation function (. . . 4 ( r ) @ ( t r ) .  . .)". The notion of an operator algebra that encodes 

t This equality uses the uniquenesa of the minimal energy path in a given sample[19.20]. In systems with 
such paths that me degenerate, the disconnected parl (@( t l ) ) (@( lz ) )  receives an additional contribution at zero 
temperature from configurations with one path crossing r = 0 L time 11 and mother one at time (2. However. 
this contribution is expected to s a l e  as m2 and hence to be non-singulaf in the limit 12 -+ 11. Hence the leading 
singularity of ( @ ( f i ) @ ( r z ) ) c  is still given by (IO). 
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the universal short-distance properties of correlation functions is familiar in field theoryt. 
The new feature of (10) is that the leading singularity is governed by a correction-to-scaling 
exponent. This is a consequence of the breakdown of hyperscaling at the disorder fixed 
point. 

The operator algebra (10) dictates the leading ultraviolet singularities of the integrals 
in (7). Analytically continued to arbitrary d', they show up as poles in 

(11) E(d') E 1 - X - 0 = 2 - (d' -I 2)c (d ' ) ,  

which serves as expansion parameter. Inserting equations (8) and (10) in (7), we find to 
second order that 

(12) 

where w = pL' is the dimensionless defect coupling. The pole in E can he absorbed 
into a renormalized coupling W = Z ( W ) w  with Z ( W )  = 1 - (c /E)W + O(Wz)). The 
renormalization group flowf 

f(p,L)-f(0,L)=L-c~(W-~-W2)fO(W C 3 ,E 0 2  W ) .  
-~ 

E 

La'W = EW - Cw2 + 0 (w3) (13) 
determines the large scale behaviour of the perturbed system. For E > 0, i.e. ford' c 1, the 
perturbation is relevant: for any attractive bare defect potential, the renormalized coupling 
is driven towards large attractive values. Hence the flux line is localized by an arbitrary 
weak attractive columnar defect. The localization length diverges as 51 - IpI-"l with 
VI = < / E  when the defect strength approaches zero from below. In the borderlinedimension 
d' = 1 an attractive defect potential is marginally relevant: the line is still localized by an 
arbitrary weak columnar defect, hut with an essential singularity in the localization length 

1, a weak defect is an irrelevant perturbation. The transition 
to a localized state now takes place at afinite critical strength pc (which however depends 
on the microscopic scales of the system and is hence non-universal). It is governed by 
the non-trivial fixed point W* = E / C  -= 0 of (13). Close to the transition, the localization 
length diverges as 61 - Ip - pcI-"I, where UL = c/y' and y* is given by the E-expansion 
y* = -E  + 0 ( E 2 ) .  

Additional insight into this problem may be gained by the mapping onto the KPZ 
equation (2) .  From this stochastic equation, one constructs in a standard way the generating 
functional Trexp(-S[h, h ] )  of the dynamic correlation functions (denoted by {(. . .))) in 
terms of the height field h and the 'conjugate' field i; [25] .  Insertions of this field generate 
response functions, e.g. ((h(r, t )  l l , ;(rj, t j ) ) )  = {{Sh(r. t)/i7$ V(r j ,  t j ) ) ) .  The local defect 
in the rate of mass deposition leads to a term SI = p l d t h ( 0 .  t )  in the dynamic action, 
the analogue of the defect term in (1). The disorder-averaged free energy density f ( p ,  L )  
equals (minus) the stationary growth velocity v ( p ,  L )  = ( (a ,h))(p,  L) .  The excess growth 
rate caused by the defect can be calculated perturbatively about the KPZ fixed point 

h - exp(2/3clWI). 
For E c 0. i.e. for d' 

Equating this series term by term with (7), we obtain 

t For example, lhe algebra of lhe pinning field at the Gaussian fixed poinl, which is relevant to temperature-driven 
unbinding transitions, reads a(r)o(f') - I f  - r ' l p O ( f )  + . . . with XI, = d'J2. See L231. 
$ Further primitive singulxities a~ expected at higher orden in the perturbation expansion: hence in contrast to 

!hemal depinning 1'241, the flow equation does not terminate B this order. 
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and - a resulting flow equation that is identical with (13). From (13, we identify p Q ( t )  with 
h(0, t). which hence is a field of scaling dimension Y = x + o. Equation (IO) then yields 
without further calculation the short-distance algebra 

;CO, t)i;(o, r') - c I C  - (16) 
Its leading singularity is no longer a correstion-to-scaling exponent; the peculiarity of the 
correlation functions written in terms of the h fields is rather that they have to be computed in 
the non-trivial 'vacuum' state h(r, t ) .  This makes the non-unirurity of this theory manifest, 
which is generated by the averaging over disorder. We note that the form of the operator 
algebra (16) also follows from the mode coupling approach of 1171 for d' = 1. 

In the thermodynamic limit L --f CO, the stationary growth velocity becomes 
independent of p for p > pc but increases with decreasing p for p < pe (i.e. for sufficiently 
strong excess mass deposition at the origin), as follows from the mapping onto the polymer 
free energy density. In one dimension, the surface has an approximately triangular stationary 
profile H ( r )  = ({h(r, f))) - ut in the phase of enhanced growth, p < 0 [9]. From a 
simple scaling argument, we obtain that for (L(W) < Lr, the excess velocity scales as 
(u(W, L )  - u(0, L)) - (~-l+u)'c - exp(2/3cW). The same essential singularity shows 
up in the slope [aH/arl - ( u ( w ,  L) - u(0, L))'/*. The response function has the form 
{{h(r, r)L(rl, f l ) ) )  = t;lG(rl/c~) for i -+ CO and r, $1 << R. All of these quantities are 
accessible in numerical simulations which could provide a useful test of the results discussed 
in this paper. 

In summary, we have shown that a class of field theories with quenched randomness 
shares with conventional field theories the notion of a short-distance algebra of its scaling 
operators. That is the basis of a renormalization group which we believe to be applicable 
quite generically to perturbed random systems. 

H Kinzelbuch and M Liissig 

Z(O, t ' )  + . . . . 
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