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Abstract. We develop a renormalized continuem field theory for a directed polymer interacting
with a random medium and a single extended defect. The renormalization group is based on
the operator algebra of the pinning potential; it has novel features due to the breakdown of
hyperscaling in a random system. There is a second-order transition between a localized and a
delocalized phase of the pelymer; we obtain analytic results on its critical pinning strength and
scaling exponents. Qur results are directly related to spatially inhomogeneous Kardar—Parisi-~
Zhang surface growth.

Low-dimensional manifolds in media with quenched disorder are objects encountered in a
large variety of different physical systems. Obvious examples are interfaces in disordered
bulk media and random field systems [1,2] or magnetic flux lines in dirty superconductors
[3], but there is also a deep connection to the problem of non-equilibrium surface growth
[4, 5] and randomly driven hydrodynamics [6]. Furthermore, the theory serves as a simple
paradigm for more complicated, fully frustrated random systems such as spin glasses [7].
A one-dimensional manifold in a random medium is a phenomenological continuum
model for a (single) magnetic flux line in type-II superconductors with impurities [3, 14],
where the flux line interacts with an ensemble of quenched poins defects (represented by
a random potential). In addition to these point impurities there may also be extended (e.g
columnar or planar) defects in the system. Experiments that systematically probe the effect
of this kind of impurities have recently become possible in high-temperature superconductors
[8]. The statistics of the line configurations is governed by an energetic competition: point
defects tend to roughen the flux line; it performs large transversal excursions in order to take
advantage of locally favourable regions. An attractive extended defect, on the other hand,
suppresses these excursions and, if it is sufficiently strong, focalizes the line to within a finite
transversal distance &,. The two regimes are separated by a second-order phase transition
where the localization length &) diverges. In contrast to temperature-driven transitions,
it involves the competition of two different configuration energies rather than energy and
entropy and is hence governed by a zero-temperature renormahzatlon group fixed point.
The system is described by an effective Hamiltonian

1 /dr\? | |
H=fdt{§(a) —Vir)+pd)t. (1)

Here r(#) denotes the displacement vector of the flux line (also called directed polymer)
in &' transversal dimensions, as a function of the longitudinal ‘timelike’ coordinate ¢.
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The random potential V{r, ), Gauss-distributed with V{r,) = 0 and V{r,)V{, 1) =
20284 (r — r)8(t — t'), models the quenched point disorder. Averages over disorder are
denoted by an overbar, thermal averages by angular brackets {---). The last term in the
Hamiltonian describes the interaction with the extended defect. In this paper, we concentrate
on columnar defects, ®(r) = 3¢ (r(r)), but most of the results can straightforwardly be
generalized 1o planar defects.

This model gains additional interest, since it is related to non-equilibrium critical
phenomena [9]. If Z(r,#) denotes the restricted partition sum over all paths ending at
a fixed given point (7, 2), the *height field” h(r,7) = B~'log Z(r, ) obeys the evolution
equation

% = v Vh + -i— (VY +V = p3¥(r) 2)
with v = (28)~! and A = 1. This is the Kardar—Parisi-Zhang (KPZ) equation of directed
surface growtht with an additional term describing a local inhomogeneity in the rate of
mass deposition onto the surface.

Quite a few authors have studied these models. Early numerical work for 4" = 1
indicates a delocalization transition at a finite defect strength p; [10, 11]. In other large scale
simulations [22], however, it is found that arbjtrarily weak defects Iocalize the polymer for
d’ = 1, but a finite defect strength is necessary for ¢’ > 1. This result is supported by
an approximate renormalization treatment for the problem on a hierarchical lattice [12], by
scaling arguments [13], and by an approximate functional renormalization [14}. In [15]
a Wilson-iype renormalization is discussed, but its consistency is unclear, All of these
approaches rely on non-systematic approximations; and the status of the transition has
remained controversial. The problem has so far defied attempts at an exact solution even
for 4’ = 1, in contrast to the related problem of disorder-induced depinning from a rigid
wall {10, 16]. However, in a recent paper [17], the mapping onto the KPZ equation (2) is
exploited to construct a mode coupling approximation in d' = 1, which leads to results in
agreement with ours.

Our paper is devoted to a fleld-theoretic study of the delocalization transition. The
large-scale behaviour of directed lines in a random potential (with p = ) is governed by
a zero-temperature renormalization group fixed point] with two basic exponents [2], the
roughness exponent ¢ and the anomalous dimension of the disorder-averaged free energy
—w, whose definitions are recalled in equations {3) and (4) below. In a first step, we
construct the renormalized continuum field theory for the zero-temperature fixed point.
We then take this theory as the starting point for a systematic perturbation theory in the
pinning potential, involving an g-expansion with borderline dimension ¢’ = 1. In contrast
to standard cases like ¢*-theory, here even the unperturbed system is a field theory with
complicated multipoint correlation functions, due to the non-thermal averaging over the
disorder. Nevertheless, two fundamental properties of the local pinning field ${t) can be
obtained in terms of the exponents ¢ and w: (i} its scaling dimension and (ii) the form of its
operator product expansion, see equations (8) and (10) below. These properties determine
the renormalization group equations for the pinning strength to leading order, and hence
the phase diagram of the system. We find a transition at p = 0 for &’ < 1, and at a finite

t The two basic exponents of the kpz universality class for o = 0, the roughness exponent x and the dynamical
exponent z, are defined by ({(4(0, 0) — A{r, L)) ~ |r|2% £(Jtr~%]), and are related to the polymer exponents by
x =@/t and z = 1/¢. .

t This statement is true for any finite strength o2 of the disorder if 4’ € 2, which fs assumed in what follows for
notational simplicity.
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(non-universal) pinning strength p, for &’ = 2. The renormalization may equivalently be
carried out in the framework of the XPZ dynamics. equation (2). This is discussed at the
end of this paper, together with some implications for inhomogeneous growth processes. -

In the unperturbed random system (for p = 0), the large-scale asymptotics of disorder-
averaged correlation functions is due to the sample-to-sample fluctuations of the polymer
ground states, i.e. the paths of minimal energy [183f. Typical transversal excursions of the
paths, given, e.g., by the two-point furiction

Al — ) ={(r(ty) — r(2)) ~1h —a|* (3)

are characterized by the roughness exponent { [2]. It is larger than for thermal fluctuations,
namely ¢ = 2/3 for d' = 1 and ¢ = 5/8 for & = 2 (see, e.g.,, [5] and references
therein). The exponent —w is the anomalous dimension of the disorder-averaged free
energy ¥ = —fB~'log Trexp(—BH). whose universal part has the scaling form

F(T,R) ~ T F(R/TY) . (4)

in a finite system of transversal size R and longitudinal size T [2]. A ‘Galilei’ invariance
enforces the relation w = 2¢ — 1 between these exponents (see, e.g., [18,21,5]). In
an ordinary universality class governed by thermal fluctvations, the universal free energy
is scale-invariant ({.e. @w = (), which implies a set of hyperscaling relations [22]. Such
relations are no longer valid for quenched averages.

In the continuum theory (1), the large-distance scaling (3) and {4) is reached in a
crossover from free thermal behaviour described by the Gaussian fixed point (o2 = p = 0)
on small scales. This crossover is parametrized by the effective strength o283 of the
randomness and has the characteristic longitudinal length & = B(c28°)"%@). The
transversal displacement and the finite-size free energy have the form AZ(z, 87!, ¢%) =
B8t D(t/E) and F(T.R, 57" ¢%) = B~'F(T/BR® T/E,), respectively, with scaling
functions that are finite in the limit ¢, T < £,. In the opposite limit #, T > ,, comparison
with (3) and (4) exhibits the singular dependence of F and A? on the ‘bare’ parameters g~
and o2. We absorb these singularities into the definition of the renormalized quantities
rR = (B/Br)'*r and Fr = (B/Br)F with fr = E ¢ (recall that = 27 — 1).
This also entails a renormalization of the defect, g = &% (rg) = (B/Br)"4/*® and
pr = (B/Br)'*¥/2p. The renormalized displacement function and free energy remain
finite in the continuum limit &, — 0 (ie. 8~ — 0 or 62 = ©0), and the renormalized
temperature Bg ' js an irrelevant coupling constant of dimension —ew. This is why the
renormalized theory may be called a zero-temperature fixed point. The existence of a zero-
temperature continuum limit is crucial if the ensemble of ground states generated by the
quenched disorder is to have universal features.

The crossover respects the Galilei invariance. In particular, the connected displacement
function can be shown to equal that of the Gaussian theory [18,21]

{(r(ty) — r(@)?) ~ M0 ~nf . (5}
This equation takes the identical form in renormalized variables. Hence at zero temperature,
the full renormalized displacement function A% equals its thermally disconnected part
(rr(t2) — re{t))?; the connected part (3) is a correc_gion to scaling obtained by expanding
the renormalized crossover form A%(r, B by = s DBy L=y in the temperature 8 !

ARG B = 11+ EB e T4 (6)

{ In the framework of the continuum theory, one can show that two independent paths of minimal energy in a
given sample occur with probability 0. Related questions are discussed in [19] and on the Jattice in [20).
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The zero-temperature continuum field theory serves as the point of expansion for a
perturbative renormalization of the defect problem along the lines of [23]. The variables
rs Fr, Br, Pr, pr now take the role of bare fields and couplings, and we drop the subscnpt
The universal part of the disorder-averaged free energy density 7 = limro 87 F in a
system of transversal size R = L¢ can be expanded in powers of the defect strength

Flo.1) = FO, L) = =8~ Jim arlog (exp[—ﬁp [ cb(r)D

=53 (‘if) f 8ty - At (D)D) - DG - ™

The scale L acts as infrared cutoff and will generate the renormalization group flow.

A weak defect potential distorts the minimal energy paths of the unperturbed system;
the dominant paths reorganize exploiting the low-lying excitations. The statistics of these
excitations is encoded in the connected correlation functions of the local pinning field & ()
at the disorder fixed point that appear in (7). To derive the renormalization group equation
for the defect strength, we now have to study the short-distance structure of these objects.

The one-point function (P (r)) gives the probability density that at time ¢, the polymer
is at the origin r = Q, averaged over thermal and disorder fluctuations. In the limit T — co
and with periodic boundary conditions in the transverse direction, one has by translational
invariance

[o@))=L* with x=d't 8)

where the exponent x is the sealing dimension of the field @ at the disorder fixed point.

The full multipoint correlation functions {(t;) - -- ®(1,,)} give the probability density
that a (single) path crosses the line r = 0 at given times f4,...,2,. To discuss their
short distance properties, specifically consider the two-point function {®(t;)®(t;)} for
|ty — 2| < L. In this limit, it depends on the infrared cutoff as L™, ie. in the same
way as the one-point function (8). Hence asymptotically, it factorizes into (P (r;)) and the
L-independent ‘return probability’ to the origin {which is simply the inverse spread of the
paths ~ A()~¢ given by (6))

(PP~ |1 - ;2_|""‘(1 -7 —n]™ Ty Hem)). ©

Again the leading singularity is due to sample-to-sample fluctnations of the minimal energy
paths, while the correction term is due to thermal fluctuations around these paths, At zero
temperature, the field ©(¢) can be replaced by its thermal expectation value ($(#)}; hence
(®(t1)P(#2)} equals its thermally disconnected part (®(£)){P(#2)) T and the connected part
(®(#1) @(22))° vanishes, just as the connected displacement function (5) does. Only the
subleading singularity survives in (®(4) ®{2))°. An analogous argument applies to the
singularities in any correlation function {--- ()&} ---) as |t — ¢’} = 0. Therefore the
relation

BEOE) ~c B e = [TV 0 () (10)

(with a coastant ¢ > 0) is valid as an operator identity, i.e. inserted in an arbitrary connecred
correlation function (.- @(r)P (2"} ---)*. The notion of an operator algebra that encodes

t This equality uses the uniqueness of the minimal energy path in a given sample[}9,20]. In systems with
such paths that are degenerate, the disconnected part ((r1)}(P®(2)) receives an additional contribution at zero
temperature from configerations with one palh crossing r = 0 at time £; and another one at time . However,
this contribution is expected 10 scale as (tb} and hence to be non-singular in the limit 2 — #;. Hence the leading
singularity of (P (¢ }P{r2))° is still given by (10).
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the universal short-distance properties of correlation functions is familiar in field theorvt.
The new feature of (10) is that the leading singularity is governed by a correction-to-scaling
exponent. This is a consequence of the breakdown of hyperscaling at the disorder fixed
point,

The operator algebra (10) dictates the leading ultraviolet singularities of the integrals
in (7). Analytically continued to arbitrary d’, they show up as poles in

ed=1—-x—-w=2-d+2)td", (1D

which serves as expansion parameter. Inserting equations (8) and (10) in (7), we find to
second order that

Fo, L) - F(0, L) = L™(@) (w ~Zw ) +0(w?, fw?) (12)

where w = pL? is the dimensionless defect couphng. The pole in & can be absorbed
into a renormalized coupling W = Z(W)w with Z(W) = 1 — (¢/e)W + O(W?). The
renormalization group flow}

LW =eW —cW?2+0(W?) (13)

determines the large scale behaviour of the perturbed system. For e > 0, 1.e. ford’ < 1, the
perturbation is relevant: for any attractive bare defect potential, the renormalized coupling
is driven towards large attractive values. Hence the flux line is localized by an arbitrary
weak attractive columnar defect. The localization length diverges as & ~ [p|™ with
vy = ¢ /e when the defect strength approaches zero from below. In the borderline dimension
d' =1 an attractive defect potential is marginally relevant: the line is still localized by an
arbitrary weak columnar defect, but with an essential singularity in the localization length
§1. ~exp(2/3c|W]).

Forez < 0, i.e. for d" > 1, a weak defect is an irrelevant perturbation. The transition
to a localized state now takes place at a finife critical strength p, (which however depends
on the microscopic scales of the system and is hence non-universal). It is governed by
the non-trivial fixed point W* = ¢/c < 0 of (13). Close to the transition, the localization
length diverges as £) ~ |p — pc| ™, where vy = ¢/¥y* and y* is given by the g-expansion
y* = —& + O(s%).

Additional insight into this problem may be gained by the mapping onto the KPZ
equation (2). From this stochastic equation, one constructs in a standard way the generating
functional Trexp(—S[h, A1) of the dynamic correlation functions (denoted by {---}) in
terms of the height field # and the ‘conjugate’ field 3 [25]. Insertions of this field generate
response functions, e.g. {A(r, ) I h(rj,t W = (8 h(r.t)/T, 8 V(ry, 1;)}}. The local defect
in the rate of mass deposition leads toaterm §; = p [dt h(O, t) in the dynamic action,
the analogue of the defect term in (1). The disorder-averaged free energy density f(p, L)
equals {minus) the stationary growth velocity v{p, L) = (8,;h)(p, L). The excess growth
rate caused by the defect can be calculated perturbatively about the KPZ fixed point

v(p, L) = lim 37 <(h(r, T)exp[-p f ot k{0, z)})). (14)
Equating this series term by term with (7), we obtain
! @@m) -~ B = lim (h(r, TIAO, £1) -~ R0, tn)) (1s)

i For example, the algebra of the pinning field at the Gaussian fixed point, which is relevant to temperature-driven
unbinding transitions, reads D)D"y ~ ¢ — '|7OD() + .- - with x = J’ /2. See [23].

I Further primitive singularities are expected at higher orders in the perturbation expansion; hence in contrast to
thermal depinning [24], the flow equation does not terminate at this order,
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and a resulting flow equation that is identical with (13) From (15), we identify S& () with
h(O t), which hence is a field of scaling dimension X = x -4 ©. Equation (10) then yields
without further calculation the short-distance algebra

RO, RO, ~cle — T F RO, Y +--- . (16)

Its leading singularity is no longer a correction-to-scaling exponent; the peculiarity of the
correlation functions written in terms of the 7 fields is rather that they have to be computed in
the non-trivial ‘vacunm’ state hfr, £). This makes the non-unitarity of this theory manifest,
which is generated by the averaging over disorder. We note that the form of the operator
algebra (16) also follows from the mode coupling approach of [17] for d' = 1.

In the thermodynamic limit L — oo, the stationary growth velocity becomes
independent of p for p > p. but increases with decreasing p for p < p. (i.e. for sufficiently
strong excess mass deposition at the origin), as follows from the mapping onto the polymer
free energy density. In one dimension, the surface has an approximately triangular stationary
profile H(r) = {{h(r,2)}} — vt in the phase of enhanced growth, p < 0 [9]. From a
simple scaling argument, we obtain that for &, (W) < LY, the excess velocity scales as
(w(W,L) —v(0, L)) ~ §(_'+w)/ ;. ~ exp{2/3¢W). The same essential singularity shows

up in the slope [8H /Br] {(v(W, L) — v(0, L))*/%. The response function has the form
{hir, r)h(r[,rl)) = §J_ G(ri/§.) for t = oo and r, &; &« R. All of these quantities are
accessible in numerical simulations which could provide a useful test of the results discussed
in this paper.

In summary, we have shown that a class of field theories with quenched randomness
shares with conventional field theories the notion of a short-distance algebra of its scaling
operators. That is the basis of a renormalization group which we believe to be applicable
quite generically to perturbed random systems.
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