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Directed polymers in high dimensions
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We study directed polymers subject to a quenched random potent@ltiansversal dimensions. This
system is closely related to the Kardar-Parisi-Zhang equation of nonlinear stochastic growth. By a careful
analysis of the perturbation theory we show that physical quantities develop singular behades 4o1-or
example, the universal finite-size amplitude of the free energy at the roughening transition is proportional to
v4—d. This shows that the dimensiothi=4 plays a special role for the Kardar-Parisi-Zhang problem.
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I. INTRODUCTION which defines the roughening expongntand the dynamic
exponentz. For g#0 these exponents satisfy the relation

The field of nonequilibrium growth processes has at-z+ y=2 [3].
tracted quite a lot of interest in the recent pdt The sim- In the strong coupling phase it is known that 3/2 in
plest nonlinear model describes a growing surface on suffid=1 [4] andz=2 in the limit of infinite dimensior{5]. In
ciently large length scales as a height profilg,t) over a  general dimensions all exact methods fail and only numerical
d-dimensional reference plane parameterized bfhe dy- and mode-coupling results are available, but they become
namics of this surface is given by the Kardar-Parisi-Zhandess reliable in higher dimensions. Therefore there is still a
[2] (KPZ) equation very controversial discussidé—10] about the existence of a

finite upper critical dimension of the KPZ problem, i.e., a
9 1 dimension above which the dynamical exponentas the
Sin=vAh+ E)\(Vh)2+7l (1) constant value 2.

In the language of the renormalization group, the different
phases belong to different fixed points. For less than two
dimensions, there is one unstable fixed poing&t0, which

governs the weak coupling phase, and one stable fixed point
p(r,t)=0 and 75(r,t)y(r’ ,t')=c28%r—r")s(t—t"). atg— — o, which governs the strong coupling phase. Above
(2 two dimensions, the weak coupling fixed point also becomes
stable and a new fixed point describing the roughening tran-
The surface described bfl) can be in different phases, sition appears in between the other fixed points.

with a Gaussian white noise defined by

which depend on the dimensionless coupling constant It has been showiill] that the strong-coupling fixed
point is inaccessible by a perturbation expansion around
A2g2 g=0. The situation is somewhat better for the fixed point
g=- 2,3 ©) describing the roughening transition. The singularities that

arise in the perturbation series above two dimensions can be

] ] ] ] treated in a systematic expansidi2,13 with parameter
and the space dimensiah In less than two dimensions there

are two different phases: the weak coupling phaseyfel0 2—d

and the strong coupling phase fg#= 0. Above two dimen- €= —5 - (4)
sions, there exists a critical valgg . The surface is in the

weak coupling phase fdg|<g. and in the strong coupling |n the framework of thise expansion, one finds the expo-
phase fog|>g.. Precisely afg|=g. the system undergoes npentsz*=2 and y* =0, which are exact to all orders in

a roughening transition. Whereas the linear growth equatioperturbation theory11].

for g=0 can easily be solved in any dimension, it is much  However, this perturbation expansion breaks down for
more difficult to get information on the critical behavior of 4,4 since new singularities in the perturbation series arise

the other phases. at €' =0, where
The morphology of the surface in the different phases is
characterized by the asymptotic scaling of the height- , 4—d
correlation function €=etl=—. )
([n(ry,t)—h(r,,t) 12~ r —ro|2XF (t|ri—r, 73, The treatment of these singularities is the aim of this paper.

We develop a systematic way to extract the behavior of
physical quantities ad—4 from the divergent series ia'.
*Electronic address: Bundschuh@mpikg-teltow.mpg.de We show that in contrast to the singularitieseinthese sin-
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gularities translate into a nonanalytic behavior of observable L1 N N
guantities. This stresses the importance ef4 for the tran-  H[rq, ... I'\]= > Z riz(t)+g2 o(ri(t) —rj(t))dt.
sition fixed point of the KPZ problem. 0 =1 1<

We will address this question not in the KPZ picture but
by using the exact Hopf-Cole mappif@4,15 of the KPZ By (3), the potential is always attractivgj€0); it captures
problem to a directed polymer in a random medium. A di-the short-ranged correlations of the disor@@y
rected polymer is a line with a preferred direction that is The finite-size amplitudé7) of the free energy per unit
governed by its line tension. The energy of a given confor-‘time” of the random system can then be obtained from the
mation is limit N—O of the finite-size amplitude per unit “time” and

per pair of directed polymers

Ly 1. v2|g|
H[r]=fo [Efz(t)ﬂLTn(r(t),t) dt, (6) 2 L
C(g’L’N)_mllm"W“L_H
wherer (t) is ad-dimensional vector, which denotes the lat- X[F(g,L,N,L;)~F(O.L,N,L )]

eral displacement of the directed polymer at a position along
the preferred“time” ) axist, L is the projected length of

the directed polymer, ang is the random potential that ap-
pears in the KPZ equation. Heteaalready has been rescaled

of the N-polymer system without randomness.
The development of a perturbative regularization scheme
' . : ear four dimensions is done in two steps. First, we use
such that the first term has a dimensionless prefactor q?]dependent methodéhe transfer matrix approach and the

1/2. : : ;
To study the structure of the new singularities in the per_resummatlon of the perturbation sejids solve the two-

turbation series, we will use an especially simple physicaPOlyrner problem exactly. Those methods are reviewed and

quantity. We nevertheless expect that more complicateSXtended to our system with a transversally restricted move-

guantities such as correlation functions show the same typré1ent in Secs. Il A and II B of this paper. Second, we extract

of singularities. In a system where the projected lerigtif regularization ru!es from this exact solution. It is sho_vvn that
; e S only the most divergent terms in every order contribute to
the directed polymer is infinite while its transversal fluctua-

tions are restricted to a finite volume of width =L 22, we the leading behavior of physical qu_antltles. Third, we .apply
' . . tpose rules to the case of an arbitrary number of directed
define the dimensionless averaged free energy per unj : ; .
gt polymers in Sec. Ill, which can only be solved exactly in one
time . : ! : : .
dimension[18]. A diagrammatic expansion of the partition
L function and of the free energy is developed. Due to many
c(g,.L)=lim, _.—[F(g,L,L)—FOLLD]. (7 simplifications, we are able to extract the main properties of
=L the B function [defined in Eq(39) below] from the general
structure of the perturbation series. In particular, the critical

The infrared regularization by the length scalehas to be finite-size amplitudeC* (), which is proportional to the
introduced, because the series expansion starts at the Gauggntrivial root of thats function, is found to have a singu-

ian fixed point g=0), which has no intrinsic length scale. |arity

L moreover serves as the flow parameter of the renormaliza-

tion group considered below. C* ()~ e’ 10
At the roughening transition hyperscaling is preserved at ()~ e’ (10

least around two dimensiofd.1]. Therefore there are no

corrections to the 12 =1/L behavior of the free energy per

unit lengthF(g,L,L))/L;, and the finite-size amplitude

near four dimensions. Since this behavior is independent of
the replica numbeN, it should remain valid in the random
limit N—O. In Sec. IV, the main results are summarized
again. Many of the technical details have been postponed to

C(g)zLIime(g,L) ®  various appendices to keep the route of argumentation
N straight.
is a universal quantity. Near= 2, one find411] for its value
C* at the unbinding transition [l. TWO DIRECTED POLYMERS
C* (€)~ e+ O(€). ) The problem of two directed polymerdNE2) is espe-

cially simple, since one can separate it in the free movement

. . : .. of a “center of mass” (;+r,)/2 and the movement in the

C is not pnly one of the simplest physical quantities to berelative coordinaté=r,—r;. In the relative coordinate the
calculated in our system, but also one of the most fundamery, qjtiq probability fronr’ to r within the projected con-
tal ones: it plays a role very similar to the central charge in,
two-dimensional conformal mode[47].

The directed polymer problem with randomness describe
by (6) can be treated analytically via the replica trick. This
means that it can be expressed as the limiting dased of Z(r'r)= (0 Df exr{— Jt}-?z(t’)JrV(F(t’))dt’ _
N directed polymers with a short-ranged interaction potential ' (13) 02
(see, e.g.[16]): (11

our lengtht (the restricted partition functions given by the
gingle path integral
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Since the KPZ problem is equivalent to directed polymers Moreover we will consider harmonic boundary condi-

with a relative short-range interaction the potential istions. That means that we allow a movement in infinite
V(r)=gs&%(r). space, but restrict the movement by a harmonic well poten-
tial (y/2)r2. The associated width of the box is from dimen-

sional analysis\'y=(7/2)(1L?). (The factor of 7/2 has

. i ] only been introduced for convenienge.
The path integra(11) is formally a quantum mechanical

path integral in imaginary time. Therefore the partition func- 2. Results for the free energy

tion obeys the time dependent Sdtliriger equation of a . .

particle in the potentia¥(r), which can be attacked by stan- For the welllpotenn.al of.constant depth and .the flr_st two

dard quantum mechanical methods. boundary conditions given in the preceding section, it is rela-
If the movement is restricted to a finite volume character-tively easy to calculate the ground state energy, because the

ized by some length , =LY, the long-time(large projected potential is piecewise constant. A sketch of these calcula-

length of the directed polymgrbehavior of the partition UONS IS given in Appendix A.

function is an exponential decay, the decay rate of which is Here, we just give the results for the ground state energy.

given by the ground state energy of the quantum mechanic&l°" the free system\{o=0) with Dirichlet boundary condi-

A. Transfer matrix results

problem tions the ground state energy is exactly given by
[—A+V(r)]g(r)=Eqy(r), (12 , [ a)?
Eo=Xjq e (15

This ground state energy therefore corresponds to the free

energy per unit “time” for long polymers. The finite size yjth x| being the smallest positive root of the Bessel func-
coefficient can be extracted by studying the behavior of thig;gp, J4. This is also the asymptotic behavior for

ground state energy, which decays for large system sizq<§<vo<v*_ At the phase transition pointVp=V,) we
L, asEo=C/LZ=C/L. In order to calculate’, we extend haye
here the calculations ifiL9] to a finite volume.

2
a
1. Precise definition of the model Y|25| O le|<1
L
In order to solve the model in arbitrary dimensions, we Eo~ a |2l (16
have to use spherically symmetric potentials and boundary 4(|e|_1)<_ le|>1,
conditions. In this case, we can separate the wave function in L.

a radial and an angular part and transform the Schroedinger
equation to an equation for the radial functidr(r) thatis  wherey is the smallest positive root af_

€l -

r(@=1”2 times the radial part of the wave function. For the  For von Neumann boundary conditions the ground state
ground statéwith zero angular momentunthis reads energy is zero aV¥/y=0. At 0<Vy<V, the asymptotic be-
havior is
52 (d—3)(d—1) 1
o PNt 7 2®M+VINP(r) 4lel(|el+1) a \20d+1)
=Eod(r). (13 ole| YT g

Wodjg+1(\Vo)
We implement the attractive potential at the origin as a
well potential with a small but finite extensi@and a con- The decay is faster than quadratic, which means that the
stant deptﬂ/o for r<a. By defining ¢(y)=®(ya), coefficient we are looking for remains zero. At the phase
Eo=a%E,, V(y)=a?V(ya) and Vy=a?V,, the ultraviolet transition we get
cutoff a can be eliminated and everything is written in di-

mensionless variables. , [ a)?

We study here two types of radially symmetric boundary “Adl L, |el<1
conditions in detail. They both restrict the movement to a Eo~ el +1 (18
spherical box of radiuk, . In the first cas¢Dirichlet bound- 4\[€|(2-1) a le|>1,
ary condition$ the box consists of hard walls, which means L,

¢(L, /a)=0. In the second casevon-Neumann boundary

conditiong we impose that the first derivative of the radial wherez, is the smallest positive root of ;. The decay

part of the wave function vanishes at the boundary, in ordefor |e|>1 is again faster than quadratic. This scaling behav-

to mimic a kind of periodic boundary conditions. For the jor of the free energy per unit length in a system of finite

radial function¢ this means transversal size at the unbinding transition is consistent with
the scaling behavior of the eigenenergy of the bound state in
the infinite systenj20].

: (14) The finite-size coefficient* defined in the introduction is
the difference

Ly

a

d-1
- ¢(y)—T¢
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FIG. 1. Transfer matrix results for the finite-size coefficient of the free energy per unit length. The dependence on the dimensionality is

shown for von-Neumante) and Dirichlet(b) boundary conditions.

It is plotted against the dimension in Fig. 1 for both bound-

L, \2 .
c*= lim (f) [Eo(Vo=V,)—Eo(Vo=0)]. (19 Z£:<e—gf;”<p<t>m>0:1+2 (—g)"
0 n=1

L, —»

X fdtl"'f dtn<q)(t1)"'q)(tn)>01 (22)

ary conditions. O=sty=-=tp=Ly

It can be seen that* stays finite agd approaches four

with Dirichlet boundary conditions, whereas for von- where the expectation valugs), are taken with respect to

Neumann boundary conditiod$ approaches zero. From the 7y, and z, is the partition function just fof,. Here the

first three terms of the series expansion of the Bessel fungactor of n! has been canceled out by introducing a time

tion 1_4-; we get near [e[=1 a behavior of ordering.
z‘e‘~4~/2(1—|e|)+O(|e|—1), which yields Eq(10). Taking the logarithm of this series allows us to express

For harmonic boundary conditions the differential equa-the free energy as a seriesgn Since all correlation func-

tion in the outer area is a bit more complicated. Its solution idions are translationally invariant in the limit of larde;,

¢(y)wy_1/2WE0/4\f7a2,e/2( Jya2y?) with the Whittaker func- ©ne Of the integrations just gives a factorlof that cancels

tion W, ,(2). The condition of differentiability ay=1 is

out since we are interested in the free energy per unit length.
To second order, we have

also more complicated to evaluate than for the von Neumann

or Dirichlet boundary conditions, but in the end we
get Eq~m(d/2)(a/L,)? at 0<V,<V, and E,~m(2 _ F(@)—F(0) B ij
—d/2)(al/L,)? at the phase transitio,=V, . Therefore fim L =9(2(0))0—9g 0 (@0 ()o

starts from the partition

of the energy functional into the free pdkinetic part and

L”HOC

—(®(0))§1dt+0(g®).
C*=mw(2—d)=2mwe. (20

Since the structure of the singularities in the cdse4 does
not show up in the second order, we have to extend the
perturbation series to higher orde(See Appendix B.

For two directed polymers with & interaction it is now
particularly simple to calculate the time-ordered correlation
functions, because all multipoint functions can be expressed
by two-point functions via

B. General perturbation theory

However there is a second approach to solve (Ed). It

HZHO+gfL”<D(t)dt with ®(t)=8%r (1)) (21)
0 A{DP(t)DP(t2))o (P (th-1)P(th))o
<(I)(t1)"'q)(tn)>0_ <(I)(0)>8—2 1

(23

infrared regularizationand an interaction part and sets up a
perturbation series of the partition function as as one can easily derive from the expression
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JdriJdryGy (r1,00Gy,—1,(0,0)- - th—tn,l(OaO)GLH—tn(Oyrz)

(P(ty): - D(tn))o= JdrifdroGy (ryro)

(24)

for the multipoint function in terms of the propagator cal representation. Each of the timgs ... t,, at thenth
Gy(r,r,) of the relative coordinate of the fréenly infrared  order will be represented by a point. The two-point functions

regularized directed polymers. g1((ti—t;)/L) are denoted by lines that connect fite and
It is even more convenient to introduce the dimensionlesshe jth point. With this representation we can sketch our
connected two point function series expansion up to higher orders as it is done in Appen-
dix B.
_ 2
gy(s)= @(O)qD(LSZ))O"fz (PO)P(LS))o 2<q)(0)>°. Careful inspection shows that all diagrams appear that
(®(0))5 (®(0))5 have at least one line passing each interval between two

points and do not have two lines leaving one point in the

and the dimensionless coupling constant same direction. The corresponding prefactors are given by

Up=gL =gL{®(0))g. (25
Then the finite-size coefficient of the free energy per unit o
“time” reads (—1)*P! lpl;lp Ip!, (28)
F(g)—F(0 o
C(ug)=L lim wzuo—uéf gi(s)ds
Ly I 0 as follows by inspection up to the seventh order. Here
w o denotes the number of lines in the diagraPijs the set of
+u8f f [91(51)01(Sp) —01(S1tS,)]ds,ds, points in the diagram, and for eapte P |, is the number of
0J0 lines that pass the given point.
+0(ud), (26) Using relations as explained in Appendix C it is further-

more possible to get rid of all “nested” diagrams. Inverting
where the time-ordered integration has been broken up intthe resulting series order by order we end up with the series

integrals over the respective time differences. expansion olg(ug)
As we can see, the finite-size coefficient is equal to the
dimensionless coupling constam to first order. Singulari- uo(ur) » +6® +6w o +60 o

ties in this series can only arise in the integrals of the higher

. . -evvot2ebe o+ 6 ®
order terms. The renormalized coupling constant must be + odtéee

defined such that all singularities in the higher order terms tev v o oi3evbeo ot v oo o

are canceled. This is done by imposing the renormalization o

point condition for the renormalized coupling constant téedes +éeeed t0(up)
Ugr(Uo) =C(Uo). (27)

We will further discuss the structure of this series in a later

This renormalization point condition has the advantage th ection.

it gives a physical meaning to the renormalized coupling
constant.

Now we have to study the perturbation serig§) in de-
tail. Already in the third order the essential difference be- i o .
tween the regularization scheme @0 and ate’=0 be- It is perhaps not surprising that the exact solubility of the
comes obvious. Near=0, the second term in the third order tWo-polymer problem is reflected in the summability of the
coefficient does not diverge at all, so that only the first term,perturbatmn expansion. Th!s Ieads. to an implicit equation for
which obviously factorizes to the square of the second ordeth® dependence @f on the interaction constant. In order to
coefficient, produces divergences. This statement is true 188t these results, we review here the summation technique
all orders of perturbation theory, which produces just a geodiven in[22] and generalize it to arbitrary boundary condi-
metric series of divergences. The especially simple structurBOns-
of the divergences a¢=0 guarantees that thg function
calculated to the second order is exact to all orders of per-
turbation theonyf11,21]. The main idea that leads to the summability is that the

Near €' =0, however, the second term diverges as well.coefficients of the perturbation series of the partition func-
So in every order combinations of different types of diver-tion have a product structure, which leads to a simple geo-
gences occur, which do not factorize any more. metric series if they are properly decoupled. This decoupling

Since the terms in the perturbation series become quitss achieved by Laplace transforming the constituents of
nasty in higher orders, it is convenient to introduce a graphiequation(24). We will call them for simplicity

C. Resummed perturbation theory

1. Resummation for arbitrary boundary conditions
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ultraviolet divergences a¢— —k. Thus in the case’—0,
f(1)=G(0,0), NEJ dflf droG (ry,ra), which we are interested in, also the first derivativetbfat
z=0 is ultraviolet divergent.
The easiest case is the harmonic regularization, because
g(t)Ef drGy(r,0), and h(t)Ef drGy(0r). the full propagator of the quantum mechanical harmonic os-
cillator is analytically known in all dimension®3]. From
Their Lap|ace transforms are denoted’fb)g' andﬁ' respec- this we extract the return probablllty for our directed p0|y-
tively. mer problem by inserting=r’'=0 and get
Performing the Laplace transformation on the coefficients
of the partition function, an implicit equation for the free

energy per length can be extracted. The argumentation i|§rom the decay at largewe concludef ;= wd/2
given in Appendix D. The result is that the free energy per The Laplace transform of this function can be explicitly

unit “time” for long directed polymers is given by-z,, -
wherez, is the solution of performed([24] 3.541 and gives

L1 ¢G4 (0,0 =[2sinH7s)] "1~ 9. (35)

A z
1+gf(z)=0 (29 I ——=—
B I'(e) 27
with the largest(absolutely smallestreal part. This is an F(2)= 27 z (36
exact implicit equation for the free energy per unit length Il e on

derived from perturbation theory.

Introducing again dimensionless coupling constants wesor d=1 or e=1/2 this formula together with Eq30) co-

get the equation incides with the one-dimensional transfer matrix result in

[25]. We want to stress that we just calculated the full tran-

1+UoF(ug) =0, (30 sition function for the free energy from the Gaussian to the

non-Gaussian fixed point in any dimension in the case of a
harmonic boundary condition.

It is remarkable that fod=3 or e=—1/2 the equation
(30) is equivalent to thel=1 case, if one replacasup to a
numerical factor by-1/g. This shows a dualitywhich ex-
ists for all dimensionsl andd=4-—d): The transition from
the Gaussian fixed point in a dimension beldw 2 via a
repulsive interaction to the non-Gaussian fixed point is ex-

where F(z)=L"f(L"}(—f,—2)) and f, denotes the di-
mensionless free energy per unit length of the freg=0)
problem.

Since this equation has to be fulfilled far,=0 and
ug=0, F has to behave like—1/z at zero and
H(z)=F(2) + 1/z is a regular function. Expressed by in-
stead off, the implicit equation folug(ug) reads

Ur—Uo+ UgUgH (ug) =0. (31  actly the same as the transition from the Gaussian fixed point
in the symmetric dimension abodke=2 to the non-Gaussian
2. Results for specific infrared regularizations fixed pomt'v!a an attrgctlve potential.
and the duality relation An explicit calculation of the Laplace transform of the

o propagator with hard wal(Dirichlet) boundary conditions
Now we want to calculatéi for specific infrared regular- (see Appendix Ein d=3 gives the equation

izations, in order to compare the general equatigit) with
results from the literature. 8
Therefore we first reconsider the definition U V2(ug+fo)cof v2(ug+Tfo)l, (37)

H(z)= fw[LlfeGsL(O,O)efos_ 1]e?ds (32) vvhich shows the same duality relation with the transfer ma-
0 trix result ford=1 in [25].

gr':](z)' From dimensional analysiS;, (0,0) must have the D. Comparison of the two perturbative approaches
We will now see that the resummed and the naive pertur-

G<.(0,0=(sL)¢ 1g,r(sL). (33 bation series after all manipulations presented in the last two

sections are exactly equivalent. The resummation method

Since G (0,0) has to decay exponentially with the ground gives us the exact relatio@31) between the finite-size coef-
state energy of the quantum mechanical problem, i.e., likgcjent ug of the free energy per unit length and the dimen-
e‘Sf_O, it is easy to see thad(z) is well-defined forz—0 in  gjonless coupling constant,. If we assume thakl can be
the infrared, because it follows that expanded in a Taylor series around 0, a perturbation se-
ries can be easily extracted from this equation and it is the

(1-¢) foS_1—ce—1
L Gs1(0,0€7=1=5"""hix(s) (34 same perturbation series as we already calculated directly, if
with a for large arguments exponentially decaying function’® identify
hir(2).
Also it is clear that ultraviolet divergences arise for 1 dr-t

G, =6000 0000 o=

e—0. The derivatives o with respect taz are less diver- (n—1)! den-t OH(Z)'

gent in the ultraviolet regime; thigh derivative will develop n intervals
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E. The limit €' —0

In the preceding section, we remarked that despite of the
singularities in the coefficients of the perturbation series, a
limiting B function for ¢’ —0 exists. We heavily used the
fact that we could calculate a closed form expression for the
B function, and its properties are a bit awkward. Especially
B is nonanalytic atig=0.

Now we have to extract the behavior of tBefunction in
the limit ¢’ —0 directly from the lowest order terms of the
perturbation expansion in a way that is generalizable to an
arbitrary number of directed polymers.

FIG. 2. B function of a directed polymer in a harmonic poten- 1. General regularization scheme

tial. Let us assume a perturbation series
Using the specific representatigd?) of H(z) by the func- _ - on
tion h,r(2) (34), which is directly connected to the return fe'(“)—n; ba(e"u, (42)
probability of the free problem, the coefficients are calcu-
lated as the coefficients of which diverge in the limit —0. Assum-
ing thate’ =0 is a pole ofb, of maximalnth order we use
1 = the Laurent expansion df,,
a“_(n—l)! JO S hr(s)ds. (39 )
ba(e)=2>, al(e’) "ty (e), (43)
k=0

For the comparison with the transfer matrix results, we
have to calculate the free energy per unit length at the tranzqre lim,.
sition point. By virtue of our renormalization point condition
(27) the finite-size coefficient of the free energy per unit

_oCn(€')=0. We insert this expansion into the
perturbation series and change the order of summation to

length is just the fixed point value of the renormalized cou- ® o0 ul\m »
pling constant. fo(u=2 | > aﬁ,“lk(—,) uk+ > c,(e)un. (44)
This fixed point value is the root of th@ function k=0[n=0 € n=1
B(Up)=Ld (39) If now the analytic continuations of the functions
UR)=LJL UR,
— k
which describes the flux of the renormalized coupling con- hk(X)=nzo a " (49)

stant. According to the chain rule tiefunction is expressed
by the functionuo(ug) and its first derivative and can there- have well defined limits fox—, the limiting form of f .,

fore be calculated from Eq30). We get will be
F oo
Blug)=— e%. (40) fo(u)= 25 [ lim hy(x)]u*. (46)

This enables us to calculate thisfunction explicitly in the ~ Moreover using just a finite number of these terms will give
case of a harmonic infrared regularization, where the LaplactS @ systematic expansion bf: for smalle’.

transform of the return probability can be perform@s). To summarize the method, we have to extract just the
The result is most divergent parts of all the coefficients and use them to

set up the function$, . Those then have to be analytically
continued and the limik—o« to be taken. The limits will

B(ug)= 2me (41 give the coefficients of the limiting functions. In the follow-
q,( _ ﬁ) —\If( e E) ing discussion this general approach has to be modified in
2 2 some special cases, but the general idea will remain the
same.

with the digamma functionW (z) =d/dz InI'(2). The behav-

ior of this B8 function is shown in Fig. 2. Foe<O0 there is 2. The generic case of two directed polymers

always one negative root and the slope of théunction at In both perturbative approaches, we have seen that the
the root is— €. It is remarkable that thg function has a well  coefficients of the perturbation series can all be expressed by
defined limit function fore— —1 (¢’ —0), which is the case some set of constangs ,a,, ... that can either be regarded

we are mostly interested in. The limiting function is just  as the fundamental graphical element of one arc in a diagram
the straight lineug+ 2. or as a derivative of the functiod (z) defined above. The
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structure of the perturbation expansion is independent of the 1 (=
infrared regularization chosen. Different infrared regulariza- a=— P f
tions just result in different values of the coefficieats

In the limit ¢’ —0 only the first two coefficienta,; and
a, will diverge, whereas all the higher coefficients remain
regular, as it has been stated in Sec. Il C 2. At this point w
should remember that in the usual case 0 only the coef-

s<'h/x(s)ds. (51)
0

Since the divergences i1 are explicit in these formulas, we
get the coefficients; _; anda,_, by substitutinge’ =0 in
&he converging integrals. This results in

ficienta, is divergent. So the main difference in this problem a;_1=h/3(0), a,_;=hg(0). (52
is the existence of two divergent fundamental diagrams in- ' '
stead of one. So these coefficients are directly expressible by the return

To extract the pole structure, we assume the Laurent eXprobability without any integrations.
pansion of all the fundamental coefficients:
3. The case of a vanishing leading singularity

Ay, -1 _—
T | Aot age’ Fage’ 2+ e, (47) The above derivation has one severe problem. Although

the calculated regularized seriéend therefore thg8 func-
tion) is well defined in the limit ofa; _; — 0, the whole cal-
whereay ;=0 for k=3. culation relies on the fact that; _, is different from 0.

Since we can calculate the perturbation series up to quite Unfortunately this is not true in the very important case of
high orders, we can insert these expansions in the series aggn Neumann or periodic boundary conditions. These
study the behavior of the most divergent terms. It shows uoundary conditions are the most simple ones for the pertur-
that the correct series to regularize is the series fobation series of more than two directed polymers.
Uo(ur)/€’, because this series has a polentf order ine’ With periodic boundary conditions, the propagator is just
among itsnth order diagrams. the sum of free propagators connecting equivalent points.

The singular parts happen to have a quite simple structur@he return probability therefore reads
All diagrams of a given order of divergenderder in ug
minus order of the pole ie’) can be expressed as a geomet- 1 0 2 d
ric series modified by coefficients polynomial in the running Gt(0,0)=(— > ek LL/ZU) : (53
index n. The degree of those polynomials is at most the 2mt kez
Slvergence order |t_self, as can be checked to quite high O.rUsinng \/ﬂLf as it is defined by®(0))o=L1"¢, we get
ers. So these series can be resummed, analytically contin-. _

Sadhe (sincefy=0)
ued and their limit forx—oo can be taken.

ag=

The explicit form of this series can be found in Appendix d
F. The regularized series in the limit=0 turns out to be a th(s)=( > e“‘z”’s)) —s972, (54)
geometric series, which is resummed to kez
Ug(UR) 1 At d=4 hg(0)=1, buth/z(0)=0.
lim —2 ,R =— , (48) Since we know the whole perturbation series, we can just
o € a1-1132-1Ur inserta, ;=0 and repeat our above calculations. The struc-
ture of the poles changes, because now the only divergence
which leads to a linear limitingg function of resides in the arc, which spans two intervals. This leads to
the fact that the order of the poles éh increases only every
. a1 second order and the coefficient connected to all poles is
'l'mOB(UR): a271+UR- (49) a,_1. We take care of this fact by grouping together all
N :

singularities with the same powers ag,_lqu/e’. The struc-
ture of the singular part of this series is then very similar to

e previous one and the regularization scheme can be used
in the same way as before. The explicit form of the important
parts of the perturbation series is shown in Appendix F; in
the limit €’ —0 we get the expected result

The result is quite remarkable, because it states that t
B function is linear independent of the infrared regulariza-
tion chosen in the limite’ — 0, which is surely not true for
finite €’. The result, of course, reproduces exactly the ex
plicit form of the 8 function that we calculated for harmonic

boundary conditions. Uo(UR) 1
Interestingly, the coefficienta; ; anda,_; in the lim- lim ===~ — +0(ud), (55
iting B function can be calculated much more easily than all ¢ —0 2-17R

the other coefficients that were temporally involved in the
calculation. We just have to recall the definition af and

a, (38). Integrating by parts the integral fay two times and
the integral fora, one time and dropping the boundary
terms, which are zero at least fer-0, we get

which is the same as if we had taken the limit_;—0 in
our above result. Therefore also the limitiggfunction is

B(ug)=Ug+O(Uu3). (56)
There is one more remarkable thing in tifisunction: If

a=— } fxsf' " (s)ds, (500 Wwe just add up the geometric s',er.ies of the most. singular
€'(e'=1)Jo terms and do not perform the limi’ —0, but just insert
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B(ug) acting by short-range interactions. We will see that the struc-
A ture shows strong analogies to the case of only two directed
b < polymers, which suggests that the perturbation series can be
F‘_E —1 >0, 0 regularized in the same way as the perturbation series for
iy N=2.
-1 A. Diagrammatic expansion

1. Perturbation series of the partition function

) In order to keep the calculations as simple as possible, we
choose periodic boundary conditions as the infrared regular-
ization. That means that we identify the pointsand
r+kL, for everykeZz9 Writing down the corresponding

FIG. 3. Approximations to th@ function of a directed polymer propagators, it is clear that the problemMfdirected poly-
with periodic boundary conditions for a smatll. The straight line mers with periodic boundary conditions is equivalent to the
is the limiting 5 function 5(ug) =ur for €’ =0. The other three are . \p1om of N free directed polymers with periodic interac-
calculated with the same’:O_.OO_S but truncated at different or- tions.

ders. Two of them already coincide. So the perturbation series for the partition function re-

mains the same a22) with the definitions

small e’ we get theB functions shown in Fig. 3. From this
we can extract two points. First, we can see, how ghe
function with a negative slope at zero approaches its limiting D(t)=
shape with a slope of 1 at zefand everywhere elseMore-

over we remark that all three truncatgd functions (they

differ in the divergence order where they are truncatetle  and the free expectation values
a common root at- az,,l\/?. The fact that this is true to all

N

_ Eda(rmn—rj(t)—k”u)) (58)

i<J kl] el

calculated orders strongly suggests that these roots are exact, ~Nd
. " : < >OE L ddl’ ! dr ’
which means that the fixed point approaches zero as L oL, 1 (oL, 1 N
-~ ! " n
U~ Ve, (57) Xf ddra/_f ddrKlJ\(rl ..... rN,LH)Drl_”DrN
which is just Eq.(10). R R (rp...rn10)

N
4. Comparison between the perturbative _ Ly o
and the transfer matrix approach Xex;{ (172) fo zl HOLUE (59

For harmonic boundary conditions, the zero of the ) ) ) )
function (41) calculated by the regularized perturbative ap-AS in the above discussion, we first have to calculate the
proaches is exactly equal to the finite-size coefficie@) mult|_pomt functlon§ in the perturbation series of the partition
calculated in the transfer matrix picture. Since the von-unction and combine them afterwards to the connected mul-

Neumann and Dirichlet boundary conditions in the transfertipo_i”t functions, which are the integrands of the perturbation
matrix approach and in the perturbation series are not abs§€'ies of the free energy. o o

lutely equivalentin the transfer matrix approach the bound-  Sincé the argument of a multipoint function is the sum
ary has a spherical shgpéhose results are not quantitatively OVer dlfferen_té interactions, all sums can be extractgd from
comparable. Nevertheless qualitatively also those results atB€ expectation value. In theth order the sums over<]

the same as far as the limit—0 is concerned: In the case correspond to the different ways, timeinteractions can be

of hard wall (Dirichlet) boundary conditions, the perturba- @rranged among thil directed polymers. Obviously a lot of
tion series predicts & function with a zero at a finite nega- &rangements are equivalent. So every possible arrangement
tive value. This is also the result of the transfer matrix cal-Of interactions will be accompanied by a combinatorial pref-
culation due to the finite value of the ground state energy of:ctor that cou.nts'the number of qulvalent arrangements. The
the free system. With periodiévon Neumanh boundary SUm over alli<j can then be written as a sum over all
conditions, the perturbation theory and the transfer matri?0SSible arrangements with each arrangement multiplied by a
approach both predict that approaches zero a$—0 and ~ Convenient combinatorial prefactor. o

they both result in the square root dependei€ of €’. We Sl_nce_there are obviousN(N—1)/2 pOSS!bI|ItIes to place
conclude that the chosen method of regularization of the pert_he first interaction, all these prefactors W_lll_be multiples of
turbation series reproduces the exact results of the transf&(N—1)/2. This is the reason, why we divide the free en-
matrix approach and therefore is a valid regularization®'9y by this factor in order to get the renormalized coupling

scheme. constant.
To improve the bookkeeping, we will represent every ar-
IIl. ARBITRARY NUMBER OF DIRECTED POLYMERS rangement of interactions graphically by drawing parallel

lines representing the directed polymers and a connection
Now we will develop a diagrammatic expansion of the between two of them for ever§ function between two poly-
theory of an arbitrary number of directed polymé&tanter-  mers. The first connection belongs to the “timé;’, the last
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one to the time,. To write down some simplified expres- 1 . d
sions later on, we also introduce a dotted line that can rep- RP(s)=| — e 4mks | (64)
resent a “time” in the diagram, where no interaction is VL kez

present, and that is used to keep the relation between the . _ .
time variables and the interactions, if an interaction s/ Want to stress at this point that up to the third order the

dropped due to a simplification rule. only quantity arising is the two-polymer return probability
Between two “interaction times” we have to insert the R (S) and the only effect of more than two directed poly-
free propagator foN directed polymers, which of course mers are the combinatorial prefactors. Unfortunately we can-

factorizes in a product of free one-polymer propagators not ju.st stop our .discussion_here,.because at fourth orQer
generically new diagrams arise. Since the number of dia-

Gur' 1) = 1 e—L(r'—r"22at] 60 9rams heavily'increases, it is convenient to use some com-

Attt o (2mAt)? puter algebra in order to generate all diagrams. In the sixth
order, for example, there are 29 388 possible arrangements

Since this is a Gaussian, all integrations over thean be of the interactions, which can be reduced to 5300 by auto-

performed. Moreover it is clear from the translational invari- matically applying Lemma 1.

ance of the propagator that only a dependence on “time” The new diagrams in the fourth order are the following

differences will arise. Therefore we change our integratiorones:

variables. Instead of integrating over all ordered “times”

0<t;<---<t,<Lj, we integrate over all existing “time” 1 T T 1
differencest;—t;_;. In the limit of infinitely long directed 11 1
polymers (— ) the domain of integration is from zero to I G

infinity for each of these variables, whereas the integration
overt, just gives a factor ot |, which is canceled because They can, of course, also be integrated out, which gives
we want to calculate the free energy per unit length and pet [ 3RP(s, +2s,+s3) for the first one. The other two con-
pair of directed polymers. The new integration variables willtain two sums oveFZ? that cannot be decoupled. The second
be made dimensionless by a factorlofand we call them one, for example, can be written as
Sl’ T ,Sn_l.

To calculate the integrands, some simplification tech-| 1 S1+S+S3 38,\ [ k ¢
nigues can be used and especially two general simplificatio 2 E expg —4m2(kk') K
rules, which we will call Lemmas 1 and 2, can be derived. kk'ez
The integrands of the first three orders of the perturbation
series for the partition function can be explicitly calculatedafter applying the transformation formula for the two-
by using these techniques. The detailed simplification rule§limensional¢ function [26].
and the calculation for the first three orders can be found in Calculating the diagrams to higher orders shows us that

1
252 Sz

Appendix G and lead to there is a simple recipe that allows to perform all spatial
integrations formally, if the form of the diagram is given.
L(@(t»(): Ld (61) The rules are as follows.
N(N—-1) + (i) Mark all loops in the diagram that are necessary to
pass each interaction at least with one loop. Assign an ori-
—————(®(0)D(Lsy))o entation to every loop.
N(N—1) (i) If there arem loops necessary, use amx m matrix
(N—1)(N—2) T and identify each row and column with one of the loops.
=L 9RP(s;) + 5 L%, (82 (i) Pass for all “time” intervalsi over all lines of the
diagram and
and (@) add s;/2 to every diagonal element of a loop that
2 passes the line,
m(‘b(O)CP(LSl)(D[L(SlJr S2) 1o (b) add =s;/2 to both of the off diagonal elements of
two loops that pass together through the line. If they
4 (N+1)(N=2) _,, pass in the same orientation the plus sign has to be
=L "RY(s)RP(s)+ —————L T R(s) used, otherwise the minus sign.
(N+1)(N—2) (iv) The value of the diagram is then
+———— L %RP(sy)
2 d
L—(orderla — 472K Tk )
(N+5)(N=2) kzme (65
+ fLL RP(s;+s5)
) This prescription also implies the validity of the Lemmas 1
N (N=2)(N—3)(N“+3N+4) = 63 and 2 used above.

4 L Since there are several possibilities to choose the loops in
a diagram, the correspondence from a diagram Tonaatrix

with the two-polymer return probability is not unique. For example, in the fourth order diagram, the
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loops could be chosen as . €9 + W (NS O . e
(‘fﬁ SONT @ (5NL3TN4SS) e oo
| (e
which leads to th& matrices
(sl+s2 Is, ) (Sl+82+53 %sz+sg) FEWEWe  Cw¥ed
is, Sptsg) is;tsy Stss ) NN OO - (iNE5N92) €08 8 e
Although theT matrices are not identical, the sums that de- (14N3-227N 2919N-1043) + o o

termine the value of th& matrix are the same, because the
second of those matrices is reproduced, if in the sum with the

first matrix, the summation variable is shifted byk,. Dur- BN e |%| I HI60N-D) &%
ing all those equivalence transformations, the determinant of @®
the T matrix does not change, so that tWwomatrices from

different diagrams can only be equivalent, if their determi-

nants are identical. Unfortunately there exist alsmatrices wnp | 4 - (—)
that are not equivalent but have the same determinant. This @ (==
purely mechanical procedure of setting up and combining .

T matrices can be implemented by computer algebra and (=)
reduces the number of different diagrams in the fifth order ~ +{(2N-44 +4N-4) o
from 348 to 88. g g

2. Perturbation series of the free energy + 6(N-4) % +3(N-4) I C‘E 3

Since we now know how to compute the multipoint func-

tions, we can calculate the free energy using the formula :I—o—
from Appendix B. Analogous to the connected two point . (—) ‘- H T_
functions we used for the two-polymer problem, we have to (O]O] jj

express everything in terms of correlation functions that de-
cay properly for increasing time differences. In analogy to
the definition of g;, which in our terminology reads
g.(s)= Li RP(s)—1, we will use functions oflT matrices, FIG. 4. Diagrammatic series expansion of the free energy per
where all submatrices of lower dimensions are subtractednit Iength up to the fifth order for an arbitrary numberof inter-
with alternating signs, as, for example, acting polymers.

d the diagrams that is responsible for the main term of the
AT a b integrand. Since the integrands themselves depend on the
2 ex 477K k . -
b way, the loops are chosen, we must specify our choice.
Those parts of diagrams that can be expressed onlg,by

{ A Zakz] d [ } d (i.e., that are pure two-polymer diagramsill be represented
- amtal | +1,
kez kezZ

gZ(aﬂbIC)EE[

kez?

E e E g4k by the same diagrams as they have been used in the two-
polymer case.
] The resulting diagrammatic expansion for the free energy
and analogously for a higher number of loops. is shown in Fig. 4 up to the fifth order. It should be stressed
Of course the subtracted terms depend onThmatrix  that the number of diagrams involved in this final expansion
itself and are different, if one chooses differénimatrices is very small compared to the number of diagrams in the
that represent the same diagréimat give the same value for original perturbation series of the partition function. Since
the first term of the above symlf one chooses the wrong the applicability of most of the simplifying formulas as those
representation, one will discover that there are terms, théfom Appendix C relies on very specific relations between
time integrals of which will not converge. But it is always the coefficients of the diagrams involved, it is very unlikely
possible to choose a representation that leads to terms thiat this structure evolves just by chance. This is a strong
are each integrabléf course the sum of all terms is inte- hint that there exists a similar equation @4) for an arbi-
grable in every case, it is just possible that one chooses df@ry number of directed polymers that produces this rela-
inconvenient partition of the integrand. tively simple structure of the perturbation series. Unfortu-
Once the coefficients of the free energy are represented &stely no such formula could be found up to now.
a sum over time integrals, further simplifications can be per-
formed, by multiplying the integration variables by constant
factors and applying relations as shown in Appendix C. We We can now compare the perturbation series to the per-
will continue to represent every of those integrals by one oturbation series of two directed polymers. First there are a lot

B. Comparison with the N=2 case
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of diagrams that appear already in the series of two directetbr arbitraryN and the KPZ problem. This is especially in-
polymers that now have prefactors with a polynonNatle-  teresting since Frey and Whaer find in[27,10 that their
pendence. We will call them “linear” diagrams, becausecoupling constant approaches zero in the lichit 0. How-
they have no nested loops. The value of one arc itself is oéver, it is not absolutely clear how the two coupling con-
course the same as for two directed polymers. Especiallgtants are related, and this point deserves further investiga-
only the arc that spans two intervals has a pole’at:0.  tions.
This pole is of the first order.

Since we have explicit expressions for all of the diagrams, IV. CONCLUSION AND OUTLOOK
it is also possible to extract at least the order of the pole of ) _ )
each of the nested diagrams éls—0. This can be done by ~ We have studied the problem Wfdirected polymers with
extracting the UV dependence of the integrands and partigihort-range interactions focusing on the behavior near
integration. It comes out that all nested diagrams are lesd=4, Where the standard renormalized perturbation theory
divergent than the product of two-interval arcs in the samedroundd=2 breaks down. We have developed a new regu-
order of the perturbation theory. Therefore, as in the case dfifization scheme around four dimensions, and we have
two directed polymers, the powers of the two-interval arc areshown that it reproduces the exact results in the d&se.
the most divergent diagrams and the order of the pole grows For an arbitrary number of directed polymers, a diagram-
by one only in every second order of the perturbation seriegNatic expansion of the free energy up to the fifth order has

Although we gave here the diagrammatic expansion of théeen established. Although it stems from a large number of
seriesug(U), the same statements are true for the invertederms this expansion is relatively simple. This suggests that it
seriesuy(Ug), since it consist of exactly the same diagramsCan also be generated by a simple equation, which has, how-
with other prefactors. Analogous to the case of two directec@Ver. eluded us so far. Using the regularization scheme, we
polymers, we write the partial sum over all those most divernave shown that the finite-size amplitude of the free energy

gent diagrams as per unit length shows a singularity proportional {&’ as
d—4 for any value ofN, in particular for the random limit
Uo(ur) 1 Ur . N—O.
o - U—Rfreg N + less divergent terms, (66) We may thus caltl=4 the upper critical dimension of the

KPZ roughening transition. At this dimension, the entire
scaling theory describing the roughening transition becomes
singular. In particular this is true for temperature perturba-
tions into the strong-coupling phase. Thus we may speculate
that the singularities of physical quantitiesdat 4 persist in

the strong-coupling phase, which would indicate tthat4 is

the upper critical dimension of this phase as well.

wheref, ¢4 is an even function, with Taylor coefficients that
stay regular ag’ — 0. If we now assume that the fact that the
series forf ¢4(x) can be analytically continued to— and
that lim,_.f,.4(x) exists is not a particularity of two di-
rected polymers, we get a leading behavior of

U(ur) a What happens above four dimensions? Some clues can be
0 ,R ~—, with a=limfc4(x). (67)  obtained from the behavior of the finite-size amplitude of the
€ Ur X—o free energy per unit length in the cabe=2. As Eq. (18

shows, the free energy per unit length develops an anoma-
lous scaling behavidE,~ L %(a/L, )@ "2 The finite-size
amplitude therefore depends explicitly on the short-distance
cutoff a. Thus it is no longer possible to define a universal
quantity from the free energy. If this behavior persists for
arbitraryN, the critical behavior of the KPZ equation at the
roughening transition aboveé=4 is less universal than be-
low four dimensions.

Differentiation then leads to the limiting function
B(ug) =ugr+higher order terms. (68

The slope of 1 of thisB function shows that the Gaussian
and the unbinding fixed point coalesce wgi=0. Thus we
expect that fore’ —0 the non-Gaussian fixed point goes to
zero for eactN. Since theg function is a regular function of
ugr/e' also the behavior proportional tde’ is independent
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The independence of the behavior of the fixed point near
d=4 renders the limitN— 0, which describes the directed APPENDIX A: SOLUTIONS OF THE RADIAL
polymer in a random medium, trivial. Thus we conclude that SCHROEDINGER EQUATION
the finite-size amplitude of the free energy per unit “time” WITH CONSTANT POTENTIAL

also vanishes as given in Ed.0) for the directed polymer in

a random medium. This shows that the singularities in the We have to calculate the asymptotic behavior of the

perturbation series that arise &4 are not only a formal ground state energy that belongs to the rescaled version of

problem of the approach, but they lead to a nonanalytic bethe radial equation(13). The rescaled potentidV/(y) is

havior of a physical quantity. piecewise constant and takes the valueg, for O<y<1
Although the duality relations between dimensieghand and 0 fory=1.

4—d in Sec. Il C 2 have only been observed in the case Obviously the wave function must consist of general so-

N=2, one could speculate that such a relationship still existtutions of the Schidinger equation with constant potential
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# (d—3)(d—-1) 1 (a/L,)? only the behavior ofs for small x, especially
Y TF—E #(y)=0. (Al)  sy=lim,_,s(x) is relevant. Ifs, is a finite value,E, will

asymptotically decay as c?(a/L,)?, wherec is the small-
The general solution of this differential equation [B4]  est positive solution of (x)=s,. Soc? is exactly the coef-
B(Y)=Ajjo.e(y) Jy+ Bn|e|,E(Y)\/§ with ficient we are interested in. §,=0, the constant is a root
of r(x). Sincer(0)=0, c is zero if the signs of ands for

small positive arguments are equal. If notis the smallest

J1el,e(Y) Ng.e(y) positive root ofr. If c is zero, one can expandfor small

arguments and furthermore extract the leading behavior in

E=0 J‘E‘(y\/ﬁ) N‘E‘(y\/E) _ a/L, of Eq, which then decays faster than quadratic.

E=0 ylel y I Since we are especially interested in the asymptotic be-
havior of the ground state energy at the phase transition point

E<O N V- ) e X "

le(YV=B) | Kig(yv=F) V, , we have to identify it. It is defined by the condition that

the ground state energy in an infinite system approaches zero

from below. With the known wave functions for

Because the wave funct[on shoul-d be_ regulqr at the 0r|g|rto+v*>O andE,<0 (in the infinite system only the solu-
at least ford>2 only the first solution is possible for the . : . o
tion proportional toK  is regulay the matching condition

interaction region. This means that for<1 we have ives in the limitE-—s 0
¢(Y):Ai|e|,Eo+vo(Y) W In the outer region the boundary 9 0

conditions at y=L/a lead to the wave functions

B(Y)=BLi 4,5, VY~ fle.g (L /@) £, (¥) VY] with Jjg+1(VVi) WV, 2l A3)
J\e\( VV*)
Ilel,E Dirichl We now can systematically apply the above scheme to all
Niel.e irichlet possible combinations of9V,<V, andE, for both bound-
fle,e= T ary conditions and extract the ground state energies.
sgr(E) Jd+1E  \on Neumann The only point that has to be handled with care during this
Nig+1E calculation is the series expansion of the different Bessel

. . . ) functions involved. Since especially fofy=V, the leading
The total solution consists of these two solutions if theYyeymg of the expansions cancel, the subleading terms have to
obey the condition of continuous differentiability that gives o \;sed. But the subleading terms are of totally different

us an equation conneciirig, with V, andL, /a. origin if |e|>1 or|e|<1. This produces the difference of the
This equation will always have the form ground state energies ih>4 andd<4 as we expect them.

r

LL .
V*Eq ?> =s(V*Ep) (A2) APPENDIX B: EXPANSION OF THE FREE ENERGY

Since we need it during the calculations, we give here the
with some functions ands. Since the ground state energy is expansion of the free energy per unit length written rby
expected to vanish fol, —o at least proportional to point functions up to the fourth order. It is

F(g)—F(0 .
im, =S =g 0o~ [ (BOPW)~(@(0) e[ [ dudtl(@ 00D,

st sty

—(D(0))o{P(t1)D(t5))o— (P (t1) o P(0)P(t5))o— (D (t2) o P(0)D(t1) )+ 2(P(0))3]
‘94f f f dt;dtdts[ (P (0) (1) D (tp) P(t3))o—(P(0)D(t1))o(P(t2) P (t3))o
0<t;<ty<ty

—(D(0)D(t2))o{ D(t) D(t3)) 0~ (P(0)D(t3) yo( D (t1) D (t2) Yo~ (P(0))o( P (t1) D (L) D(t3))g
—(®(0))o(®(0)D(t2) D (t5))o—(P(0))o{ P(0) D (t1)D(t5))o— (P (0))o P(0)D(t1) D(12))g
+2(P(0)D(t))o{ P(0))5+2(D(0) D (1)) o P(0))5+ 2(P(0) D (t3))o(P(0))3

+2(D (1) D(t2))o{ P(0))5+ 2(P(t1) D (t3) )o( P(0))5

+2(D(tp) D(t3))o((0))5— 6(P(0))5]+O(g®).
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In the case of only two directed polymers, this whole This is the right-hand side of the given diagrammatic equa-
series can be reexpressed only by connected two point fungion.

tions and then represented diagrammatically as explained in
Sec. Il B. It reads then

APPENDIX D: DERIVATION OF THE EXACT IMPLICIT
ur(to) -6 f+ew v - 6o o EQUATION FOR THE FREE ENERGY

CAAA AR I I o Using the abbreviations from Sec. Il C théh order term

6o L6y - 6o e +0(s5). of the partition function series is expressed by
APPENDIX C:  PROVING RELATIONS AMONG 1y tn t2
DIAGRAMS /T/fo dtnfo dtn—l"'fO dt;g(ty) f(ta—ty) - f(th—t,-1)

Every diagram is related to a multiple “time” integral Xh(L—t,).
over a product of connected two point functions, the argu- ="
ments of which are sums of the different integration vari-
ab!es. I We assume that the Laplace transfggnof the_ two Laplace transforming this with respect tb yields
point functiong, exists, general rules among the diagrams.

can be proved as shown here with the example 3(2)f(2)" *h(2) for the Laplace transforms.
Obviously the Laplace transformed perturbation series is

just a geometric series and can therefore be resummed. After

desd + Q9 = eFo back transformation we end up with
Starting from the left-hand side this is ~
z g(z)h(z
° ° ° ——1=- g. 9 )A( )eLHZdz, (D1)
[“ds [ as [ “asgusitsrshos) 2 2mNlargi)
+ fo dslfo dszfo ds30:(s1+52)91(S2+ S3) wherec is a path in the complex plane parallel to the imagi-

nary axis. Since we can obviously close this path by a circle

1 A A atz— —oo, the integral is given as the sum of the residues of

= WJ dzlf dz,91(21)91(2,) the integrand in the half plane of negative real parts. From
¢ ¢ the form of the integrand it is clear that all residues will be

@ oo @ some prefactor times an exponential with the position of the
Xf dslf dszj dsy[ 3 A1t s2t s+ 225, pole timesL | as its argument. In the limit df;— only the

0 0 0 pole with the smallest decay rafiee., the one with the small-
1 L gastalsits sy § grlsits) 1zt sy est absolute value of its real pasurvives.

By construction, it is clear thad/ has a leading depen-
dence onlL of e "I"%, whereas the poles @ andh are
) ! = : exactly the negative eigenvalues of the Sclimger operator
axis with positive real part. But sincg, decays exponen- corresponding to the free directed polymer probléde-

tially for large arguments, the Laplace transfp@’p is still seribed byH,). The smallest eigenvalue is the leading term
analytic in some region to the left of the imaginary axis andyf |nz, itself, the contribution of which to the integral must
the integration contour can be shifted there. Then the innet;pcel against the 1 on the left-hand side.

integrals of the above equation exist and can be evaluated t0 £rom that we conclude that the leading tern¥dbr large
o Zz) L| is some prefactor times exgl), wherez, is the solution

From its definitionc is a path parallel to the imaginary

of Eq. (29) with the largest(absolutely smallegtreal part.
This decay rate is therefore the leading contribution to the
free energy per unit length in the limiit;—co.

1 . R z
= (2_7_”)zfcdzlfcdzzgﬂzl)gl(zz)( T 222

1 . R 1
= m—i)zfcdzlfcd2291(zl)gl(z2)< - E)

APPENDIX E: HARD WALL RETURN PROBABILITY

1
=0 dszzA 2,)04(2
(2mi) Jc tle 201(21)8:(22) To calculate the return probability of a

1+d-dimensional directed polymer in a round box, we can

% fwdslfxdszfxd%ezl(sﬁ%)“ﬁl use the “quantum mechanical” expression of the propagator
0 0 0 by the eigenfunctions of the “particle in a box” problem.

The eigenfunctions of the particle in a box are Bessel func-

:J' dslj dszf d5501(51)91(Sy+ Sa). tions of thg first kmq and fod>2 we get with the correct
0 0 0 normalization conditions
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2 o0
Gurr) =1z 2
LT =0 Jd-2)12 +1(ak)=0

xe @D ok () m( Q)
m

r® 9234 opni(an)r’ =23y 5p4(ar’)
[Jid-2y2+1+1(al ;)]

X

(ED)

which for d=3 is the heat equation kernel j&8].
In the limit r — 0, which we need for the return probabil-
ity, only the =0 terms stay finite. The sum over the for

=0 radially symmetric eigenfunctions of the angular mo-
mentum operator is just one over the surface of the

d-dimensional unit sphere. Thus the return probability is

d—2
d o (a?i2t| &
2 2

722 5o -0 [Jap(al )]?

r

(E2

Its Laplace transform can formally be calculated term by
term, but since we know that it is ultraviolet divergent for

d>2 we introduce a lower cutot of the integration, which
gives

d
F(E) od-2 e—(a/l_f)(az/z)
7 ze 2 Vi
—d 5 Nd—2
m (ZLJ_) J(d,z)/z(a)zo [‘]d/Z(a)] 2 o
ZLJ_ + ?
(E3)

In the prefactor the limia— 0 is possible without any diffi-
culties.
If we now specialize to the cask=3, we can insert the
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if we ignore the divergence, the first sum contributes/2
to the return probability. Thus the regularized Laplace trans-
form of the return probability is- —2zcot(L, V—22)/8, if
we add all the geometrical prefactors again. This leads to Eq.

(37).

APPENDIX F: EXPLICIT REGULARIZATION
OF THE PERTURBATION SERIES

If we insert the Laurent expansions of the coefficiemts
into the perturbation expansion o§(ug)/e’, we get a regu-
lar part of this series to the leading ordersuig of

2 3 4
Ay Ut (az1t2a;, 185 51281 A1 1))Ug T O(UR).

As discussed in the main text, the singular parts have a quite
simple structure. The most singular teritise first three di-
vergence ordejsare to all orders irug/e€’

a; —1UR n[ 1 N aip F(n—1) 227t
€' a1 a1 (a - )
a a n(n+1) (a;¢?
+l(n+Dyag orn 20 , 820 ( ) (21,0
’ a1 a1 2 a; -1
2 2
a _ n“—3n+2 (a,_
+(n?—n) 1,092, 21+ (ap, 1)3}
(az,-q1) 2 (a1,-1)
><u§+0(ug)).

To complete our program, we just have to find the analytic

especially simple expressions for the Bessel functions an@ontinuations of series of the for@j;_;n*x" and their limit
their roots, transform the quotient to a geometric series, exfor x—o. This is easy because they all are derivatives of

change the sums and end up with

o0 eia(ﬂ.ZnZ/z) s k % —a(m n2/2)
T T T ( ) (ZL* 2 — e
— | —
1+ o
(E4

where we have absorbed a factor of 4/nto a and omitted
the geometrical prefactor. Fde=1 the limita—0 is pos-
sible and we get

k
772 e-a(m®n2) 4 - 2 <__) g(zk)(sz)

> o-a(m?n?2) _ I[
=1 2

L, Vv—2zcof(L, Vv—22)—1].

The k=0 sum obviously diverges foa—0. If we add

geometric series. It turns out that the limit fer> is —1

for k=0 and O for allk>0. So we get the contributions of
the singular terms in the limi¢’ —0 by just insertingh=0

in above expression and taking the negative value of it. If we
do that, we arrive at

| UO(UR)Z_ 1 az-1 u _(a2,—1)2 2
oo € a;1 (a1)% " (A )® R
3
a, _
o2 1)4ug+0(u‘,§). (F1)
(a-1)

(For the third order coefficient we need one term more in the
above formula for the singular parts that has been omitted
because of its lengthinegslhis is obviously the beginning
of a pure geometric series.

If al 1=0, the regular part of the serieg(ug)/ €’ is just

w/2, itis half of the value of the theta function at zero, whicha; 1uR+ O(uR) The singular part consist again of geometric

diverges likea™ (2 with no subleading algebraic terms. So,

series with polynomial coefficients and explicitly reads



54 DIRECTED POLYMERS IN HIGH DIMENSIONS 319

1 . [ap qu3\" Moreover it is possible to prove Lemma 2
ST E (1+na; ug)
2-1YR n= € :
0 2\ n / =L— :
LR (az,—luR n(n+1)(a 124 na / L 2
az-1 n=1| € 2 10 2.0 ¥ / :

+|n(n+1)a; @0t (nN+1)as@,_1+nagg

With this preparation, it is easily possible to compute the
one-, two- and three-point function. The one-point function
has just one diagram with the prefactd(N—1)/2,

—

n3+3n%+2n

e (810°|ug| + O(U}).

The limit ¢’ —0 is again performed by inserting=0 and
taking the negative value which reproduces the expected re-

sult (55). which has the valué [ ¢ according to Lemma 1 and there-
fore gives Eq(61).
APPENDIX G: FIRST THREE ORDERS OF THE In the second order there are three types of diagrams with
PARTITION FUNCTION FOR AN ARBITRARY NUMBER combinatorial prefactors of 1, (B—2), and \N—2)(N
OF DIRECTED POLYMERS —3)/2, respectively[omitting the general prefactor of

During the calculation of the integrands in the series exN(N—1)/2].
pansion of the partition function, most of the terms can be
strongly simplified by using the symmetry of the one particle :I:I: ) I‘
propagator, moving parts of the arguments of the one particle . °
propagator from one argument to the other using the fact that :
the propagator depends only on the difference of the argu-
ments, translatindR? integrations bykL, terms, translating The last two are reduced by Lemma 1116%¢, whereas the
Z9 summations byk’ from other sums, and combining of first one has the value
sums overZ¢ and integrals 0ve[0,Ll]d to integrals over ]

e

RY.

With this technique, it can be generally shown that a di-
rected polymer that is not involved in any of the interactions
does not contribute to the value of a diagram and that a
directed polymer that is involved only in one interaction con- 1 ) d 1 , d
tributes just factor oL . We will call this Lemma 1 and ~ RP(s)=| —= >, e KM9| =| — > e 4ms|
represent it graphically as 4mls kez L kez

dr 2 Gps (0 +KL, )G (0X)=RP(sy).
keZ

Integrating over results in

where the second equation comes from the fact that the sum

/ _d // : is the value of & function at zerd 26].
/ =LJ_ . / Combining everything, we get in the second order equa-
7 72

tion (62). The third order consists of 16 different diagrams.
All of them but one can be evaluated by applying Lemmas 1
and 2 and in the end we get E&3).
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