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We study directed polymers subject to a quenched random potential ind transversal dimensions. This
system is closely related to the Kardar-Parisi-Zhang equation of nonlinear stochastic growth. By a careful
analysis of the perturbation theory we show that physical quantities develop singular behavior ford→4. For
example, the universal finite-size amplitude of the free energy at the roughening transition is proportional to
A42d. This shows that the dimensiond54 plays a special role for the Kardar-Parisi-Zhang problem.
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I. INTRODUCTION

The field of nonequilibrium growth processes has at-
tracted quite a lot of interest in the recent past@1#. The sim-
plest nonlinear model describes a growing surface on suffi-
ciently large length scales as a height profileh(r ,t) over a
d-dimensional reference plane parameterized byr . The dy-
namics of this surface is given by the Kardar-Parisi-Zhang
@2# ~KPZ! equation

]

]t
h5nDh1

1

2
l~¹h!21h ~1!

with a Gaussian white noise defined by

h~r ,t !50 and h~r ,t !h~r 8,t8!5s2dd~r2r 8!d~ t2t8!.
~2!

The surface described by~1! can be in different phases,
which depend on the dimensionless coupling constant

g52
l2s2

2n3
~3!

and the space dimensiond. In less than two dimensions there
are two different phases: the weak coupling phase forg50
and the strong coupling phase forgÞ0. Above two dimen-
sions, there exists a critical valuegc . The surface is in the
weak coupling phase forugu,gc and in the strong coupling
phase forugu.gc . Precisely atugu5gc the system undergoes
a roughening transition. Whereas the linear growth equation
for g50 can easily be solved in any dimension, it is much
more difficult to get information on the critical behavior of
the other phases.

The morphology of the surface in the different phases is
characterized by the asymptotic scaling of the height-
correlation function

^@h~r 1 ,t1!2h~r 2 ,t2!#
2&;ur 12r 2u2x f ~ tur 12r 2u2z!,

which defines the roughening exponentx and the dynamic
exponentz. For gÞ0 these exponents satisfy the relation
z1x52 @3#.

In the strong coupling phase it is known thatz53/2 in
d51 @4# andz52 in the limit of infinite dimension@5#. In
general dimensions all exact methods fail and only numerical
and mode-coupling results are available, but they become
less reliable in higher dimensions. Therefore there is still a
very controversial discussion@6–10# about the existence of a
finite upper critical dimension of the KPZ problem, i.e., a
dimension above which the dynamical exponentz has the
constant value 2.

In the language of the renormalization group, the different
phases belong to different fixed points. For less than two
dimensions, there is one unstable fixed point atg50, which
governs the weak coupling phase, and one stable fixed point
atg→2`, which governs the strong coupling phase. Above
two dimensions, the weak coupling fixed point also becomes
stable and a new fixed point describing the roughening tran-
sition appears in between the other fixed points.

It has been shown@11# that the strong-coupling fixed
point is inaccessible by a perturbation expansion around
g50. The situation is somewhat better for the fixed point
describing the roughening transition. The singularities that
arise in the perturbation series above two dimensions can be
treated in a systematic expansion@12,13# with parameter

e5
22d

2
. ~4!

In the framework of thise expansion, one finds the expo-
nentsz*52 and x*50, which are exact to all orders in
perturbation theory@11#.

However, this perturbation expansion breaks down for
d→4 since new singularities in the perturbation series arise
at e850, where

e8[e115
42d

2
. ~5!

The treatment of these singularities is the aim of this paper.
We develop a systematic way to extract the behavior of
physical quantities asd→4 from the divergent series ine8.
We show that in contrast to the singularities ine, these sin-*Electronic address: Bundschuh@mpikg-teltow.mpg.de
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gularities translate into a nonanalytic behavior of observable
quantities. This stresses the importance ofd54 for the tran-
sition fixed point of the KPZ problem.

We will address this question not in the KPZ picture but
by using the exact Hopf-Cole mapping@14,15# of the KPZ
problem to a directed polymer in a random medium. A di-
rected polymer is a line with a preferred direction that is
governed by its line tension. The energy of a given confor-
mation is

H@r #5E
0

L uuF12 ṙ 2~ t !1
A2ugu

s
h„r ~ t !,t…Gdt, ~6!

wherer (t) is ad-dimensional vector, which denotes the lat-
eral displacement of the directed polymer at a position along
the preferred~‘‘time’’ ! axis t, L uu is the projected length of
the directed polymer, andh is the random potential that ap-
pears in the KPZ equation. Heret already has been rescaled
such that the first term has a dimensionless prefactor of
1/2.

To study the structure of the new singularities in the per-
turbation series, we will use an especially simple physical
quantity. We nevertheless expect that more complicated
quantities such as correlation functions show the same type
of singularities. In a system where the projected lengthL uu of
the directed polymer is infinite while its transversal fluctua-
tions are restricted to a finite volume of widthL'[L1/2, we
define the dimensionless averaged free energy per unit
‘‘time’’

C~g,L !5 limL uu→`

L

L uu
@F~g,L,L uu!2F~0,L,L uu!#. ~7!

The infrared regularization by the length scaleL has to be
introduced, because the series expansion starts at the Gauss-
ian fixed point (g50), which has no intrinsic length scale.
L moreover serves as the flow parameter of the renormaliza-
tion group considered below.

At the roughening transition hyperscaling is preserved at
least around two dimensions@11#. Therefore there are no
corrections to the 1/L'

251/L behavior of the free energy per
unit lengthF(g,L,L uu)/L uu , and the finite-size amplitude

C~g!5 lim
L→`

C~g,L ! ~8!

is a universal quantity. Neard52, one finds@11# for its value
C* at the unbinding transition

C* ~e!;e1O~e2!. ~9!

C is not only one of the simplest physical quantities to be
calculated in our system, but also one of the most fundamen-
tal ones: it plays a role very similar to the central charge in
two-dimensional conformal models@17#.

The directed polymer problem with randomness described
by ~6! can be treated analytically via the replica trick. This
means that it can be expressed as the limiting caseN→0 of
N directed polymers with a short-ranged interaction potential
~see, e.g.,@16#!:

H@r 1 , . . . ,r N#5E
0

L uu 1

2 (
i51

N

ṙ i
2~ t !1g(

i, j

N

d„r i~ t !2r j~ t !…dt.

By ~3!, the potential is always attractive (g,0); it captures
the short-ranged correlations of the disorder~2!.

The finite-size amplitude~7! of the free energy per unit
‘‘time’’ of the random system can then be obtained from the
limit N→0 of the finite-size amplitude per unit ‘‘time’’ and
per pair of directed polymers

C~g,L,N!5
2

N~N21!
limL uu→`

L

L uu

3@F~g,L,N,L uu!2F~0,L,N,L uu!#

of theN-polymer system without randomness.
The development of a perturbative regularization scheme

near four dimensions is done in two steps. First, we use
independent methods~the transfer matrix approach and the
resummation of the perturbation series! to solve the two-
polymer problem exactly. Those methods are reviewed and
extended to our system with a transversally restricted move-
ment in Secs. II A and II B of this paper. Second, we extract
regularization rules from this exact solution. It is shown that
only the most divergent terms in every order contribute to
the leading behavior of physical quantities. Third, we apply
those rules to the case of an arbitrary number of directed
polymers in Sec. III, which can only be solved exactly in one
dimension@18#. A diagrammatic expansion of the partition
function and of the free energy is developed. Due to many
simplifications, we are able to extract the main properties of
theb function @defined in Eq.~39! below# from the general
structure of the perturbation series. In particular, the critical
finite-size amplitudeC* (e), which is proportional to the
nontrivial root of thatb function, is found to have a singu-
larity

C* ~e8!;Ae8 ~10!

near four dimensions. Since this behavior is independent of
the replica numberN, it should remain valid in the random
limit N→0. In Sec. IV, the main results are summarized
again. Many of the technical details have been postponed to
various appendices to keep the route of argumentation
straight.

II. TWO DIRECTED POLYMERS

The problem of two directed polymers (N52) is espe-
cially simple, since one can separate it in the free movement
of a ‘‘center of mass’’ (r11r2)/2 and the movement in the
relative coordinater̂[r22r1 . In the relative coordinate the
transition probability fromr 8 to r within the projected con-
tour lengtht ~the restricted partition function! is given by the
single path integral

Zt~r 8,r !5E
~0,r8!

~ t,r !
Dr̂ expF2E

0

t1

2
r̂̇ 2~ t8!1V„r̂ ~ t8!…dt8G .

~11!
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Since the KPZ problem is equivalent to directed polymers
with a relative short-range interaction the potential is
V(r )5gdd(r ).

A. Transfer matrix results

The path integral~11! is formally a quantum mechanical
path integral in imaginary time. Therefore the partition func-
tion obeys the time dependent Schro¨dinger equation of a
particle in the potentialV(r ), which can be attacked by stan-
dard quantum mechanical methods.

If the movement is restricted to a finite volume character-
ized by some lengthL'5L1/2, the long-time~large projected
length of the directed polymer! behavior of the partition
function is an exponential decay, the decay rate of which is
given by the ground state energy of the quantum mechanical
problem

@2D1V~r !#c~r !5E0c~r !, ~12!

This ground state energy therefore corresponds to the free
energy per unit ‘‘time’’ for long polymers. The finite size
coefficient can be extracted by studying the behavior of this
ground state energy, which decays for large system sizes
L' asE05C/L'

25C/L. In order to calculateC, we extend
here the calculations in@19# to a finite volume.

1. Precise definition of the model

In order to solve the model in arbitrary dimensions, we
have to use spherically symmetric potentials and boundary
conditions. In this case, we can separate the wave function in
a radial and an angular part and transform the Schroedinger
equation to an equation for the radial functionF(r ) that is
r (d21)/2 times the radial part of the wave function. For the
ground state~with zero angular momentum! this reads

2
]2

]r 2
F~r !1

~d23!~d21!

4

1

r 2
F~r !1V~r !F~r !

5Ẽ0F~r !. ~13!

We implement the attractive potential at the origin as a
well potential with a small but finite extensiona and a con-
stant depth Ṽ0 for r,a. By defining f(y)[F(ya),
E0[a2Ẽ0 , V̄(y)[a2V(ya) and V0[a2Ṽ0 , the ultraviolet
cutoff a can be eliminated and everything is written in di-
mensionless variables.

We study here two types of radially symmetric boundary
conditions in detail. They both restrict the movement to a
spherical box of radiusL' . In the first case~Dirichlet bound-
ary conditions! the box consists of hard walls, which means
f(L' /a)50. In the second case~von-Neumann boundary
conditions! we impose that the first derivative of the radial
part of the wave function vanishes at the boundary, in order
to mimic a kind of periodic boundary conditions. For the
radial functionf this means

L'

a

]

]y U
y5 L'/a

f~y!5
d21

2
fS L'

a D . ~14!

Moreover we will consider harmonic boundary condi-
tions. That means that we allow a movement in infinite
space, but restrict the movement by a harmonic well poten-
tial (g/2)r 2. The associated width of the box is from dimen-
sional analysisAg5(p/2)(1/L'

2 ). ~The factor ofp/2 has
only been introduced for convenience.!

2. Results for the free energy

For the well potential of constant depth and the first two
boundary conditions given in the preceding section, it is rela-
tively easy to calculate the ground state energy, because the
potential is piecewise constant. A sketch of these calcula-
tions is given in Appendix A.

Here, we just give the results for the ground state energy.
For the free system (V050) with Dirichlet boundary condi-
tions the ground state energy is exactly given by

E05xueu
2 S a

L'
D 2, ~15!

with xueu being the smallest positive root of the Bessel func-
tion Jueu . This is also the asymptotic behavior for
0,V0,V* . At the phase transition point (V05V* ) we
have

E0'H yueu
2 S a

L'
D 2 ueu,1

4~ ueu21!S a

L'
D 2ueu

ueu.1,

~16!

whereyueu is the smallest positive root ofJ2ueu .
For von Neumann boundary conditions the ground state

energy is zero atV050. At 0,V0,V* the asymptotic be-
havior is

E0'2
4ueu~ ueu11!

2ueu
Jueu~AV0!

AV0Jueu11~AV0!
21

S a

L'
D 2~ ueu11!

. ~17!

The decay is faster than quadratic, which means that the
coefficient we are looking for remains zero. At the phase
transition we get

E0'H 2zueu
2 S a

L'
D 2 ueu,1

4Aueu~e221!S a

L'
D ueu11

ueu.1,

~18!

wherezueu is the smallest positive root ofI2ueu21 . The decay
for ueu.1 is again faster than quadratic. This scaling behav-
ior of the free energy per unit length in a system of finite
transversal size at the unbinding transition is consistent with
the scaling behavior of the eigenenergy of the bound state in
the infinite system@20#.

The finite-size coefficientC* defined in the introduction is
the difference
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C*5 lim
L'→`

S L'

a D 2@E0~V05V* !2E0~V050!#. ~19!

It is plotted against the dimension in Fig. 1 for both bound-
ary conditions.

It can be seen thatC* stays finite asd approaches four
with Dirichlet boundary conditions, whereas for von-
Neumann boundary conditionsC* approaches zero. From the
first three terms of the series expansion of the Bessel func-
tion I2ueu21 we get near ueu51 a behavior of

zueu;4A2(12ueu)1O(ueu21), which yields Eq.~10!.
For harmonic boundary conditions the differential equa-

tion in the outer area is a bit more complicated. Its solution is
f(y);y21/2WE0/4Aga2,e/2(Aga2y2) with the Whittaker func-

tion Wl,m(z). The condition of differentiability aty51 is
also more complicated to evaluate than for the von Neumann
or Dirichlet boundary conditions, but in the end we
get E0;p(d/2)(a/L')

2 at 0,V0,V* and E0;p(2
2d/2)(a/L')

2 at the phase transitionV05V* . Therefore

C*5p~22d!52pe. ~20!

B. General perturbation theory

However there is a second approach to solve Eq.~11!. It
starts from the partition

H5H01gE
0

L uu
F~ t !dt with F~ t ![dd„r ~ t !… ~21!

of the energy functional into the free part~kinetic part and
infrared regularization! and an interaction part and sets up a
perturbation series of the partition function as

Z

Z0
5^e2g*

0

L uuF~ t !dt&0511 (
n51

`

~2g!n

3 E dt1•••E
0<t1<•••<tn<L uu

dtn^F~ t1!•••F~ tn!&0 , ~22!

where the expectation values^ &0 are taken with respect to
H0 and Z0 is the partition function just forH0 . Here the
factor of n! has been canceled out by introducing a time
ordering.

Taking the logarithm of this series allows us to express
the free energy as a series ing. Since all correlation func-
tions are translationally invariant in the limit of largeL uu ,
one of the integrations just gives a factor ofL uu that cancels
out since we are interested in the free energy per unit length.
To second order, we have

lim
L uu→`

F~g!2F~0!

L uu
5g^F~0!&02g2E

0

`

@^F~0!F~ t !&0

2^F~0!&0
2#dt1O~g3!.

Since the structure of the singularities in the cased→4 does
not show up in the second order, we have to extend the
perturbation series to higher orders.~See Appendix B.!

For two directed polymers with ad interaction it is now
particularly simple to calculate the time-ordered correlation
functions, because all multipoint functions can be expressed
by two-point functions via

^F~ t1!•••F~ tn!&05
^F~ t1!F~ t2!&0•••^F~ tn21!F~ tn!&0

^F~0!&0
n22 ,

~23!

as one can easily derive from the expression

FIG. 1. Transfer matrix results for the finite-size coefficient of the free energy per unit length. The dependence on the dimensionality is
shown for von-Neumann~a! and Dirichlet~b! boundary conditions.
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^F~ t1!•••F~ tn!&05
*dr1*dr2Gt1

~r 1,0!Gt22t1
~0,0!•••Gtn2tn21

~0,0!GL uu2tn
~0,r 2!

*dr1*dr2GL uu
~r 1 ,r 2!

~24!

for the multipoint function in terms of the propagator
Gt(r 1 ,r 2) of the relative coordinate of the free~only infrared
regularized! directed polymers.

It is even more convenient to introduce the dimensionless
connected two point function

g1~s![
^F~0!F~Ls!&0,c

^F~0!&0
2 [

^F~0!F~Ls!&02^F~0!&0
2

^F~0!&0
2 .

and the dimensionless coupling constant

u0[gLe5gL^F~0!&0 . ~25!

Then the finite-size coefficient of the free energy per unit
‘‘time’’ reads

C~u0!5L lim
L uu→`

F~g!2F~0!

L uu
5u02u0

2E
0

`

g1~s!ds

1u0
3E

0

`E
0

`

@g1~s1!g1~s2!2g1~s11s2!#ds1ds2

1O~u0
4!, ~26!

where the time-ordered integration has been broken up into
integrals over the respective time differences.

As we can see, the finite-size coefficient is equal to the
dimensionless coupling constantu0 to first order. Singulari-
ties in this series can only arise in the integrals of the higher
order terms. The renormalized coupling constant must be
defined such that all singularities in the higher order terms
are canceled. This is done by imposing the renormalization
point condition for the renormalized coupling constant

uR~u0!5C~u0!. ~27!

This renormalization point condition has the advantage that
it gives a physical meaning to the renormalized coupling
constant.

Now we have to study the perturbation series~26! in de-
tail. Already in the third order the essential difference be-
tween the regularization scheme ate50 and ate850 be-
comes obvious. Neare50, the second term in the third order
coefficient does not diverge at all, so that only the first term,
which obviously factorizes to the square of the second order
coefficient, produces divergences. This statement is true to
all orders of perturbation theory, which produces just a geo-
metric series of divergences. The especially simple structure
of the divergences ate50 guarantees that theb function
calculated to the second order is exact to all orders of per-
turbation theory@11,21#.

Near e850, however, the second term diverges as well.
So in every order combinations of different types of diver-
gences occur, which do not factorize any more.

Since the terms in the perturbation series become quite
nasty in higher orders, it is convenient to introduce a graphi-

cal representation. Each of the timest1 , . . . ,tn at thenth
order will be represented by a point. The two-point functions
g1„(t i2t j )/L… are denoted by lines that connect thei th and
the j th point. With this representation we can sketch our
series expansion up to higher orders as it is done in Appen-
dix B.

Careful inspection shows that all diagrams appear that
have at least one line passing each interval between two
points and do not have two lines leaving one point in the
same direction. The corresponding prefactors are given by

~21!#P2 l21)
pPP

l p!, ~28!

as follows by inspection up to the seventh order. Herel
denotes the number of lines in the diagram,P is the set of
points in the diagram, and for eachpPP lp is the number of
lines that pass the given point.

Using relations as explained in Appendix C it is further-
more possible to get rid of all ‘‘nested’’ diagrams. Inverting
the resulting series order by order we end up with the series
expansion ofu0(uR)

We will further discuss the structure of this series in a later
section.

C. Resummed perturbation theory

It is perhaps not surprising that the exact solubility of the
two-polymer problem is reflected in the summability of the
perturbation expansion. This leads to an implicit equation for
the dependence ofC on the interaction constant. In order to
get these results, we review here the summation technique
given in @22# and generalize it to arbitrary boundary condi-
tions.

1. Resummation for arbitrary boundary conditions

The main idea that leads to the summability is that the
coefficients of the perturbation series of the partition func-
tion have a product structure, which leads to a simple geo-
metric series if they are properly decoupled. This decoupling
is achieved by Laplace transforming the constituents of
equation~24!. We will call them for simplicity
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f ~ t ![Gt~0,0!, N[E dr1E dr2GL uu
~r 1 ,r 2!,

g~ t ![E drGt~r ,0!, and h~ t ![E drGt~0,r !.

Their Laplace transforms are denoted byf̂ , ĝ, andĥ, respec-
tively.

Performing the Laplace transformation on the coefficients
of the partition function, an implicit equation for the free
energy per length can be extracted. The argumentation is
given in Appendix D. The result is that the free energy per
unit ‘‘time’’ for long directed polymers is given by2z0 ,
wherez0 is the solution of

11g f̂~z!50 ~29!

with the largest~absolutely smallest! real part. This is an
exact implicit equation for the free energy per unit length
derived from perturbation theory.

Introducing again dimensionless coupling constants we
get the equation

11u0F~uR!50, ~30!

where F(z)[L2e f̂ „L21(2 f 02z)… and f 0 denotes the di-
mensionless free energy per unit length of the free (u050)
problem.

Since this equation has to be fulfilled foru050 and
uR50, F has to behave like21/z at zero and
H(z)[F(z)11/z is a regular function. Expressed byH in-
stead ofF, the implicit equation foru0(uR) reads

uR2u01u0uRH~uR!50. ~31!

2. Results for specific infrared regularizations
and the duality relation

Now we want to calculateH for specific infrared regular-
izations, in order to compare the general equation~31! with
results from the literature.

Therefore we first reconsider the definition

H~z!5E
0

`

@L12eGsL~0,0!e
f0s21#ezsds ~32!

of H(z). From dimensional analysisGsL(0,0) must have the
form

GsL~0,0!5~sL!e21gIR~sL!. ~33!

SinceGsL(0,0) has to decay exponentially with the ground
state energy of the quantum mechanical problem, i.e., like
e2s f0, it is easy to see thatH(z) is well-defined forz→0 in
the infrared, because it follows that

L ~12e!GsL~0,0!e
f0s215se21hIR~s! ~34!

with a for large arguments exponentially decaying function
hIR(z).

Also it is clear that ultraviolet divergences arise for
e→0. The derivatives ofH with respect toz are less diver-
gent in the ultraviolet regime; thekth derivative will develop

ultraviolet divergences ate→2k. Thus in the casee8→0,
which we are interested in, also the first derivative ofH at
z50 is ultraviolet divergent.

The easiest case is the harmonic regularization, because
the full propagator of the quantum mechanical harmonic os-
cillator is analytically known in all dimensions@23#. From
this we extract the return probability for our directed poly-
mer problem by insertingr5r 850 and get

L12eGsL~0,0!5@2sinh~ps!#2~12e!. ~35!

From the decay at larges we concludef 05pd/2.
The Laplace transform of this function can be explicitly

performed~@24# 3.541! and gives

F~z!5
G~e!

2p

GS 2
z

2p D
GS e2

z

2p D . ~36!

For d51 or e51/2 this formula together with Eq.~30! co-
incides with the one-dimensional transfer matrix result in
@25#. We want to stress that we just calculated the full tran-
sition function for the free energy from the Gaussian to the
non-Gaussian fixed point in any dimension in the case of a
harmonic boundary condition.

It is remarkable that ford53 or e521/2 the equation
~30! is equivalent to thed51 case, if one replacesg up to a
numerical factor by21/g. This shows a duality~which ex-
ists for all dimensionsd and d̃542d): The transition from
the Gaussian fixed point in a dimension belowd52 via a
repulsive interaction to the non-Gaussian fixed point is ex-
actly the same as the transition from the Gaussian fixed point
in the symmetric dimension aboved52 to the non-Gaussian
fixed point via an attractive potential.

An explicit calculation of the Laplace transform of the
propagator with hard wall~Dirichlet! boundary conditions
~see Appendix E! in d53 gives the equation

8

u0
5A2~uR1 f 0!cot@A2~uR1 f 0!#, ~37!

which shows the same duality relation with the transfer ma-
trix result ford51 in @25#.

D. Comparison of the two perturbative approaches

We will now see that the resummed and the naive pertur-
bation series after all manipulations presented in the last two
sections are exactly equivalent. The resummation method
gives us the exact relation~31! between the finite-size coef-
ficient uR of the free energy per unit length and the dimen-
sionless coupling constantu0 . If we assume thatH can be
expanded in a Taylor series aroundz50, a perturbation se-
ries can be easily extracted from this equation and it is the
same perturbation series as we already calculated directly, if
we identify
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Using the specific representation~32! of H(z) by the func-
tion hIR(z) ~34!, which is directly connected to the return
probability of the free problem, the coefficients are calcu-
lated as

an5
1

~n21!! E0
`

se211n21hIR~s!ds. ~38!

For the comparison with the transfer matrix results, we
have to calculate the free energy per unit length at the tran-
sition point. By virtue of our renormalization point condition
~27! the finite-size coefficient of the free energy per unit
length is just the fixed point value of the renormalized cou-
pling constant.

This fixed point value is the root of theb function

b~uR!5L]LuR , ~39!

which describes the flux of the renormalized coupling con-
stant. According to the chain rule theb function is expressed
by the functionu0(uR) and its first derivative and can there-
fore be calculated from Eq.~30!. We get

b~uR!52e
F~uR!

F8~uR!
. ~40!

This enables us to calculate thisb function explicitly in the
case of a harmonic infrared regularization, where the Laplace
transform of the return probability can be performed~36!.
The result is

b~uR!5
2pe

CS 2
uR
2p D2CS e2

uR
2p D ~41!

with the digamma functionC(z)5d/dz lnG(z). The behav-
ior of this b function is shown in Fig. 2. Fore,0 there is
always one negative root and the slope of theb function at
the root is2e. It is remarkable that theb function has a well
defined limit function fore→21 (e8→0), which is the case
we are mostly interested in. The limitingb function is just
the straight lineuR12p.

E. The limit e8˜0

In the preceding section, we remarked that despite of the
singularities in the coefficients of the perturbation series, a
limiting b function for e8→0 exists. We heavily used the
fact that we could calculate a closed form expression for the
b function, and its properties are a bit awkward. Especially
b is nonanalytic atuR50.

Now we have to extract the behavior of theb function in
the limit e8→0 directly from the lowest order terms of the
perturbation expansion in a way that is generalizable to an
arbitrary number of directed polymers.

1. General regularization scheme

Let us assume a perturbation series

f e8~u!5 (
n51

`

bn~e8!un, ~42!

the coefficients of which diverge in the limite8→0. Assum-
ing thate850 is a pole ofbn of maximalnth order we use
the Laurent expansion ofbn

bn~e8!5 (
k50

n

an
~k!~e8!2~n2k!1cn~e8!, ~43!

where lime8→0cn(e8)50. We insert this expansion into the
perturbation series and change the order of summation to

f e8~u!5 (
k50

` F (
n50

`

an1k
~k! S ue8D

nGuk1 (
n51

`

cn~e!un. ~44!

If now the analytic continuations of the functions

hk~x![ (
n50

`

an1k
~k! xn ~45!

have well defined limits forx→`, the limiting form of f e8
will be

f 0~u!5 (
k50

`

@ lim
x→`

hk~x!#uk. ~46!

Moreover using just a finite number of these terms will give
us a systematic expansion off e8 for small e8.

To summarize the method, we have to extract just the
most divergent parts of all the coefficients and use them to
set up the functionshk . Those then have to be analytically
continued and the limitx→` to be taken. The limits will
give the coefficients of the limiting functions. In the follow-
ing discussion this general approach has to be modified in
some special cases, but the general idea will remain the
same.

2. The generic case of two directed polymers

In both perturbative approaches, we have seen that the
coefficients of the perturbation series can all be expressed by
some set of constantsa1 ,a2 , . . . that can either be regarded
as the fundamental graphical element of one arc in a diagram
or as a derivative of the functionH(z) defined above. The

FIG. 2. b function of a directed polymer in a harmonic poten-
tial.
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structure of the perturbation expansion is independent of the
infrared regularization chosen. Different infrared regulariza-
tions just result in different values of the coefficientsai .

In the limit e8→0 only the first two coefficientsa1 and
a2 will diverge, whereas all the higher coefficients remain
regular, as it has been stated in Sec. II C 2. At this point we
should remember that in the usual casee→0 only the coef-
ficienta1 is divergent. So the main difference in this problem
is the existence of two divergent fundamental diagrams in-
stead of one.

To extract the pole structure, we assume the Laurent ex-
pansion of all the fundamental coefficients:

ak5
ak,21

e8
1ak,01ak,1e81ak,2e821•••, ~47!

whereak,2150 for k>3.
Since we can calculate the perturbation series up to quite

high orders, we can insert these expansions in the series and
study the behavior of the most divergent terms. It shows up
that the correct series to regularize is the series for
u0(uR)/e8, because this series has a pole ofnth order ine8
among itsnth order diagrams.

The singular parts happen to have a quite simple structure.
All diagrams of a given order of divergence~order in uR
minus order of the pole ine8) can be expressed as a geomet-
ric series modified by coefficients polynomial in the running
index n. The degree of those polynomials is at most the
divergence order itself, as can be checked to quite high or-
ders. So these series can be resummed, analytically contin-
ued and their limit forx→` can be taken.

The explicit form of this series can be found in Appendix
F. The regularized series in the limite850 turns out to be a
geometric series, which is resummed to

lim
e8→0

u0~uR!

e8
52

1

a1,211a2,21uR
, ~48!

which leads to a linear limitingb function of

lim
e8→0

b~uR!5
a1,21

a2,21
1uR . ~49!

The result is quite remarkable, because it states that the
b function is linear independent of the infrared regulariza-
tion chosen in the limite8→0, which is surely not true for
finite e8. The result, of course, reproduces exactly the ex-
plicit form of theb function that we calculated for harmonic
boundary conditions.

Interestingly, the coefficientsa1,21 anda2,21 in the lim-
iting b function can be calculated much more easily than all
the other coefficients that were temporally involved in the
calculation. We just have to recall the definition ofa1 and
a2 ~38!. Integrating by parts the integral fora1 two times and
the integral fora2 one time and dropping the boundary
terms, which are zero at least fore.0, we get

a15
1

e8~e821!
E
0

`

se8hIR9 ~s!ds, ~50!

a252
1

e8
E
0

`

se8hIR8 ~s!ds. ~51!

Since the divergences ine8 are explicit in these formulas, we
get the coefficientsa1,21 anda2,21 by substitutinge850 in
the converging integrals. This results in

a1,215hIR8 ~0!, a2,215hIR~0!. ~52!

So these coefficients are directly expressible by the return
probability without any integrations.

3. The case of a vanishing leading singularity

The above derivation has one severe problem. Although
the calculated regularized series~and therefore theb func-
tion! is well defined in the limit ofa1,21→0, the whole cal-
culation relies on the fact thata1,21 is different from 0.

Unfortunately this is not true in the very important case of
von Neumann or periodic boundary conditions. These
boundary conditions are the most simple ones for the pertur-
bation series of more than two directed polymers.

With periodic boundary conditions, the propagator is just
the sum of free propagators connecting equivalent points.
The return probability therefore reads

Gt~0,0!5S 1

A2pt
(
kPZ

e2~k2L'
2 /2t !D d. ~53!

UsingL5A2pL'
2 as it is defined bŷF(0)&05L12e, we get

~since f 050)

hIR~s!5S (
kPZ

e2~k2p/s!D d2sd/2. ~54!

At d54 hIR(0)51, buthIR8 (0)50.
Since we know the whole perturbation series, we can just

inserta1,2150 and repeat our above calculations. The struc-
ture of the poles changes, because now the only divergence
resides in the arc, which spans two intervals. This leads to
the fact that the order of the poles ine8 increases only every
second order and the coefficient connected to all poles is
a2,21 . We take care of this fact by grouping together all
singularities with the same powers ofa2,21uR

2/e8. The struc-
ture of the singular part of this series is then very similar to
the previous one and the regularization scheme can be used
in the same way as before. The explicit form of the important
parts of the perturbation series is shown in Appendix F; in
the limit e8→0 we get the expected result

lim
e8→0

u0~uR!

e8
52

1

a2,21uR
1O~uR

3 !, ~55!

which is the same as if we had taken the limita1,21→0 in
our above result. Therefore also the limitingb function is

b~uR!5uR1O~uR
2 !. ~56!

There is one more remarkable thing in thisb function: If
we just add up the geometric series of the most singular
terms and do not perform the limite8→0, but just insert
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small e8 we get theb functions shown in Fig. 3. From this
we can extract two points. First, we can see, how theb
function with a negative slope at zero approaches its limiting
shape with a slope of 1 at zero~and everywhere else!. More-
over we remark that all three truncatedb functions ~they
differ in the divergence order where they are truncated! have
a common root at2a2,21Ae8. The fact that this is true to all
calculated orders strongly suggests that these roots are exact,
which means that the fixed point approaches zero as

uR;Ae8, ~57!

which is just Eq.~10!.

4. Comparison between the perturbative
and the transfer matrix approach

For harmonic boundary conditions, the zero of theb
function ~41! calculated by the regularized perturbative ap-
proaches is exactly equal to the finite-size coefficient~20!
calculated in the transfer matrix picture. Since the von-
Neumann and Dirichlet boundary conditions in the transfer
matrix approach and in the perturbation series are not abso-
lutely equivalent~in the transfer matrix approach the bound-
ary has a spherical shape!, those results are not quantitatively
comparable. Nevertheless qualitatively also those results are
the same as far as the limite8→0 is concerned: In the case
of hard wall ~Dirichlet! boundary conditions, the perturba-
tion series predicts ab function with a zero at a finite nega-
tive value. This is also the result of the transfer matrix cal-
culation due to the finite value of the ground state energy of
the free system. With periodic~von Neumann! boundary
conditions, the perturbation theory and the transfer matrix
approach both predict thatC* approaches zero ase8→0 and
they both result in the square root dependence~10! of e8. We
conclude that the chosen method of regularization of the per-
turbation series reproduces the exact results of the transfer
matrix approach and therefore is a valid regularization
scheme.

III. ARBITRARY NUMBER OF DIRECTED POLYMERS

Now we will develop a diagrammatic expansion of the
theory of an arbitrary number of directed polymersN inter-

acting by short-range interactions. We will see that the struc-
ture shows strong analogies to the case of only two directed
polymers, which suggests that the perturbation series can be
regularized in the same way as the perturbation series for
N52.

A. Diagrammatic expansion

1. Perturbation series of the partition function

In order to keep the calculations as simple as possible, we
choose periodic boundary conditions as the infrared regular-
ization. That means that we identify the pointsr and
r1kL' for every kPZd. Writing down the corresponding
propagators, it is clear that the problem ofN directed poly-
mers with periodic boundary conditions is equivalent to the
problem ofN free directed polymers with periodic interac-
tions.

So the perturbation series for the partition function re-
mains the same as~22! with the definitions

F~ t !5S (
i, j

N

(
ki jPZd

d„r i~ t !2r j~ t !2ki j L'…D ~58!

and the free expectation values

^ &0[L'
2NdE

@0,L'#d
ddr 18•••E

@0,L'#d
ddr N8

3E
Rd
ddr 19•••E

Rd
ddr N9 E

~r18 . . . ,rN8,0!

~r19 , . . . ,rN9 ,L uu!Dr 1•••Dr N

3expF2~1/2!E
0

L uu

(
i51

N

ṙ i
2~ t !dtG . ~59!

As in the above discussion, we first have to calculate the
multipoint functions in the perturbation series of the partition
function and combine them afterwards to the connected mul-
tipoint functions, which are the integrands of the perturbation
series of the free energy.

Since the argument of a multipoint function is the sum
over differentd interactions, all sums can be extracted from
the expectation value. In thenth order the sums overi, j
correspond to the different ways, then interactions can be
arranged among theN directed polymers. Obviously a lot of
arrangements are equivalent. So every possible arrangement
of interactions will be accompanied by a combinatorial pref-
actor that counts the number of equivalent arrangements. The
sum over all i, j can then be written as a sum over all
possible arrangements with each arrangement multiplied by a
convenient combinatorial prefactor.

Since there are obviouslyN(N21)/2 possibilities to place
the first interaction, all these prefactors will be multiples of
N(N21)/2. This is the reason, why we divide the free en-
ergy by this factor in order to get the renormalized coupling
constant.

To improve the bookkeeping, we will represent every ar-
rangement of interactions graphically by drawing parallel
lines representing the directed polymers and a connection
between two of them for everyd function between two poly-
mers. The first connection belongs to the ‘‘time’’t1 , the last

FIG. 3. Approximations to theb function of a directed polymer
with periodic boundary conditions for a smalle8. The straight line
is the limitingb functionb(uR)5uR for e850. The other three are
calculated with the samee850.005 but truncated at different or-
ders. Two of them already coincide.
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one to the timetn . To write down some simplified expres-
sions later on, we also introduce a dotted line that can rep-
resent a ‘‘time’’ in the diagram, where no interaction is
present, and that is used to keep the relation between the
time variables and the interactions, if an interaction is
dropped due to a simplification rule.

Between two ‘‘interaction times’’ we have to insert the
free propagator forN directed polymers, which of course
factorizes in a product of free one-polymer propagators

GDt~r 8,r 9!5
1

~2pDt !d/2
e2@~r 82r 9!2/2Dt#. ~60!

Since this is a Gaussian, all integrations over ther i can be
performed. Moreover it is clear from the translational invari-
ance of the propagator that only a dependence on ‘‘time’’
differences will arise. Therefore we change our integration
variables. Instead of integrating over all ordered ‘‘times’’
0,t1,•••,tn,L uu , we integrate over all existing ‘‘time’’
differencest i2t i21 . In the limit of infinitely long directed
polymers (L uu→`) the domain of integration is from zero to
infinity for each of these variables, whereas the integration
over t1 just gives a factor ofL uu , which is canceled because
we want to calculate the free energy per unit length and per
pair of directed polymers. The new integration variables will
be made dimensionless by a factor ofL and we call them
s1 , . . . ,sn21 .

To calculate the integrands, some simplification tech-
niques can be used and especially two general simplification
rules, which we will call Lemmas 1 and 2, can be derived.
The integrands of the first three orders of the perturbation
series for the partition function can be explicitly calculated
by using these techniques. The detailed simplification rules
and the calculation for the first three orders can be found in
Appendix G and lead to

2

N~N21!
^F~ t !&05L'

2d , ~61!

2

N~N21!
^F~0!F~Ls1!&0

5L'
2dRp~s1!1

~N21!~N22!

2
L'

22d , ~62!

and

2

N~N21!
^F~0!F~Ls1!F@L~s11s2!#&0

5L'
2dRp~s1!R

p~s2!1
~N11!~N22!

2
L'

22dRp~s1!

1
~N11!~N22!

2
L'

22dRp~s2!

1
~N15!~N22!

2
L'

22dRp~s11s2!

1
~N22!~N23!~N213N14!

4
L'

23d ~63!

with the two-polymer return probability

Rp~s!5S 1

AL (
kPZ

e24pk2sD d. ~64!

We want to stress at this point that up to the third order the
only quantity arising is the two-polymer return probability
Rp(s) and the only effect of more than two directed poly-
mers are the combinatorial prefactors. Unfortunately we can-
not just stop our discussion here, because at fourth order
generically new diagrams arise. Since the number of dia-
grams heavily increases, it is convenient to use some com-
puter algebra in order to generate all diagrams. In the sixth
order, for example, there are 29 388 possible arrangements
of the interactions, which can be reduced to 5300 by auto-
matically applying Lemma 1.

The new diagrams in the fourth order are the following
ones:

They can, of course, also be integrated out, which gives
L'

23dRp(s112s21s3) for the first one. The other two con-
tain two sums overZd that cannot be decoupled. The second
one, for example, can be written as

H 1

L2 (
k,k8PZ

expF24p2~k k8!S s11s21s3
1
2 s2

1
2 s2 s2

D S k

k8D G J d

after applying the transformation formula for the two-
dimensionalu function @26#.

Calculating the diagrams to higher orders shows us that
there is a simple recipe that allows to perform all spatial
integrations formally, if the form of the diagram is given.
The rules are as follows.

~i! Mark all loops in the diagram that are necessary to
pass each interaction at least with one loop. Assign an ori-
entation to every loop.

~ii ! If there arem loops necessary, use anm3m matrix
T and identify each row and column with one of the loops.

~iii ! Pass for all ‘‘time’’ intervalsi over all lines of the
diagram and

~a! add si /2 to every diagonal element of a loop that
passes the line,

~b! add6si /2 to both of the off diagonal elements of
two loops that pass together through the line. If they
pass in the same orientation the plus sign has to be
used, otherwise the minus sign.

~iv! The value of the diagram is then

FL2~order/2! (
kPZm

e24p2kTTkGd. ~65!

This prescription also implies the validity of the Lemmas 1
and 2 used above.

Since there are several possibilities to choose the loops in
a diagram, the correspondence from a diagram to aT matrix
is not unique. For example, in the fourth order diagram, the
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loops could be chosen as

which leads to theT matrices

S s11s2
1
2 s2

1
2 s2 s21s3

D , S s11s21s3
1
2 s21s3

1
2 s21s3 s21s3

D .
Although theT matrices are not identical, the sums that de-
termine the value of theT matrix are the same, because the
second of those matrices is reproduced, if in the sum with the
first matrix, the summation variablek2 is shifted byk1 . Dur-
ing all those equivalence transformations, the determinant of
the T matrix does not change, so that twoT matrices from
different diagrams can only be equivalent, if their determi-
nants are identical. Unfortunately there exist alsoT matrices
that are not equivalent but have the same determinant. This
purely mechanical procedure of setting up and combining
T matrices can be implemented by computer algebra and
reduces the number of different diagrams in the fifth order
from 348 to 88.

2. Perturbation series of the free energy

Since we now know how to compute the multipoint func-
tions, we can calculate the free energy using the formula
from Appendix B. Analogous to the connected two point
functions we used for the two-polymer problem, we have to
express everything in terms of correlation functions that de-
cay properly for increasing time differences. In analogy to
the definition of g1 , which in our terminology reads
g1(s)5L'

dRp(s)21, we will use functions ofT matrices,
where all submatrices of lower dimensions are subtracted
with alternating signs, as, for example,

g2~a,b,c![H (
kPZ2

expF24p2kTS a b

b cD kG J d

2H (
kPZ

e24p2ak2J d

2H (
kPZ

e24p2ck2J d

11,

and analogously for a higher number of loops.
Of course the subtracted terms depend on theT matrix

itself and are different, if one chooses differentT matrices
that represent the same diagram~that give the same value for
the first term of the above sum!. If one chooses the wrong
representation, one will discover that there are terms, the
time integrals of which will not converge. But it is always
possible to choose a representation that leads to terms that
are each integrable~of course the sum of all terms is inte-
grable in every case, it is just possible that one chooses an
inconvenient partition of the integrand.!

Once the coefficients of the free energy are represented as
a sum over time integrals, further simplifications can be per-
formed, by multiplying the integration variables by constant
factors and applying relations as shown in Appendix C. We
will continue to represent every of those integrals by one of

the diagrams that is responsible for the main term of the
integrand. Since the integrands themselves depend on the
way, the loops are chosen, we must specify our choice.
Those parts of diagrams that can be expressed only byg1
~i.e., that are pure two-polymer diagrams! will be represented
by the same diagrams as they have been used in the two-
polymer case.

The resulting diagrammatic expansion for the free energy
is shown in Fig. 4 up to the fifth order. It should be stressed
that the number of diagrams involved in this final expansion
is very small compared to the number of diagrams in the
original perturbation series of the partition function. Since
the applicability of most of the simplifying formulas as those
from Appendix C relies on very specific relations between
the coefficients of the diagrams involved, it is very unlikely
that this structure evolves just by chance. This is a strong
hint that there exists a similar equation as~31! for an arbi-
trary number of directed polymers that produces this rela-
tively simple structure of the perturbation series. Unfortu-
nately no such formula could be found up to now.

B. Comparison with the N52 case

We can now compare the perturbation series to the per-
turbation series of two directed polymers. First there are a lot

FIG. 4. Diagrammatic series expansion of the free energy per
unit length up to the fifth order for an arbitrary numberN of inter-
acting polymers.
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of diagrams that appear already in the series of two directed
polymers that now have prefactors with a polynomialN de-
pendence. We will call them ‘‘linear’’ diagrams, because
they have no nested loops. The value of one arc itself is of
course the same as for two directed polymers. Especially
only the arc that spans two intervals has a pole ate8→0.
This pole is of the first order.

Since we have explicit expressions for all of the diagrams,
it is also possible to extract at least the order of the pole of
each of the nested diagrams ase8→0. This can be done by
extracting the UV dependence of the integrands and partial
integration. It comes out that all nested diagrams are less
divergent than the product of two-interval arcs in the same
order of the perturbation theory. Therefore, as in the case of
two directed polymers, the powers of the two-interval arc are
the most divergent diagrams and the order of the pole grows
by one only in every second order of the perturbation series.

Although we gave here the diagrammatic expansion of the
seriesuR(u0), the same statements are true for the inverted
seriesu0(uR), since it consist of exactly the same diagrams
with other prefactors. Analogous to the case of two directed
polymers, we write the partial sum over all those most diver-
gent diagrams as

u0~uR!

e8
5

1

uR
f regS uR

Ae8
D 1 less divergent terms, ~66!

where f reg is an even function, with Taylor coefficients that
stay regular ase8→0. If we now assume that the fact that the
series forf reg(x) can be analytically continued tox→` and
that limx→` f reg(x) exists is not a particularity of two di-
rected polymers, we get a leading behavior of

u0~uR!

e8
'

a

uR
, with a5 lim

x→`

f reg~x!. ~67!

Differentiation then leads to the limitingb function

b~uR!5uR1higher order terms. ~68!

The slope of 1 of thisb function shows that the Gaussian
and the unbinding fixed point coalesce atuR50. Thus we
expect that fore8→0 the non-Gaussian fixed point goes to
zero for eachN. Since theb function is a regular function of
uR /Ae8 also the behavior proportional toAe8 is independent
of N.

C. Consequences for the limitN˜0

The independence of the behavior of the fixed point near
d54 renders the limitN→0, which describes the directed
polymer in a random medium, trivial. Thus we conclude that
the finite-size amplitude of the free energy per unit ‘‘time’’
also vanishes as given in Eq.~10! for the directed polymer in
a random medium. This shows that the singularities in the
perturbation series that arise atd54 are not only a formal
problem of the approach, but they lead to a nonanalytic be-
havior of a physical quantity.

Although the duality relations between dimensionsd and
42d in Sec. II C 2 have only been observed in the case
N52, one could speculate that such a relationship still exists

for arbitraryN and the KPZ problem. This is especially in-
teresting since Frey and Ta¨uber find in @27,10# that their
coupling constant approaches zero in the limitd→0. How-
ever, it is not absolutely clear how the two coupling con-
stants are related, and this point deserves further investiga-
tions.

IV. CONCLUSION AND OUTLOOK

We have studied the problem ofN directed polymers with
short-range interactions focusing on the behavior near
d54, where the standard renormalized perturbation theory
aroundd52 breaks down. We have developed a new regu-
larization scheme around four dimensions, and we have
shown that it reproduces the exact results in the caseN52.

For an arbitrary number of directed polymers, a diagram-
matic expansion of the free energy up to the fifth order has
been established. Although it stems from a large number of
terms this expansion is relatively simple. This suggests that it
can also be generated by a simple equation, which has, how-
ever, eluded us so far. Using the regularization scheme, we
have shown that the finite-size amplitude of the free energy
per unit length shows a singularity proportional toAe8 as
d→4 for any value ofN, in particular for the random limit
N→0.

We may thus calld54 the upper critical dimension of the
KPZ roughening transition. At this dimension, the entire
scaling theory describing the roughening transition becomes
singular. In particular this is true for temperature perturba-
tions into the strong-coupling phase. Thus we may speculate
that the singularities of physical quantities atd54 persist in
the strong-coupling phase, which would indicate thatd54 is
the upper critical dimension of this phase as well.

What happens above four dimensions? Some clues can be
obtained from the behavior of the finite-size amplitude of the
free energy per unit length in the caseN52. As Eq. ~18!
shows, the free energy per unit length develops an anoma-
lous scaling behaviorẼ0;L'

22(a/L')
(d24)/2. The finite-size

amplitude therefore depends explicitly on the short-distance
cutoff a. Thus it is no longer possible to define a universal
quantity from the free energy. If this behavior persists for
arbitraryN, the critical behavior of the KPZ equation at the
roughening transition aboved54 is less universal than be-
low four dimensions.
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APPENDIX A: SOLUTIONS OF THE RADIAL
SCHROEDINGER EQUATION
WITH CONSTANT POTENTIAL

We have to calculate the asymptotic behavior of the
ground state energy that belongs to the rescaled version of
the radial equation~13!. The rescaled potentialV̄(y) is
piecewise constant and takes the values2V0 for 0<y,1
and 0 fory>1.

Obviously the wave function must consist of general so-
lutions of the Schro¨dinger equation with constant potential
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S 2
]2

]y2
1

~d23!~d21!

4

1

y2
2EDf~y!50. ~A1!

The general solution of this differential equation is@24#
f(y)5A j ueu,E(y)Ay1Bnueu,E(y)Ay with

j ueu,E~y! nueu,E~y!

E.0 Jueu~yAE! Nueu~yAE!

E50 yueu y2ueu

E,0 I ueu~yA2E! K ueu~yA2E!

.

Because the wave function should be regular at the origin
at least ford.2 only the first solution is possible for the
interaction region. This means that fory<1 we have
f(y)5A j ueu,E01V0

(y)Ay. In the outer region the boundary

conditions at y5L/a lead to the wave functions
f(y)5B@ j ueu,E0

(y)Ay2 f ueu,E0
(L' /a)nueu,E0

(y)Ay# with

f ueu,E5H j ueu,E

nueu,E
Dirichlet

sgn~E!
j ueu11,E

nueu11,E
von Neumann

The total solution consists of these two solutions if they
obey the condition of continuous differentiability that gives
us an equation connectingE0 with V0 andL' /a.

This equation will always have the form

r SA6E0

L'

a D5s~A6E0! ~A2!

with some functionsr ands. Since the ground state energy is
expected to vanish forL'→` at least proportional to

(a/L')
2 only the behavior ofs for small x, especially

s0[ limx→0s(x) is relevant. Ifs0 is a finite value,E0 will
asymptotically decay as6c2(a/L')

2, wherec is the small-
est positive solution ofr (x)5s0 . Soc

2 is exactly the coef-
ficient we are interested in. Ifs050, the constantc is a root
of r (x). Sincer (0)50, c is zero if the signs ofr ands for
small positive arguments are equal. If not,c is the smallest
positive root ofr . If c is zero, one can expandr for small
arguments and furthermore extract the leading behavior in
a/L' of E0 , which then decays faster than quadratic.

Since we are especially interested in the asymptotic be-
havior of the ground state energy at the phase transition point
V* , we have to identify it. It is defined by the condition that
the ground state energy in an infinite system approaches zero
from below. With the known wave functions for
E01V*.0 andE0,0 ~in the infinite system only the solu-
tion proportional toK ueu is regular! the matching condition
gives in the limitE0→0

Jueu11~AV* !AV*
Jueu~AV* !

52ueu. ~A3!

We now can systematically apply the above scheme to all
possible combinations of 0<V0<V* andE0 for both bound-
ary conditions and extract the ground state energies.

The only point that has to be handled with care during this
calculation is the series expansion of the different Bessel
functions involved. Since especially forV05V* the leading
terms of the expansions cancel, the subleading terms have to
be used. But the subleading terms are of totally different
origin if ueu.1 or ueu,1. This produces the difference of the
ground state energies ind.4 andd,4 as we expect them.

APPENDIX B: EXPANSION OF THE FREE ENERGY

Since we need it during the calculations, we give here the
expansion of the free energy per unit length written byn
point functions up to the fourth order. It is

limL uu→`

F~g!2F~0!

L uu
5g^F~0!&02g2E

0

`

^F~0!F~ t !&02^F~0!&0
2dt1g3E E

0<t1<t2

dt1dt2@^F~0!F~ t1!F~ t2!&0

2^F~0!&0^F~ t1!F~ t2!&02^F~ t1!&0^F~0!F~ t2!&02^F~ t2!&0^F~0!F~ t1!&012^F~0!&0
3#

2g4E E E
0<t1<t2<t3

dt1dt2dt3@^F~0!F~ t1!F~ t2!F~ t3!&02^F~0!F~ t1!&0^F~ t2!F~ t3!&0

2^F~0!F~ t2!&0^F~ t1!F~ t3!&02^F~0!F~ t3!&0^F~ t1!F~ t2!&02^F~0!&0^F~ t1!F~ t2!F~ t3!&0

2^F~0!&0^F~0!F~ t2!F~ t3!&02^F~0!&0^F~0!F~ t1!F~ t3!&02^F~0!&0^F~0!F~ t1!F~ t2!&0

12^F~0!F~ t1!&0^F~0!&0
212^F~0!F~ t2!&0^F~0!&0

212^F~0!F~ t3!&0^F~0!&0
2

12^F~ t1!F~ t2!&0^F~0!&0
212^F~ t1!F~ t3!&0^F~0!&0

2

12^F~ t2!F~ t3!&0^F~0!&0
226^F~0!&0

4#1O~g5!.
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In the case of only two directed polymers, this whole
series can be reexpressed only by connected two point func-
tions and then represented diagrammatically as explained in
Sec. II B. It reads then

APPENDIX C: PROVING RELATIONS AMONG
DIAGRAMS

Every diagram is related to a multiple ‘‘time’’ integral
over a product of connected two point functions, the argu-
ments of which are sums of the different integration vari-
ables. If we assume that the Laplace transformĝ1 of the two
point functiong1 exists, general rules among the diagrams
can be proved as shown here with the example

Starting from the left-hand side this is

E
0

`

ds1E
0

`

ds2E
0

`

ds3g1~s11s21s3!g1~s2!

1E
0

`

ds1E
0

`

ds2E
0

`

ds3g1~s11s2!g1~s21s3!

5
1

~2p i !2Ecdz1Ecdz2ĝ1~z1!ĝ1~z2!
3E

0

`

ds1E
0

`

ds2E
0

`

ds3@
1
2 e

z1~s11s21s3!1z2s2

1 1
2 e

z1s21z2~s11s21s3!1ez1~s11s2!1z2~s21s3!#

From its definitionc is a path parallel to the imaginary
axis with positive real part. But sinceg1 decays exponen-
tially for large arguments, the Laplace transformĝ1 is still
analytic in some region to the left of the imaginary axis and
the integration contour can be shifted there. Then the inner
integrals of the above equation exist and can be evaluated to

•••5
1

~2p i !2Ecdz1Ecdz2ĝ1~z1!ĝ1~z2!S 2
z11z2
2z1

2z2
2 D

5
1

~2p i !2Ecdz1Ecdz2ĝ1~z1!ĝ1~z2!S 2
1

z1
2z2

D
5

1

~2p i !2Ecdz1Ecdz2ĝ1~z1!ĝ1~z2!
3E

0

`

ds1E
0

`

ds2E
0

`

ds3e
z1~s21s3!1z2s1

5E
0

`

ds1E
0

`

ds2E
0

`

ds3g1~s1!g1~s21s3!.

This is the right-hand side of the given diagrammatic equa-
tion.

APPENDIX D: DERIVATION OF THE EXACT IMPLICIT
EQUATION FOR THE FREE ENERGY

Using the abbreviations from Sec. II C thenth order term
of the partition function series is expressed by

1

NE0
L uu
dtnE

0

tn
dtn21•••E

0

t2
dt1g~ t1! f ~ t22t1!••• f ~ tn2tn21!

3h~L uu2tn!.

Laplace transforming this with respect toL uu yields
ĝ(z) f̂ (z)n21ĥ(z) for the Laplace transforms.

Obviously the Laplace transformed perturbation series is
just a geometric series and can therefore be resummed. After
back transformation we end up with

Z

Z0
2152

g

2p iNEc
ĝ~z!ĥ~z!

11g f̂~z!
eL uuzdz, ~D1!

wherec is a path in the complex plane parallel to the imagi-
nary axis. Since we can obviously close this path by a circle
at z→2`, the integral is given as the sum of the residues of
the integrand in the half plane of negative real parts. From
the form of the integrand it is clear that all residues will be
some prefactor times an exponential with the position of the
pole timesL uu as its argument. In the limit ofL uu→` only the
pole with the smallest decay rate~i.e., the one with the small-
est absolute value of its real part! survives.

By construction, it is clear thatN has a leading depen-
dence onL uu of e

2L uulnZ0, whereas the poles ofĝ and ĥ are
exactly the negative eigenvalues of the Schro¨dinger operator
corresponding to the free directed polymer problem~de-
scribed byH0). The smallest eigenvalue is the leading term
of lnZ0 itself, the contribution of which to the integral must
cancel against the 1 on the left-hand side.

From that we conclude that the leading term ofZ for large
L uu is some prefactor times exp(z0Luu), wherez0 is the solution
of Eq. ~29! with the largest~absolutely smallest! real part.
This decay rate is therefore the leading contribution to the
free energy per unit length in the limitL uu→`.

APPENDIX E: HARD WALL RETURN PROBABILITY

To calculate the return probability of a
11d-dimensional directed polymer in a round box, we can
use the ‘‘quantum mechanical’’ expression of the propagator
by the eigenfunctions of the ‘‘particle in a box’’ problem.
The eigenfunctions of the particle in a box are Bessel func-
tions of the first kind and ford.2 we get with the correct
normalization conditions
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Gt~r ,r 8!5
2

L'
2 (

l50

`

(
J~d22!/2 1 l ~aL'!50

3e2 ~a2/2! t (
m

v l ,m* ~V r !v l ,m~V r8!

3
r ~22d!/2J~d22!/21 l~ar !r 8~22d!/2J~d22!/21 l~ar 8!

@J~d22!/21 l11~aL'!#2
,

~E1!

which for d53 is the heat equation kernel in@28#.
In the limit r→0, which we need for the return probabil-

ity, only the l50 terms stay finite. The sum over the for
l50 radially symmetric eigenfunctions of the angular mo-
mentum operator is just one over the surface of the
d-dimensional unit sphere. Thus the return probability is

GS d2D
pd/2L'

2 (
J~d22!/2~aL'!50

e2~a2/2!tS a

2 D d22

@Jd/2~aL'!#2
. ~E2!

Its Laplace transform can formally be calculated term by
term, but since we know that it is ultraviolet divergent for
d.2 we introduce a lower cutoffa of the integration, which
gives

GS d2D
pd/2~2L'!d22e

2az (
J~d22!/2~a!50

ad22

@Jd/2~a!#2
e2~a/L'

2
!~a2/2!

zL'
21

a2

2

.

~E3!

In the prefactor the limita→0 is possible without any diffi-
culties.

If we now specialize to the cased53, we can insert the
especially simple expressions for the Bessel functions and
their roots, transform the quotient to a geometric series, ex-
change the sums and end up with

p (
n51

`
e2a~p2n2/2!

11
2zL'

2

p2n2

5p(
k50

` S 2
2

p2D k~zL'
2 !k(

n51

`
e2a~p2n2/2!

n2k
,

~E4!

where we have absorbed a factor of 1/L'
2 into a and omitted

the geometrical prefactor. Fork>1 the limit a→0 is pos-
sible and we get

p (
n51

`

e2a~p2n2/2!1p(
k51

` S 2
2

p2D kz~2k!~zL'
2 !k

5p (
n51

`

e2a~p2n2/2!2
p

2
@L'A22zcot~L'A22z!21#.

The k50 sum obviously diverges fora→0. If we add
p/2, it is half of the value of the theta function at zero, which
diverges likea2(1/2) with no subleading algebraic terms. So,

if we ignore the divergence, the first sum contributes2p/2
to the return probability. Thus the regularized Laplace trans-
form of the return probability is2A22zcot(L'A22z)/8, if
we add all the geometrical prefactors again. This leads to Eq.
~37!.

APPENDIX F: EXPLICIT REGULARIZATION
OF THE PERTURBATION SERIES

If we insert the Laurent expansions of the coefficientsai
into the perturbation expansion ofu0(uR)/e8, we get a regu-
lar part of this series to the leading orders inuR of

a1,1uR
21~a2,112a1,21a1,212a1,0a1,1!uR

31O~uR
4 !.

As discussed in the main text, the singular parts have a quite
simple structure. The most singular terms~the first three di-
vergence orders! are to all orders inuR /e8

S a1,21uR
e8 D nH 1

a1,21
1Fn a1,0

a1,21
1~n21!

a2,21

~a1,21!
2GuR

1F ~n11!a1,11n
a2,0
a1,21

1n
a2,0
a1,21

1
n~n11!

2

~a1,0!
2

a1,21

1~n22n!
a1,0a2,21

~a1,21!
2 1

n223n12

2

~a2,21!
2

~a1,21!
3G

3uR
21O~uR

3 !J .
To complete our program, we just have to find the analytic
continuations of series of the form(n51

` nkxn and their limit
for x→`. This is easy because they all are derivatives of
geometric series. It turns out that the limit forx→` is 21
for k50 and 0 for allk.0. So we get the contributions of
the singular terms in the limite8→0 by just insertingn50
in above expression and taking the negative value of it. If we
do that, we arrive at

lim
e8→0

u0~uR!

e8
52

1

a1,21
1

a2,21

~a1,21!
2uR2

~a2,21!
2

~a1,21!
3uR

2

1
~a2,21!

3

~a1,21!
4uR

31O~uR
4 !. ~F1!

~For the third order coefficient we need one term more in the
above formula for the singular parts that has been omitted
because of its lengthiness.! This is obviously the beginning
of a pure geometric series.

If a1,2150, the regular part of the seriesu0(uR)/e8 is just
a1,1uR

21O(uR
3). The singular part consist again of geometric

series with polynomial coefficients and explicitly reads
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1

a2,21uR
(
n51

` S a2,21uR
2

e8
D n~11na1,0uR!

1
uR
a2,21

(
n51

` S a2,21uR
2

e8
D nF S n~n11!

2
~a1,0!

21na2,0D
1S n~n11!a1,0a2,01~n11!a1,1a2,211na3,0

1
n313n212n

6
~a1,0!

3DuRG1O~uR
3 !.

The limit e8→0 is again performed by insertingn50 and
taking the negative value which reproduces the expected re-
sult ~55!.

APPENDIX G: FIRST THREE ORDERS OF THE
PARTITION FUNCTION FOR AN ARBITRARY NUMBER

OF DIRECTED POLYMERS
During the calculation of the integrands in the series ex-

pansion of the partition function, most of the terms can be
strongly simplified by using the symmetry of the one particle
propagator, moving parts of the arguments of the one particle
propagator from one argument to the other using the fact that
the propagator depends only on the difference of the argu-
ments, translatingRd integrations bykL' terms, translating
Zd summations byk8 from other sums, and combining of
sums overZd and integrals over@0,L'#d to integrals over
Rd.

With this technique, it can be generally shown that a di-
rected polymer that is not involved in any of the interactions
does not contribute to the value of a diagram and that a
directed polymer that is involved only in one interaction con-
tributes just factor ofL'

2d . We will call this Lemma 1 and
represent it graphically as

Moreover it is possible to prove Lemma 2

With this preparation, it is easily possible to compute the
one-, two- and three-point function. The one-point function
has just one diagram with the prefactorN(N21)/2,

which has the valueL'
2d according to Lemma 1 and there-

fore gives Eq.~61!.
In the second order there are three types of diagrams with

combinatorial prefactors of 1, 2~N22!, and (N22)(N
23)/2, respectively @omitting the general prefactor of
N(N21)/2#.

The last two are reduced by Lemma 1 toL'
22d , whereas the

first one has the value

L'
2dE

Rd
ddr (

kPZd
GLs1

~0,r1kL'!GLs1
~0,r ![Rp~s1!.

Integrating overr results in

Rp~s!5S 1

A4pLs
(
kPZ

e2~k2/4s!D d5S 1

AL (
kPZ

e24pk2sD d,
where the second equation comes from the fact that the sum
is the value of au function at zero@26#.

Combining everything, we get in the second order equa-
tion ~62!. The third order consists of 16 different diagrams.
All of them but one can be evaluated by applying Lemmas 1
and 2 and in the end we get Eq.~63!.
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@10# U.C.Täuber and E. Frey, Phys. Rev. E51, 6319~1995!.
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@17# H.W.J. Blöte, J.L. Cardy, and M.P. Nightingale, Phys. Rev.

Lett. 56, 742 ~1986!; I. Affleck, ibid. 56, 746 ~1986!.
@18# M. Kardar, Phys. Rev. Lett.55, 2235 ~1985!; Nucl. Phys. B

54 319DIRECTED POLYMERS IN HIGH DIMENSIONS



290, 582 ~1987!.
@19# R. Lipowsky, Europhys. Lett.15, 703 ~1991!.
@20# R. Lipowsky, Physica A177, 182 ~1991!.
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