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Shape of Ecological Networks
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We study the statistics of ecosystems with a variable number of coevolving species. The species
interact in two ways: by prey-predator relationships and by direct competition with similar kinds. The
interaction coefficients change slowly through successful adaptations and speciations. They are treated as
quenched random variables. These interactions determine long-term topological features of the species
network, which are found to agree with those of biological systems.
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Population dynamics is a classical subject of evolution-
ary biology. The mutually dependent dynamics of two or
more populations or species is often described by coupled
differential equations governing the relative change of the
population sizes Ni�t�,

1
Ni

dNi

dt
�

sX
j�1

gijNj 1 hi �i � 1, . . . , s� . (1)

The interaction coefficients gij can represent a prey-
predator relationship (gij , 0, gji . 0), direct competi-
tion (gij , 0, gji , 0), or mutualism (gij . 0, gji . 0)
between species i and j, and the terms hi denote intrinsic
production or decay rates. These so-called Lotka-Volterra
equations, as well as many generalizations thereof, have
been used to model coexistence, invasions, and adaptive
change of populations. Of great importance is their con-
ceptual connection to mathematical game theory [1]. A set
of populations N1, . . . , NS represents a mixed strategy. For
given interactions gij , an optimal strategy —called Nash
equilibrium—can often be realized as a stable fixed point
N�

1 , . . . , N�
S of an associated Lotka-Volterra dynamics.

This explains how strategic optimization is reached in
biological systems through reproductive success, with no
need for rational thinking.

These equilibria determine the species’ fate. For a given
set of equations (1), a species is viable if N�

i . 0 and be-
comes extinct if N�

i � 0. Even the viable species is not
perennial, however. Successful adaptations, migrations,
and speciations (the splittings of a single species into a
pair) eventually change the number of players as well as
the rules of the game, i.e., the couplings gij . On large time
scales, the observed dynamical patterns can be quite in-
termittent. Correlated extinctions and speciations alternate
with periods of relative stasis, leading to large fluctuations
in the number of species [2]. Little is known on how this
long-term behavior is connected to the underlying interac-
tions between species in (1).

The best studied natural ecosystems are food webs, i.e.,
communities of animal species in a closed environment
where food chains can be observed. Figure 1(a) shows
the graph of such a network, each arrow representing
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a prey-predator relationship. Despite large variations in
size and environmental conditions, large ecosystems share
a few important topological characteristics: (i) Every
species lives at a certain trophic level. The level num-
ber can be defined as the minimum, the maximum, or a
suitable average length of its relevant “downward” food
chains; the differences between these definitions turn out
not to be significant. Species at level one feed from exter-
nal resources. (ii) The number of trophic levels is small,
typically between three and seven. (iii) Most species have
a small number of relevant prey species (typically around
three), mainly from the next lower level. (iv) The num-
ber of species at level l increases with l for lower val-
ues of l and decreases again sharply for higher l [3,5];
see Fig. 1(b). Networks of coevolving species thus have a
characteristic shape.
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FIG. 1. (a) The Pamlico estuary food web in North Carolina,
consisting of 14 species (filled circles) at four trophic lev-
els. Detritus, dinoflagellates, and diatoms are at the bottom
level (l � 1) and feed from external resources (empty symbols).
There is a single trophic group at the highest level (l � 4),
formed by the predatory fishes Roccus and Cynoscion. Arrows
point from prey to predator; dashed lines connect species pairs
with a nonzero link overlap (see text). Data from [3]; the level
is defined here by the longest relevant food chain. (b) Average
species numbers per level for a set of natural ecosystems, taken
from Ref. [3] (empty symbols) and [4] (filled circles). This last
case corresponds to an average over 61 food webs, most of which
are empty at high levels.
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This remarkable structure calls for a theoretical expla-
nation. The classical work on Lotka-Volterra equations
has established stability criteria for networks with random
interactions gij [6]. In a real ecosystem, however, the in-
teractions are not random, but are themselves subject to
selection. Recently, Lotka-Volterra systems coupled to
speciation [7] and immigration [8] dynamics have been
studied by numerical simulations, and food web structures
have indeed been found. Another class of models focuses
directly on the dynamics of extinctions and speciations.
These models have no explicit population dynamics and
mostly random topology, with the important exception of
Ref. [9].

In this Letter, we present elements of a statistical the-
ory for large ecosystems, using concepts and methods of
theoretical physics. We discuss the population dynamics
with the minimal species interactions consistent with the
observed complexity of ecosystems. These interactions
are prey-predator relationships, which establish a flux of
biomass between species, and direct competition between
similar species, which leads to their mutual exclusion from
ecological niches. The interaction coefficients gij in (1) are
modeled as random variables that change through success-
ful mutations. We focus on the (often realistic) case that
these mutations are sufficiently rare so that the populations
can reach stable equilibria in between. In the language of
statistical physics, the species interactions are quenched
random variables on the time scales of population dynam-
ics. The statistics of such ecosystems is thus governed by
a quenched distribution of Nash equilibria. This distribu-
tion in turn emerges from a long-term balance between
adaptations, speciations, and extinctions. The topology of
the resulting networks is found to be closely related to the
underlying dynamics of coevolution. In the following, we
concentrate on generic topological features amenable to an
approximate analytical treatment; in particular, we derive
the shape of ecosystems. A detailed analysis of structure
and dynamics of these networks will be published else-
where [10].

To describe generic features of ecological networks, we
choose the simplest population dynamics containing pre-
dation and direct competition. The interaction matrix in
(1) is decomposed accordingly, gij � gij 2 bij . Preda-
tion is parametrized by the constants gij � g1 if j is prey
of i and gij � 2g2 if i is prey of j, with 0 , g1 , g2.
Competition takes place for nesting places, mating oppor-
tunities, and other resources not explicitly represented in
the model. It is strongest between individuals of the same
species, but also occurs between different species that in-
terfere in each other’s livelihood [11]. This interaction
turns out to be a limiting factor for the coexistence of
species in a common network [12]. We set bii � 1 [this
normalization amounts to an appropriate choice of the time
scale in (1)] and bij � brij for i fi j, with 0 , b , 1.
The link overlap rij measures the degree of competition
between the species. It can be defined as rij � cij�pcicj ,
where ci , cj are the numbers of links with i, j as preda-
tor, and cij is the number of common links. (Species pairs
with a nonzero link overlap are connected by dashed lines
in Fig. 1.) Furthermore, all species are assigned a uniform
decay rate hi � 2a. The external resources are repre-
sented as a small number of extra “populations” Ni with
hi � g1R and predators only (i.e., gij # 0 and bij � 0
for all j).

With these interactions, the fixed point populations
given by (1) can be written in the form

N�
i � Pi 2 Qi 1 hi , (2)

where Pi � g1

P
j[p�i� N�

j 2 g2

P
j[P�i� N�

j is the pro-
ductivity of species i from predation [with p�i� the set
of its prey and P�i� the set of its predators] and Qi �
b

P
jfii rijN

�
j is its competition load. Furthermore, we

require a minimum population size Nc ø R for viable
species, and count all species with N�

i , Nc as extinct.
Indeed, natural populations are known to be unstable un-
der short-term environmental fluctuations or adverse mu-
tations if they are too small or too dilute [13].

Of course, an ecosystem is not determined by its popu-
lation dynamics alone but also by the long-term processes
of successful mutations, in particular, speciations [7,14].
In this model, a mutation is represented as a stochastic
change of predation links that is consistent with existing
food chains. It turns out that details of this process are
not relevant for our present purpose of deriving global net-
work characteristics. It is sufficient to assume that spe-
ciations and adaptations maintain a broad distribution of
productivities Pi , and hence, of population sizes N�

i (in a
sense made precise below). This is well supported by field
observations and by our numerics [10,15]. An increase
in the number of species reduces the average productiv-
ity and increases the average competition load. Hence,
such an ecosystem admits only a certain number of viable
species, whose productivities satisfy Pi . Qi 1 a 1 Nc.
The number of these ecological niches depends on the in-
teraction parameters b, g1, g2, and on the dimensionless
ratios R�Nc, a�Nc. Once the niches are filled, ongoing
speciations and the subsequent adaptations reshuffle the
productivities and the population numbers N�

i of all the
species, forcing the least viable ones into extinction. On
large time scales, this is a stationary stochastic process.
The relative success of an individual species keeps chang-
ing as a result of its own adaptations and those of the other
species, resulting in a continuous threat of extinction called
the red queen effect [16]. The shape of these mature net-
works is determined essentially by the distribution of eco-
logical niches. To see this, consider the first two cases of
simple networks with fixed topology.

(1) A single food chain is a community of L species on
L trophic levels. The species at level one feeds from an
external resource, the species at level l from that at level
l 2 1 (l � 2, 3, . . . , L). The productivities of this chain
are given by the equations
4419
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Pl � g1N�
l21 2 g2N�

l11 �l � 1, . . . , L� , (3)

and P0 � 2g1N�
1 , with the boundary condition N�

L11 �
0. They determine directly the population numbers N�

l �
Pl 2 a since all competition loads vanish. The entire
chain is viable if Pl . Pc for all species l, with the mini-
mum productivity

Pc � a 1 Nc . (4)

Equation (3) can be solved exactly by recursion starting
from the top level l � L. For the biologically important
case of small g1, we find that the maximum value of L
compatible with (3) is

L �
21

logg1

log

µ
R

const 3 a 1 Nc

∂
2 1 1 O�g1� (5)

by applying the condition (4) at the top level.
The parameters a and Nc are seen to be equivalent via-

bility cutoffs for the chain since they reduce primarily the
top population N�

L. More generally, the population num-
bers N�

l are found to be rapidly decreasing with increasing
l for all relevant parameter values. Hence, as observed in
nature, viable chains are always short [17].

(2) A single trophic level is a group of S species that
may have a significant overlap in their predation links and
a resulting competition load. First we consider the produc-
tivities Pi as fixed by the interactions with other trophic
levels and concentrate on the effects of the direct competi-
tion terms Qi . In a “mean field” approximation, we replace
the individual link overlaps by an expectation value r̄ de-
pending on the predation clusters. In the simplest case of
random predation, Eq. (2) then determines the fixed point
populations

N�
i �

Pi 2 br̄SN̄ 2 a

1 2 br̄
, (6)

with the average N̄ � S21
PS

i�1 N�
i given by

N̄ �
P̄ 2 a

1 1 br̄�S 2 1�
. (7)

The viability of all species (N�
i . Nc) again sets a mini-

mum productivity

Pc � a 1 �1 2 br̄�Nc 1 br̄SN̄ . (8)

We now use the assumption that the productivities Pi

are drawn from a broad probability distribution given by
F�q� � Prob�Pi�P̄ , q�. [The qualitative results do not
depend strongly on the form of F�q�; here we use a
simple approximation [18].] The species community be-
comes unstable if the least viable species has a produc-
tivity below Pc. The number of species in a mature
trophic level can therefore be estimated from the relation
SF�Pc�P̄� � O�1�. Equation (8) then becomes an im-
plicit relation for S as a function of P̄�Nc, a�Nc, and
the average pairwise competition load br̄. Consider, for
example, a trophic level with random predation from a set
of S0 prey species from the levels below. Using a simple
approximation for the average link overlap r̄�S, S0� [19], it
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can be shown that the solution of Eq. (8) always satisfies
S # max�a�b�S0�c̄, 1�, where a�b� $ 1 is a monotoni-
cally decreasing function of a and c̄ is the average number
of prey species per predator species. That is, competition
determines the number of ecological niches in a trophic
level as a function of the prey diversity and the competi-
tion strength b. For sufficiently large b, only nonover-
lapping species can coexist, i.e., S � max�S0�c̄, 1�. This
result generalizes the well-known theorem of competitive
exclusion [20], which states the condition for coexistence
of two competing species. Note that this limiting ef-
fect on the number of species exists independently of the
population numbers. It is indeed crucial for the buildup of
high population numbers at the lower trophic levels. For
example, a trophic level feeding from resources of size
R ¿ a, Nc acquires an extensive population number per
species, N̄ � R�S with S asymptotically independent of
R. Without competitive exclusion (b � 0), speciations
would further increase S and eventually lead to an exten-
sive number of marginally viable species, S � R�N̄ with
N̄ of order Nc. Such a level could not support sizable pre-
dation from above.

We now turn to a full ecological network with L trophic
levels. In the mean field approximation, we treat all species
at the same level on an equal footing and derive self-
consistent equations for the level averages of population
and species number, N̄l and Sl (l � 1, . . . , L). The aver-
age productivities P̄l satisfy the recursion relations

P̄l � g1c̄N̄l21 2 g2c̄�Sl11�Sl�N̄l11 , (9)

where we assume that the species at every level predates
randomly on the species at the next lower level. The av-
erage number c̄ of predation links per predator is taken to
be independent of l; this is indeed suggested by field data.
The average number of predators per prey is then simply
c̄Sl11�Sl . The productivity P̄l is linked to N̄l and Sl as in
(7), using for r̄�Sl , Sl21� the same approximation as above
[19]. Hence, the relations (9) determine the population
numbers given the species numbers. The latter are again
limited by the stability criteria SlF�Pc,l�P̄l� � O�1� with
the minimum productivities Pc,l given as in (8); these re-
lations determine the Sl given the N̄l . The coupled set of
equations can be solved iteratively. Finally, the number
of levels L follows from the condition N̄L � Nc, which is
equivalent to SL � 1.

Over a wide range of relevant parameters, these net-
works have the characteristic shape shown in the example
of Fig. 2: The species numbers Sl increase with l at low
levels due to the increasing prey diversity, which opens
up more and more niches. They reach a maximum at
an intermediate level and decrease again at higher lev-
els, because more and more species have population num-
bers too low to support further predation. Hence, these
two regimes reflect the two kinds of species interactions.
The population numbers show an approximately exponen-
tial decrease in both regimes, just as for a single vertical
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FIG. 2. The shape of ecosystems. (a) The species numbers
Sl (1 # l # L) for networks with L trophic levels. Parame-
ters are c̄ � 3, g1 � 0.3, g2 � 2.0, b � 0.2, q0 � 0.35
(see [18]), a�Nc � 1, and R�Nc � 2 3 103, 104, 4 3 104, 2 3
105, and 5 3 105 for the cases L � 4, 5, 6, 7, and 8, respectively.
(b) The average population numbers N̄l for the same cases.

chain. Hence, L is always small, in agreement with obser-
vations and with the results of [7,8]. The functional form
of the patterns Sl , N̄l can be described by various analyti-
cal approximations.

Species networks are thus quite far from randomly con-
nected. Their topological shape is dynamically generated
by the coupled evolution of populations and the slower
adaptative changes. The ubiquity of this shape suggests
that predation and competition of similar species are the
fundamental interactions governing the long-term coevo-
lution of large ecosystems. They are remarkably simple.
Predation is the basic transport of energy in the system;
competition forces the species into states with little over-
lap. In physics, mutual avoidance is a well-known property
of fermions. Competitive exclusion may thus be regarded
as the Pauli principle of coevolution: It generates the com-
plexity of species networks just as its quantum-mechanical
counterpart does for atoms and molecules.

We have discussed here the global shape of these net-
works. It remains a challenging task to explore the con-
nection between dynamics and topology locally, that is, at
the level of individual species and their genealogies.

M. L. is grateful to the MPI for Colloids and Interfaces
for the kind hospitality throughout this work.
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