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A systematic theory is introduced that describes stochastic effects in game theory. In a biological
context, such effects are relevant for the evolution of finite populations with frequency-dependent
selection. They are characterized by quantum Nash equilibria, a generalization of the well-known
Nash equilibrium points in classical game theory. The implications of this theory for biological
systems are discussed in detail.

I. INTRODUCTION

Classical game theory is a well-known mathematical
formalization of competitions with rational rules and ra-
tional players [1]. The strength of this theory lies in
the abstraction from the detailed scenario. In its sim-
plest form, a game is reduced to a set of basic strategies

i = 1, . . . , s and a matrix A = (Aij) whose elements de-
note the payoff or relative success of strategy i played
against strategy j. A mixed strategy x = (x1, . . . , xs) is
defined to be a probability distribution over basic strate-
gies (i.e., xi ≥ 0 for all i = 1, . . . , s and

∑

i xi = 1).
Rational playing of mixed strategies will lead to a Nash

equilibrium, that is, to a strategy x∗ that maximizes the
payoff against itself [2]. This is the central concept of
classical game theory. A more precise formulation will
be given below.

Game theory has been widely applied to explain the
distribution of different phenotypes in biological popu-
lations. These applications are based on a dynamical
extension called evolutionary game theory, which is due
to Maynard Smith [3]. In the simplest case, the different
phenotypes in a population are associated with the ba-
sic strategies of a game. The time-dependent phenotype
frequency distribution is then a mixed strategy x(t). It
is assumed that the phenotypes are hereditary and are
preserved under the reproduction process. The payoff of
a basic strategy i played against the population strategy
x(t) enters the fitness fi of the corresponding phenotype,
that is, the expected number of viable offspring per in-
dividual and per unit of time. This game-based popula-
tion dynamics can be written as an evolution equation
for the frequency distribution x(t). It can be shown that
every stable fixed point of this dynamics is a Nash equi-

librium [4]. This result is conceptually important since it
shows how strategic optimization is reached in biological
systems through reproductive success alone, without the
need for rational thinking.

Classical game theory is a deterministic theory. A
Nash equilibrium is the outcome of fully rational playing,
without any effects of chance. Biological game dynam-
ics describes an equally deterministic course of evolution.
Formally, this corresponds to the limit of infinite popu-
lations obtained by identifying the reproduction rate of

a phenotype i with its expectation value fi.
In this paper, we extend game theory to a stochastic

theory including the effects of fluctuations. This is based
on a probabilistic game dynamics suitable to describe
the evolution of finite biological populations. A differ-
ent form of stochastic game dynamics has been been dis-
cussed by Marsili and Zhang in the context of economical
systems [5].

In biological populations, fluctuations arise since the
actual number of viable offspring of a given individual
in a given time interval differs from its expectation value
determined by the fitness of the individual’s phenotype.
This may be caused by a number of different biological
reasons. It will become clear that mechanisms produc-
ing frequency-dependent fitness values – which are the
subject of evolutionary game theory – also give rise to
frequency-dependent fluctuations and thereby determine
the probabilistic dynamics. In this formalism, the time-
dependent population state defines a probability distri-
bution over mixed strategies, p(x, t), and evolution takes
the form of a Schrödinger equation in imaginary time,
∂t p(x, t) = Hp(x, t). The analogy with quantum physics
allows for a systematic inclusion of fluctuations and sug-
gests the name quantum game theory.

Stochastic effects have been studied extensively in
Kimura and Ohta’s theory of neutral evolution, which
describes the dynamics of populations whose phenotypes
have little or no fitness difference [6,7]. Fluctuations are
then the dominant force of evolution. In particular, it
has been shown that an initially small fraction xm(t) of
mutants in an otherwise homogeneous resident popula-
tion can be driven either to extinction or to fixation, i.e.,
xm(t) = 0 or xm(t) = 1 for late t. The probabilities for
these processes depend on the fitness gap between mu-
tants and residents and on the overall population size,
and they determine the rate of evolution of the popula-
tion as a whole.

Fluctuation effects in game theory turn out to be more
involved. Quantum game theory shows a nontrivial inter-
play between deterministic fitness and stochastic forces,
both of which depend on the phenotype frequencies x(t).
Hence, a stable stationary state p∗(x) – called a quantum

Nash equilibrium – differs from its classical counterpart.
It depends strongly on two parameters defined below,

1

http://arXiv.org/abs/cond-mat/0206093v1


the characteristic population size n∗ and the game cou-
pling λ. We find a crossover between neutral evolution for
λn∗ ≪ 1 and classical game theory for λn∗ ≫ 1. Fluctua-
tions can lead to extinction or fixation; the corresponding
probabilities now depend not only on the population size
but also on the phenotype considered. We discuss this in
detail for the simplest game with a mixed classical Nash
equilibrium, the so-called hawk-dove game.

The paper is organized as follows. In the next section,
we define a game-based classical dynamics suitable for
finite populations. In section 3, we discuss the ‘quanti-
zation’ of this dynamics. Section 4 contains a detailed
analysis of the quantum theory for the hawk-dove game,
and the results are discussed in section 5.

II. CLASSICAL GAME THEORY AND

POPULATION DYNAMICS

We start by recalling a few well-known definitions and
results of classical game theory. In a game with basic
strategies i = 1, . . . , s and relative payoffs Aij , the payoff
of a mixed strategy x played against another mixed strat-
egy x′ is taken to be bilinear,

∑s

i,j=1 xiAijx
′
j ≡ xAx′.

We can now define a (symmetrical) Nash equilibrium x∗

as an optimal strategy against itself, i.e.,

x∗Ax∗ ≥ xAx∗ for all strategies x. (1)

Consider a population that contains the phenotypes i =
1, . . . , s with time-dependent population numbers n(t) =
(n1(t), . . . , ns(t)) and has total size n(t) =

∑

i ni(t);
these numbers are positive integers. The evolution of this
system can be described deterministically by an equation
of the form

1

ni

dni

dt
= fi(n) ; (2)

the r.h.s. is called the fitness of the phenotype i. We
assume its frequency dependent part is proportional to
the payoff of the basic strategy i played against the mixed
strategy x ≡ n/n in a game with payoff matrix A, i.e.,
fi(n) = λ(Ax)i + λ′, where λ and λ′ are coefficients
independent of x. The phenotype frequency distribution
then obeys the closed evolution equation

1

xi

dxi

dt
= λfgame

i (x) (3)

with

fgame
i (x) = (Ax)i − xAx , (4)

which is well known in evolutionary game theory [4]. The
coupling constant λ < 1 describes the strength of game-
based contributions to the fitness. Classically, it deter-
mines only the time scale in eq. (3) but it will have a

crucial role in the quantum theory. The second term on
the r.h.s. of eq. (4) ensures probability conservation, i.e.,
∑

i dxi/dt = 0.
This frequency dynamics is independent of population

size. In order to include fluctuations, which depend on
absolute population numbers, we start from the full dy-
namics (2). We choose

fi(n) = λfgame
i (x) + f size(n) (5)

so that the frequencies xi(t) follow the evolutionary game
dynamics (3) and decouple from the dynamics of the total
population size,

1

n

dn

dt
= f size(n) . (6)

With

f size(n) =
n∗ − n

n∗
, (7)

the latter describes standard logistic growth to a stable
population size n∗.

This population dynamics is similar to the well-known
Lotka-Volterra equations. It can be rewritten in terms of
the scaled population sizes y = (y1, . . . , ys) = n/n∗,

1

yi

dyi

dt
= λfgame

i (y/y) + f size(y) (8)

with y =
∑

i yi = n/n∗. For every symmetric Nash equi-
librium x∗ of the underlying game, eq. (8) has a stable
fixed point y∗ = x∗.

III. QUANTUM GAME DYNAMICS

As discussed above, the actual number of viable off-
spring produced by an individual of phenotype i in a
given time interval is an integer which fluctuates around
its expectation value given by the fitness fi. In any finite
population, these fluctuations produce deviations from
the deterministic dynamics (2) and lead us to a stochas-
tic description of evolution. The population state then
becomes a propability distribution P (n, t). It is conve-
nient to write this in the form of a quantum state,

|P (t)〉 =
∑

n

P (n, t)|n〉 (9)

with |n〉 = a†n1

1 . . . a†ns

s |0〉.
The dynamics takes the form of an (imaginary-time)

Schrödinger equation,

d

dt
|P (t)〉 = H |P (t)〉 . (10)

The Hamilton operator H contains the creation and anni-
hilation operators a†

i and ai, which obey canonical com-
mutation relations and describe birth and death of an
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individual of phenotype i, respectively. This formalism
has been widely applied to related dynamical problems
such as reaction-diffusion models; see, e.g., refs. [8,9].

In order to construct the Hamiltonian in a systematic
way, recall the biological meaning of fitness in the clas-
sical theory (8). The coefficient function fi(y) is not a
simple birth rate but the effective rate of reproductive
success, taking into account birth and death processes.
It can be written as the difference between a birth rate
bi(y) and a death rate di(y) which are both positive,

fi(y) = bi(y) − di(y) = λ(bgame
i (x) − dgame

i (x))

+bsize(n) − dsize(n) . (11)

Clearly, this decomposition requires additional biolog-
ical input as will be discussed below for the hawk-dove
game. In the quantum theory, it becomes important since
birth and death processes have individual fluctuations.
As operators, these rates determine the reproduction cur-
rent,

Ji = a†
iaibi(n̂) − aidi(n̂) . (12)

with n̂ = (n̂1, . . . , n̂s) = (a†
1a1, . . . , a

†
sas). We have

Ji|P (t)〉 =
∑

n
ji(n, t)|n〉, where

ji(n, t) = nibi(n)P (n, t) − (ni + 1)di(n + i)P (n + i, t)

(13)

is the probability current between the states |n〉 and |n+
i〉. Here we use the shorthand

n ± i ≡ (n1, . . . , ni−1, ni ± 1, ni+1, . . . , ns) . (14)

The Hamiltonian then takes the form

H =

s
∑

i=1

(a∗
i − 1)Ji (15)

so that eq. (10) is equivalent to the Master equation

(∂/∂t)P (n, t) = (ni − 1)bi(n− i)P (n − i, t)

−nibi(n)P (n, t)

−nidi(n)P (n, t)

+(ni + 1)di(n + i)P (n + i, t) . (16)

Probability conservation implies that H only has eigen-
values with non-positive real parts. We are interested
in particular in the leading eigenstate |Φ∗(t)〉 with sup-
port in the coexistence region of all phenotypes, n1 ≥
1, . . . , ns ≥ 1. This eigenstate decays due to extinction
processes ni = 1 → 0. The eigenvalue E∗ < 0 can
be written in terms of the extinction current given by
eq. (13),

E∗

N (t)
=

s
∑

i=1

∑

n|ni=0

j∗i (n, t) =

s
∑

i=1

∑

n|ni=1

di(n)Φ∗(n, t)

(17)

with N (t) =
∑

n1≥1,...,ns≥1 Φ∗(n, t).
For further analysis, let us approximate the Master

equation (16) by a continuous diffusion equation, which
is conveniently written for a population state depending
on the scaled variables y,

∂

∂t
Φ(y, t) =

1

2n∗

s
∑

i=1

∂2

∂y2
i

Gi(y)Φ(y, t)

−λ

s
∑

i=1

∂

∂yi

Vi(y)Φ(y, t) (18)

with

Gi(y) = yi[bi(y) + di(y)] , (19)

λVi(y) = yi[bi(y) − di(y)] . (20)

Biological populations may be sufficiently large so that
their variation in relative size, which is of order

〈(y − 1)2〉 ∼ 1/n∗ , (21)

can be neglected. The fluctuations in phenotype compo-
sition may still be significant, depending on the scaled
game coupling constant λn∗. They are described by a
projected diffusion equation for the phenotype state

φ(x, t) ≡
∫

dy Φ(y, t)δ(x − y/y) . (22)

Long-term fluctuations are characterized by the leading
eigenstate φ∗(x, t) with support in the coexistence region
0 < xi < 1 and the corresponding eigenvalue e∗ < 0. Re-
moving the time-dependence by normalization defines a
stationary phenotype probability distribution p∗(x), the
quantum Nash equilibrium. For game-based evolution,
the diffusion coefficients and the drift fields have a non-
trivial dependence on the phenotype composition x, pre-
venting a solution in closed form. Therefore, we will now
turn to a specific example.

IV. THE QUANTUM HAWK-DOVE GAME

The hawk-dove game [3] is one of the simplest classical
games. ‘Hawks’ (i = 1) and ‘doves’ (i = 2) are the two
phenotypes of this game, and there is a single indepen-
dent frequency variable x ≡ x1 = 1 − x2. The game is
defined by the (suitably normalized) payoff matrix

A =

(

1 − c 2
0 1

)

(23)

with a constant c > 1, leading to a classical population
dynamics of the form (3), (4),

dx

dt
= λx(1 − x)(1 − cx) . (24)
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The unique stable fixed point is the Nash equilibrium
x∗ = 1/c.

The hawk-dove game dynamics has been used to ex-
plain instinctive agression control in animal species. In-
dividuals of the same species may fight for territory,
mating partners, etc. ‘Hawks’ are aggressive individuals
who escalate fights, while ‘doves’ avoid escalation and
retreat. Hence, a hawk will always win against a dove
(A12 = 2, A21 = 0), compared to the payoff of doves
againts doves (A22 = 1). However, hawk-hawk encoun-
ters involve a fitness decrease due to mutually inflicted
injuries (A11 = 1 − c). In species with heavy weaponry
(c ≫ 1), fights are usually limited to ritual display of
force and truly aggressive individuals are rare, as indi-
cated by the Nash equilibrium x∗ ≪ 1. Needless to say,
this is but the simplest approximation to the complexities
of animal behavior.

The biological interpretation also suggests a decompo-
sition (11) of the fitness into birth and death processes.
Here we choose

bgame
i (x) = (Bx)i − xDx ,

dgame
i (x) = (Dx)i − xBx

(25)

with

B =

(

1 2
0 1

)

, D =

(

c 0
0 0

)

. (26)

The matrix B describes game-related variations of the
birth rates, while D contains the deaths due to fights.
The offset terms xBx and xDx required by eq. (4) are
associated with the other type of process, respectively.
The population size is assumed to be controlled by a bare
birth rate and a variable death rate,

bsize = 1 , dsize = y . (27)

Of course, this decomposition is not unique, and a dif-
ferent biological context may suggest a different choice.
The qualitative results described below do not depend on
these details.

Using the decomposition (25)–(27), we obtain the one-
dimensional phenotype diffusion equation

∂

∂t
φ(x, t) =

1

2n∗

∂2

∂x2
g(x)φ(x, t) − λ

∂

∂x
v(x)φ(x, t) (28)

with

g(x) = x(1 − x)[(1 − x)(b1(x) + d1(x))

+x(b2(x) + d2(x))] (29)

and

v(x) = x(1 − x)(1 − x/x∗) . (30)

The quantum Nash equilibrium p∗(x) and the eigen-
value e∗ can be computed approximately. For λ = 0,

the solution is p∗(x) = 1 and e∗ = 1/2n∗, describ-
ing the well-known case of neutral evolution. Correc-
tions for λn∗ ≪ 1 have the form of a power series in
λn∗. For λn∗ ≫ 1, obtain the approximate functional
functional form of the solution by neglecting extinctions,
i.e., by setting e∗ ≈ 0. The current in the Nash state,
j∗(x) ≡ (1/2n∗)(d/dx)(g(x)p∗(x)) − λv(x)p∗(x), is also
zero in this approximation, yielding

p∗(x) = p∗(x∗)
g(x∗)

g(x)
exp

[

2λn∗

∫ x

x∗

dx′ v(x′)

g(x′)

]

. (31)

For very large populations, p∗(x) is seen to be a Gaussian
of width ∼ 1/

√
λn∗ centered around the classical Nash

equilibrium x∗. The approximation (31) is seen to be
self-consistent for

xmin ≃ 1

2n∗λ

g′(0)

v′(0)
<
∼x <

∼xmax ≃ 1 − 1

2n∗λ

g′(1)

v′(1)
. (32)

Of course, the current cannot be neglected close to the
boundary, where we have j∗(x) = (−1/2n∗)g′(0)φ(0) +
O(x) and j∗(x) = (−1/2n∗)g′(1)φ(1)+O(1−x). Match-
ing the two regimes and using (17) gives an asymptotic
expression for e∗. The ratio of the extinction currents
takes the simple form

j∗(1)

−j∗(0)
≃ exp

[

2λn∗

∫ xmax

xmin

dx′ v(x′)

g(x′)

]

. (33)

Fig. 1 shows the quantum Nash state p∗(x) obtained nu-
merically for various values of the scaled game coupling
λn∗. The solution of the full Master equation (16) is
projected onto the frequency variable x using eq. (22).
The crossover from neutral to game-dominated behavior
is seen already at small equilibrium population sizes (here
n∗ = 70). The strong-coupling approximation (31), also
shown in fig. 1, turns out to be an excellent approxima-
tion in the regime λn∗>

∼1, xmin(λ, n∗) <
∼x <

∼xmax(λ, n∗).

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

3.5

Fig. 1. The quantum Nash equilibrium p∗(x) for n∗ = 70

and x∗ = 0.28. Numerical solution of the Master equation

(16) for λ = 1, 0.1, 0.01 (dots), the limit λ = 0 of neutral

evolution (dashed line), and the strong-coupling solution (31)

for xmin(λ, n∗) <
∼

x <
∼

xmax(λ,n∗) (solid lines).
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A comprehensive analytical treatment of the quantum
hawk-dove game is beyond the scope of this paper. In-
stead we now discuss properties of the solution which are
valid beyond this specific example.

V. RESULTS AND DISCUSSION

The quantum Nash equilibrium p∗(x) describes the
likelihood of finding phenotype frequencies x in long-term
observations of biological sample populations. The fluc-
tuations in phenotype composition depend on the scaled
game coupling constant λn∗ and may thus be significant
even in large populations where the relative size fluctua-
tions can be neglected. There are two modes of evolution.

In the weak-coupling regime λn∗ ≪ 1, the system is
dominated by stochastic forces. These produce a broad
quantum Nash equilibrium, which implies large frequency
variations,

〈(x − 〈x〉)2〉 ∼ 1 . (34)

In the limit λ = 0, the evolution becomes strictly neutral.
In the strong-coupling regime λn∗ ≫ 1, the game-

related deterministic forces become relevant. These sys-
tems have only small frequency variations around a clas-
sical Nash equilibrium,

〈(x − x∗)2〉 ∼ 1/λn∗ , (35)

as shown by the quantum Nash state (31) for the hawk-
dove game. Classical game theory is recovered in the
limit n∗ → ∞.

At any finite λn∗, the mixed Nash equilibrium can be
altered drastically by the extinction of phenotypes. The
probability of extinction depends strongly on the pheno-
type considered. In the hawk-dove game, hawks face a
much higher risk of extinction than doves, as indicated by
the ratio of the extinction currents in the quantum Nash
state given by (33). For x∗ < 1/2, the current j∗(0) is
exponentially larger in magnitude than j∗(1). This result
also implies that an initially small hawk mutant popula-
tion in a dove resident population is less likely to grow to
its classical equilibrium frequency x∗ than a dove mutant
in a hawk resident population.

In a similar way, stochastic effects may influence the
internal evolution of phenotypes even in the strong-
coupling regime, where the overall frequencies are close
to the classical Nash equilibrium x∗. In the hawk-dove
game, consider a mutant phenotype with a linkage dis-
equilibrium such that it can invade only the hawk sub-
population. According to the standard theory of neutral
evolution, the fixation probability of this mutant depends
on the fitness difference to the resident hawks and on the
effective hawk population size neff

1 . It is easy to show that
this may be much smaller than the effective population
size neff

2 for doves, as given by the ratio

neff
1

neff
2

=
x∗

1 − x∗

b2(x
∗) + d2(x

∗)

b1(x∗) + d1(x∗)
. (36)

Hence, hawks face a larger mutation load and a lesser
chance of fixation for adaptive mutations than doves.

To summarize: In classical game theory, the basic
strategies represented in a mixed Nash equilibrium x∗

are equivalent in the sense that their payoffs (Ax)i are
all equal to the average payoff xAx, see eq. (3). Stochas-
tic effects break this equivalence and alter the equilib-
rium state. In biological systems, stochasticity is caused
by frequency-dependent birth and death rates, that is,
by the same mechanism that gives rise to frequency-
dependent fitness values and underlies the application of
classical game theory. Stochastic evolution creates a bias
against phenotypes with larger fluctuations in their birth
and death rates.

Quantum game theory opens a systematic way to
quantify these stochastic effects. It contains Maynard-
Smith’s evolutionary game theory and Kimura’s theory
of neutral evolution as the limit cases of weak and strong
stochasticity, respectively. We have introduced here the
relevant concepts and applied them to the simplest kind
of game. Obvious extensions include more complicated
games such as bimatrix games.

Another avenue for future work is cooperative fluctu-
ations in phenotype and space. In biological systems,
population states p(x, r) now depend also on spatial co-
ordinates, and stochastic game theory becomes a non-
equilibrium quantum field theory. Population dynami-
cal problems involving diffusion and migration have been
treated by field-theoretic methods [10], and more recently
the process of biological speciation has been identified
as a coupled phase separation in phenotype and real
space [11].

Finally, it is tempting to speculate about a different
kind of randomness in game dynamics. The stochastic
effects discussed so far originate from events random in
time. However, we may also consider games with a payoff
random for individual pairings of players but indepen-
dent of time. This quenched disorder may affect Nash
equilibria in new ways.
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