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Abstract

This is the first of two papers where we discuss the limits imposed by competition to the biodiversity of species communities. In
this first paper, we study the coexistence of competing species at the fixed point of population dynamic equations. For many simple
models, this imposes a limit on the width of the productivity distribution, which is more severe the more diverse the ecosystem is
(1994, Theor. Popul. Biol. 45, 227–276). Here we review and generalize this analysis, beyond the ‘‘mean-field’’-like approximation of
the competition matrix used in previous works, and extend it to structured food webs. In all cases analysed, we obtain qualitatively
similar relations between biodiversity and competition: the narrower the productivity distribution is, the more species can stably
coexist. We discuss how this result, considered together with environmental fluctuations, limits the maximal biodiversity that a
trophic level can host.
r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the most striking characteristics of living
systems is their amazing diversity. Theoretical ecologists
have devoted much of their effort to explain why Nature
is diverse and to identify the mechanisms that enhance
or limit species coexistence. While the observations show
that rich and diverse ecosystems are the rule and not the
exception, stable, highly diverse systems rarely arise in
mathematical models.

In the early decades of theoretical ecology, emphasis
has been placed on the principle of competitive exclusion.
Stated qualitatively, this principle asserts that two or
more species occupying the same ecological niche
cannot stably coexist in the same ecosystem. The first

attempt to transform this principle into a mathematical
theorem is due to Volterra (1928). Generalizations of
Volterra’s theorem to an S species ecosystem have been
provided by several authors (MacArthur and Levins,
1964; Rescigno and Richardson, 1965; Levin, 1970). It
has been shown that S species cannot coexist at a fixed
density if they are limited by less than S independent
resources.

This approach, however, presents two kinds of
shortcomings. The first one is of a mathematical nature.
It has been shown that the theorem of competitive
exclusion in the previous form does not hold if some
conditions are relaxed. Most importantly, it no longer
applies if the growth rates depend nonlinearly on the
resources and if coexistence at a fixed point is replaced
by the more general condition of persistence (Armstrong
and McGehee, 1980; Koch, 1974; Kaplan and Yorke,
1977). Such nonlinear behavior is to be expected in
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natural ecosystems. Similarly, the theorem of competi-
tive exclusion is violated when age structured popula-
tions are considered, when resource is not uniform in
quality (May, 1974; Diamond, 1978) or when physical
space is considered (Solé et al., 1992). The prolonged
coexistence of a large number of competitive plankton
species has been justified through barriers to mixing of
species in an otherwise homogeneous environment
(Bracco et al., 2000).

The second, more important difficulty is related
to field observations, which can hardly ever claim to
give a full account of all resources and the func-
tional dependence of growth rates on them. Hence,
the theorem of competitive exclusion has little
actual predictive value. The simultaneous presence of
similar species can always be ascribed to yet unknown
resources or to unknown functional forms of growth
rates.

Field research has shown that coexistence of compet-
ing species is far from rare in real ecosystems. As a
result, the conditions favoring coexistence are receiving
increasing attention from the ecological community
(McCann et al., 1998; Chesson, 2000; Kokkoris et al.,
2002; Roberts and Stone, 2004). These theoretical
analysis and empirical observations suggest that the
competitive exclusion principle could be replaced by a
‘coexistence principle’ (den Boer, 1986).

In the present suite of two papers, we analyse species
coexistence for a class of models where competitive
exclusion does not hold, since species growth is limited
both by biotic resources (explicitly represented in the
model) and by other limiting factors (implicitly con-
sidered), modeled as self-damping terms in the popula-
tion dynamics equations. In the first paper we consider
coexistence at the fixed point of population dynamics,
and show how the combination of competition and
environmental fluctuations limit the maximum amount
of biodiversity that a trophic level can host. In the
second paper we consider models of species assembly,
kept away from the fixed point of population dynamics
through the continuous arrival of new species due to
immigration or speciation events. These models can
reproduce species-area laws in good agreement with field
observations. The coexistence condition presented in
this paper can be generalized to that situation as well.
We define therefore an effective model of biodiversity
across a food web, based on an approximation to the
population dynamics equations and on the condition of
maximum biodiversity derived in this first paper.
The effective model predicts that biodiversity as a
function of the trophic level has a maximum at an
intermediate level.

The present paper is organized as follows. After
introducing the population dynamics equations that
we use, we discuss in Section 3 coexistence in a
single trophic layer, in the framework of a mean-

field approximation of the competition matrix.
The coexistence condition that we derive imposing
that all equilibrium densities are positive is equi-
valent to the one demonstrated by Chesson
through the criterion of invasibility (Chesson, 1994,
2000). Several different models yield the same coex-
istence condition, be competition represented either
explicitly in the population dynamics equations or
implicitly, through the effect that other species
have on resources. This condition states that species
coexistence depends crucially on the distribution
of rescaled net productivity, i.e. productivity not
taking into account the competition load and rescaled
through the carrying capacity: the productivity distribu-
tion has to get narrower to allow the coexistence of a
larger number of species. This result is also in agree-
ment with theoretical studies stating that many
species can coexist provided they are similar enough
(Kokkoris et al., 2002).

The coexistence condition is then generalized to
generic competition matrices, beyond the mean-field
approximation. We show that the angle formed by the
principal eigenvector of the competition matrix, which
we name the competition load, and the rescaled
productivity must be narrow to permit species coex-
istence. This result allows to generalize the coexistence
condition from one trophic layer to structured food
webs, as discussed in Section 5.

The coexistence condition alone does not impose a
limit on biodiversity if the productivity distribution can
be arbitrarily narrow. However, in natural ecosystems,
this distribution has a finite width due to unavoidable
environmental fluctuations on time-scales much shorter
than those of population dynamics. This limits the
maximal biodiversity the system can host, and produces
a typical shape of biodiversity versus trophic
level (Lässig et al., 2001), as we discuss in the companion
paper.

2. General framework

We study here models of multispecies communities.
A key ingredient in the models is biodiversity, meaning
the number of reproductively separated populations in
the environment. Biodiversity arises from a balance
between the assembly process involving speciation and
immigration and the extinction process driven by
population dynamics, in a spirit similar to MacArthur
and Wilson’s theory of island biogeography (MacArthur
and Wilson, 1967). Population dynamics is represented
through generalized Lotka–Volterra equations of
the form

1

Ni

dNi

dt
¼

X

jai

gijðNÞ $
X

S

j¼1

bijNjðtÞ $ ai, (1)

ARTICLE IN PRESS
U. Bastolla et al. / Journal of Theoretical Biology 235 (2005) 521–530522



where the community is formed by S interacting species,
Ni represents the biomass density of species i, and N ¼
fN1;N2; . . . ;NSg:

The function gijðNÞ models prey–predator relation-
ships, and is called predator functional response (PFR). It
is zero for pairs of species not connected by a
predator–prey relationship. If species i is a predator
and species j is its prey, gij is positive and represents the
rate of prey consumption per unit of predator biomass.
The sign is negative if species i is a prey and j is its
predator. We assume in this case gijðNÞNi ¼
$gjiðNÞNj=Z: The term Zp1 is the efficiency of conver-
sion of prey biomass into predator biomass. In the
present paper we set Z ¼ 1; in order to simplify
formulae. In the companion paper the factor Z will play
a more important role, and it will be explicitly indicated.

Several different mathematical forms of the PFR have
been proposed and discussed in the biological literature.
We study here two cases: (i) prey dependent PFR linear
in prey density, i.e. gijðNÞ ¼ gijNj; (ii) ratio dependent
PFR, i.e. gij is a function of the ratio between prey and
predator density (Arditi and Ginzburg, 1989).

The matrix bij models competition as a linear
reduction in growth rates.1 All its elements are
nonnegative, and the diagonal elements bii are different
from zero. These intraspecific competition terms play an
essential role in allowing coexistence. Since competition
for prey is already represented through the terms gij and
the dynamics of prey species, the terms bij stand for
competition for resources not explicitly included in the
model. Such terms naturally arise from ‘‘integrating
out’’ some trophic links in a community. The term
ai40 accounts both for the death rate and for
the energy consumption necessary for the activity of
species i.

Eq. (1) are complemented with the condition that
species below a critical density Nc get extinct. This
condition takes into account that species are composed
of discrete entities and also mimics the effect of
demographic stochasticity.

We represent explicitly a single external resource,
interpreted as abiotic and considered as an additional
‘‘species’’ N0ðtÞ (Caldarelli et al., 1998; Bastolla et al.,
2001). Its dynamics is chosen in such a way that
species feeding on it feel an indirect competition effect.
The qualitative behavior of the model does not
depend on the detailed dynamics of the abiotic resource,
as far as competition in the first trophic level is
properly represented. The external resource introduces
a new scale of density R. The dimensionless
quantity R=Ncb1 is an important control parameter
in the system.

3. One-layer competition and productivity distribution

In this section, we reformulate results showing that
the coexistence of several competing species tends to
equalize their net productivity: the more coexisting
species, the more similar their productivities should be
(Chesson, 1994, 2000; Lässig et al., 2001; Kokkoris et
al., 2002). This is done here imposing that the S
competing species coexist at a fixed point of population
dynamics, with all densities positive and larger than the
threshold for extinction, Nc: We adopt a simple mean-
field approximation of the competition matrix, which
will be relaxed in the next section.

The condition derived in this way is qualitatively
equivalent to a condition derived through the more
general requirement of invasibility (Armstrong and
McGehee, 1980; Chesson, 1994, 2000). Moreover,
modeling competition through explicit interaction terms
or implicitly, through the dynamics of the common
resources, leads to the same condition.

3.1. Direct competition: mean-field approximation

Our study of competition starts from the simplest
model

1

Ni

dNi

dt
¼ Pi $

X

j

bijNj . (2)

The quantity Pi is assumed to be independent of species
density, and represents the intrinsic growth rate of
species i in the absence of competition.

We assume that the competition matrix bij is
symmetric and all its elements are nonnegative. We
further assume for convenience that the matrix is
positive definite. It can be proven that these hypothesis
hold if the competition terms arise in an effective way
through the dynamics of underlying resources. The
stability properties of the fixed point N%

i ¼
P

kðbÞ
$1
ik Pk

are governed by the community matrix (May, 1974),
which in the present case is Aij ¼ $N%

i bij : For positive
definite competition matrices, positivity of all the Ni

implies that the community matrix is negative definite,
thus the system is locally stable. Furthermore, under
these conditions, it is possible to construct a Ljapunov
function (MacArthur and Levins, 1964; May, 1974),
which guarantees that the equilibrium point is globally
stable as well. Thus, we can ignore coexistence along
periodic as well as chaotic orbits.

We parameterize the competition matrix as

bij ¼
ffiffiffiffiffiffiffiffiffiffi

biibjj
q

rij, (3)

where rij 2 ½0; 1' is a dimensionless quantity that we call
ecological overlap (or niche overlap) and describes the
similarity in the use of resources between species i and j.
One has clearly rii ¼ 1:
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The parameters bii can be absorbed introducing the
rescaled variables ni ¼ ðbiiÞ

1=2Ni; pi ¼ ðbiiÞ
$1=2Pi: The

variables p2i have dimensions of biomass per area per
time, the same dimensions of productivity. By analogy,
and as a shortening, we call the pi productivities instead
of rescaled growth rates, but they should not be
mistaken for productivities measured in field studies.
In terms of the new variables, the fixed point equations
have the form

pi ¼
X

j

rijnj. (4)

We start by considering a mean field approximation
of the competition matrix, addressing the general case in
the next section. The mean-field approximation consists
in assuming that all non-diagonal elements are equal:
rii ( 1; rij ( r0 for iaj;2 such that the solution of the
fixed point equations reads

n%i ¼
1

ð1$ r0Þ
pi $

hpi
1þ ð1$ r0Þ=r0S

" #

, (5)

where hi indicates the average over the S species in the
community. All equilibrium densities are positive and
above the threshold nc if and only if

hpi $ pi
hpi

p 1$ nc=hni
1þ Sr0=ð1$ r0Þ

. (6)

For nc ¼ 0; this result is equivalent to the condition
derived by Chesson (1994) imposing invasibility of the
system.

The above condition only affects explicitly the pi
smaller than the average, but it is easy to see that it
implies a condition on the variance of the productivity
distribution. In fact, multiplying both sides by the
quantity ð1$ ðpi $ hpiÞ=hpiÞ; which is always positive if
the variance of the distribution is small enough, and
averaging over all species, we find

hp2i $h pi2

hpi2
p ð1$ r0Þ

Sr0 þ ð1$ r0Þ
1$

nc
hni

" #

. (7)

In other words, the coexistence condition requires
that all pi are very close to the average value when the
number of species S is large. The maximal negative
difference from the average is of order 1=S and the
standard deviation is of order 1=

ffiffiffiffi

S
p

: Notice that, if the
mean overlap r0 equals unity, all pi must be identical.
This result corresponds to the formulation of the
theorem of competitive exclusion in this framework.

For a resource rich system where the average reduced
density hni is well above the extinction threshold, the
quantity S0 ¼ ð1$ r0Þ=r0 defines an intrinsic scale of
biodiversity at which the productivity distribution gets

pretty narrow. For a much larger number of species S,
the average reduced density hni ¼h pi=ð1þ ðS $ 1Þr0Þ /
hpi=ð1þ S=S0Þ is close to the extinction threshold, thus
the r.h.s. of Eq. (6) becomes very small and the
condition of coexistence becomes rather stringent.
Therefore, the effect of positive nc on biodiversity is
only important for very diverse ecosystems.

3.2. Resource mediated competition, prey dependent PFR

We now consider S basal species feeding on a single
external resource N0 with a linear, prey dependent PFR:
gijðfNkgÞ ¼ gjNj : Competition is induced through the
dynamics of the common resource N0 and through the
limiting factors not explicitly considered in the model.
The population dynamics equations are

1

Ni

dNi

dt
¼ giN0 $

X

j

bijNj $ ai,

1

N0

dN0

dt
¼ Rb0 $ b0N0 $

X

S

i¼1

giNi. (8)

Different equations for N0 give qualitatively similar
results, as far as N0 is consumed by all the competing
species. We consider the fixed point equations and
substitute for N0; finding

pi $
X

j

g0ig
0
j

b0
þ rij

" #

nj ¼ 0, (9)

where we have defined the rescaled variables g0i ¼
gi=

ffiffiffiffiffi

bii
p

; a0i ¼ ai=
ffiffiffiffiffi

bii
p

; pi ¼ g0iR$ a0i and ni ¼ Ni

ffiffiffiffiffi

bii
p

:
The fixed point equations are thus equivalent to the
equations obtained by considering direct competition,
with an effective competition matrix that is symmetric
and positive definite if bij is such.

We now adopt the mean-field approximation of the
previous section, rii ( 1; rij ¼ r0o1 ðiajÞ: The approx-
imation is applied only to the matrix rij ; since the other
part of the competition matrix depends on the
productivity vector, nevertheless the result turns out to
be equivalent to the previous one. Substituting g0i ¼
ðpi þ a0Þ=R in Eq. (9), we get

ð1$ r0Þni ¼ pið1$ ShniaÞ $ aiShnia$ r0Shni, (10)

where a ¼ hg0ni=hnib0R: We then neglect the dependence
of a on hni and solve for this variable. Rearranging the
various terms, we find again that the coexistence of S
species is only possible if the minimal productivity
differs from the average at most in an amount
ð1$ rÞ=rS:

pi $ hpi
hpi

$
aha0i

aha0i þ r0 þ ð1$ r0Þ=S
a0i $ ha0i
ha0i

p 1$ nc=hni
1þ Sr=ð1$ rÞ

, ð11Þ
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where the effective competition overlap r is defined as

r ¼
r0 þ aha0i
1þ aha0i

p1. (12)

This coincides with Eq. (6) in the limit aha0i ¼
ha0ihg0ni=hnib0R ! 0; in which resources are not limit-
ing. In the opposite limit the condition on minus the
energy consumption rate $a0i becomes more demanding
than the condition on the pis, and r tends to one. Notice
that the competition overlap r is different from zero
even if the explicit competition overlap r0 vanishes.

3.3. Resource mediated competition, ratio dependent
PFR

We now assume that the PFR depends on the ratio
between the density of the prey and the density of its
predators (Arditi and Ginzburg, 1989) as

gi0ðNÞ ¼
b0ciN0

b0N0 þ
P

p2Pð0Þ cpNp
. (13)

(see also Schreiber and Gutierrez, 1998; Solé et al., 2000;
Drossel et al., 2001). In this expression species ‘‘0’’ is the
prey and the sum in the denominator runs over its
predators, represented as the set Pð0Þ: In the case of just
one predator, Eq. (13) can be seen as a Holling type III
PFR (Holling, 1959), where the prey density at which
the functional response saturates is proportional to the
predator’s density. Notice that, unlike prey dependent
PFR, the ratio dependent PFR does not contain any
externally specified biomass scale. For this reason, it is
in some sense simpler than prey dependent PFR
(Bastolla et al., 2001). We do not aim at discussing
which form of the PFR is most suitable to explain
observational data (Abrams and Ginzburg, 2000), but
just use it as a second example of population dynamics
where, aside from ratio dependence, competition for
preys is explicitly represented through the sum over
predators in the denominator. Since competition is now
explicitly represented, we do not need an additional
equation for the external resource N0 and we assume
that it renews rapidly enough such that its density
remains constant. The dynamical equations have now
the form

1

Ni

dNi

dt
¼

bciN0

bN0 þ
P

j cjNj
$ ai $

X

j

bijNj,

N0ðtÞ ( R. (14)

To simplify formulae, we use the rescaled variables c0i ¼
ci=

ffiffiffiffiffi

bii
p

; ni ¼ Ni

ffiffiffiffiffi

bii
p

and apply the mean-field approx-
imation to the matrix bij : The solution of the fixed point
equations is then

n%i ¼ hni þ
1

ð1$ r0Þ
c0i $ hc0i
1þ Sahni

, (15)

where now a ¼ hc0ni=hnibR: Further, we consider the
case of a productive system where the variation in the ais
can be neglected. The condition that all species are
viable yields

hc0i $ c0i
hc0i

p 1$ nc=hni
1þ Sr=ð1$ rÞ

, (16)

where

r ¼
r0 þ ha0i=bShni
1þ ha0i=bShni

(17)

is the effective competition coefficient and the product
Shni can be obtained solving a second-order equation,
whose root remains finite in the limit S ! 1:

Eqs. (6), (11), and (16) are equivalent coexistence
conditions for three different population dynamics
models. They all show the quantitative dependence
between the distribution of productivities and biodiver-
sity. Qualitatively identical coexistence conditions were
obtained through the invasibility criteria, i.e. imposing
that an invading species (with very low density) has a
positive growth rate (Chesson, 2000).

4. One layer competition without mean-field

In this section, we analyse the coexistence condition
without relying on the mean field approximation of the
competition matrix. Our starting point is the fixed point
equations (4), where rescaled variables are used. To
simplify the presentation, most calculations are reported
in Appendix A. Here we only show and discuss the final
results.

We will use the spectral representation of the matrix
rij ; which we assume to be symmetric and positive
definite. Therefore, all of its eigenvalues la are real and
positive, and its S eigenvectors ua form an orthonormal
system. In graph theory (Bollobás, 1998) the matrix rij is
called the adjacency matrix. Its maximal eigenvalue is
defined by the property l1

P

i v
2
i X

P

ij rijvivj for every
vector v: The equality holds if and only if v is
proportional to the principal eigenvector u1: It holds
that l1X

P

ij rij=S; so that the main eigenvalue is
expected to be proportional to the number of species
S. Moreover, all components of the principal eigenvec-
tor either have the same sign (we can choose it
arbitrarily to be the positive sign) or are zero. We will
assume that the graph cannot be separated in discon-
nected components. If this is not the case, the analysis
can be applied separately to each disconnected compo-
nent. This hypothesis implies that all components of the
principal eigenvector are strictly positive: u1i 40: We call
the principal eigenvector of the competition matrix the
competition load.

It is useful to define the average of the S $ 1
eigenvalues excluding the principal one, which we will
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denote with the symbol 1$ r0:

1$ r0 (
1

S $ 1

X

S

a¼2

la. (18)

It follows from the condition on the trace of the
matrix rij that

P

a la ¼ S; so the principal eigenvalue l1
can be expressed as

l1 ¼ Sr0 þ ð1$ r0Þ. (19)

We now use for simplicity the notation va (
P

j vju
a
j

for the projection of a vector v along the ath eigenvector,
ua: We show in Appendix A that the coexistence
condition (6) can be written, for a general competition
matrix, as
P

i p
2
i $ ðp1Þ2

ðp1Þ2
p l2

Sr0 þ ð1$ r0Þ
1$

nc
hni

" #

, (20)

where l2 is the second largest eigenvalue, which is of
order one.

If the matrix rij has the mean field form, Eq. (20) is
identical to Eq. (7). In fact, in the mean field case, it
holds that la ¼ ð1$ r0Þ for aX2: Moreover, in this
symmetric system the principal eigenvector is uniform,

u1i ( 1=
ffiffiffiffi

S
p

; so that p1 ¼
ffiffiffiffi

S
p

hpi; yielding Eq. (7).
Eq. (20) tells us that the productivity vector, p; has to

be almost parallel to the competition vector u1 in order
to allow coexistence of all species: species with larger
competition component u1i need a comparatively larger
productivity to survive. The angle between the produc-
tivity vector and the competition vector has to become
narrower as competition becomes stronger, until only a
perfect coincidence guarantees the survival of all species.
The strength of competition increases with the overlap
parameter 1$ l2; with the ratio nc=hni; and with the
largest eigenvalue l1 * Sr0: Therefore, competition
becomes more severe as the number of species increases,
unless the competition matrix is sparse. Since the
resources on which the S species feed are finite, we
expect on ecological grounds that the strength of the
competition increases as more species are packed in the
ecosystem. This can be shown in some mechanistic
models of competition, in which the matrix rij is derived
from the underlying dynamics of the resources.

5. Competitive coexistence in a food web

We now turn to the more general case of an L-levels
food web. After integrating the upper and lower levels,
the effective equation for the fixed point density of
species at a given level has the familiar form of a
competition equation, and displays the same qualitative
behavior discussed for the case of the single level.

As in our previous work (Lässig et al., 2001), we
assume a hierarchical trophic organization, so that

species at level l feed only on species at level l $ 1 and
compete only with species at their same level. Species at
level L are top predators. Level zero can be interpreted
either as basal species or as abiotic resources described
by an effective equation. The dynamical equations,
using linear, prey dependent PFR, read

1

N ðlÞ
i

dN ðlÞ
i

dt
¼

X

j

gðlÞij N
ðl$1Þ
j $ aðlÞi

$
X

j

bðlÞij N
ðlÞ
j $

X

j

gðlþ1Þ
ij N ðlþ1Þ

j , ð21Þ

where the superindex stands for the level where the
species belongs. The matrix gðlÞij represents predation
from level l to level l $ 1: It vanishes identically for l ¼ 0
and l ¼ Lþ 1: The parameters aðlÞi stand for energy
consumption and death rates of species at level l for
lX1; whereas $að0Þi is the fictitious growth rate of the
resource at level zero. The direct competition for species

at level l is represented through the matrix bðlÞij : As

above, we assume that it is symmetric and positive
definite.

We now consider the fixed point equations. For every
level l, we solve for the densities of species at different
levels l0al and substitute, thus getting fixed point
equations for species at level l with the form of effective
competition equations with a symmetric competition
matrix:
X

j

CðlÞ
ij N

ðlÞ
j ¼ PðlÞ

i . (22)

Three different integration schemes yield different
equations of the same form (22). In the scheme
described in Appendix B, densities at levels l0ol are
recursively solved starting from level zero, and densities
at levels l04l are recursively solved starting from the
maximum level L. Levels above and below l (predators
and preys) contribute both to the competition matrix
and to the productivity vector. Therefore, as is known,
competition can be induced not only through common
preys, but also through common predators.

In a second possible scheme, levels above l only
contribute to PðlÞ as an effective energy consumption
term, whereas levels below l contribute both to the
competition matrix and to the productivity vector as a
growth term. Finally, in the third scheme, levels above l
contribute both to the effective competition and to the
productivity vector, whereas species at levels below l
only contribute to the productivity. In all three cases,
the effective equations for species at level l have the form
(2) of effective competition equations, where the
competition matrix and the productivity vector depend
on the properties of species at the other levels.

The result of the previous section implies that also for
a structured food web the effective productivity vector
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at level l must form a narrow angle with the principal
eigenvector of the effective competition matrix.

6. Environmental variability and biodiversity

The coexistence conditions derived above yield a
natural scale for assessing the degree of biodiversity of
an ecosystem.3 Ecosystems with S5ð1$ rÞ=r are
loosely packed. They impose mild conditions on the
productivity distribution, and can easily incorporate
new species. Ecosystems with Sbð1$ rÞ=r are tightly
packed. There, the productivity distribution is subject to
strict constraints and incorporation of new species is
very difficult. Which ecological mechanisms distinguish
between the two kinds of situations? On the one hand, as
we will discuss in a next paper, the immigration and
speciation rates play a key role in smoothing the effects
of condition (6) and allowing a large number of species
into the system. On the other hand, an important role in
determining biodiversity is played by environmental
fluctuations (Hutchinson, 1961; Chesson, 2003a).

The growth rates considered in the previous models
are subject in real systems to environmental fluctuations,
such as for instance, variation in rain levels, temperature
and daily light, or forest fires for plant communities,
natural obstacles to the movement of animal species, or
fluctuations in the number of interacting populations
also affected by the environmental noise. Some of these
variables fluctuate over time-scales much shorter than
the characteristic time-scales of population dynamics.
We thus interpret the growth rates pis as time averaged
quantities with superimposed fast fluctuations due to
environmental variability. These preclude that the
productivities take identical values, even for populations
with identical ecological properties.

To take into account these fast environmental
fluctuations, we assume that they tend to broaden the
productivity distribution so that there is a minimum
width given by the equation

hpi $ pmin

hpi
XD 1$

1

S

" #

. (23)

The factor 1$ 1=S ensures that the condition (23) is
satisfied for S ¼ 1; when pmin and hpi coincide. The term
0oDp1 is an effective measure of environmental
variability. For D ¼ 0 the condition (23) is always
satisfied, while for D ¼ 1 it imposes a very small pmin

(recall the pi are positive quantities). Values of D41
cannot be realized in the large S limit.

Combining Eq. (23) with the coexistence condition
(6), we get a limit to the maximal biodiversity that the
ecosystem can host. In fact, Eq. (6) requires that the
productivity distribution gets narrower as biodiversity
increases, but at some point the largest difference
tolerated becomes of the order of the minimal difference
compatible with the actual environmental variability.
The maximal biodiversity is a function of the competi-
tion overlap r; of the environmental variability D; and of
the ratio between the average biomass and the threshold
for extinction, nc=hni; and is given by the inequality

1$ nc=hni
1þ Sr=ð1$ rÞ

XD 1$
1

S

" #

, (24)

leading to a second-order inequality that can be
simplified for large S as

Sp1þ
1$ r
r

" #

1$ D$ nc=hni
D

" #

. (25)

For large competitive overlap r close to unity or large
variability D ’ 1; only one species can survive in the
long run. If both the overlap and the variability are
small, on the other hand, the maximal number of species
can be rather large. Only in case of small variability the
ecosystem can be tightly packed.

7. Discussion

In this work, we have considered simple models of
competition, either represented as explicit terms in the
population dynamics equations or effectively introduced
through the dynamics of common prey and predator
species. We have focused our attention on the fixed
points of population dynamics, imposing the condition
that all species at equilibrium have positive densities.
For the simplest model of competition, this condition
ensures that the fixed point is both locally and globally
stable, but for more complex situations this represents
an oversimplification. We will consider in the compa-
nion paper systems far from equilibrium, and argue that
a suitable modification of the coexistence condition
derived at the fixed point remains generally valid.

We first analysed coexistence at the fixed point,
adopting a mean-field approximation of the competition
matrix. This approximation is expected to hold when
there is a main nutrient on which all species are
dependent, or when the niche space has many dimen-
sions.

Within the mean-field approximation, coexistence of
S species competing with each other implies a condition
on the distribution of their rescaled growth rates, pi ¼
Pi=

ffiffiffiffiffi

bii
p

; where bii is the inverse of the carrying capacity:
the width of the distribution has to shrink with
increasing number of species S, competition overlap r
or ratio Nc=hNi of the minimal viable density to the
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3This scale is relevant in ecosystems where hNibNc; otherwise
biodiversity is controlled by the threshold density. We are assuming
here that our ecosystem is large enough so that the condition hNibNc

holds where the number of species is of the order ð1$ rÞ=r at which
competition effects are important.
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average density. Notice that, if the carrying capacities
vary from one species to another, for instance depending
on body size, this conclusion does not apply to growth
rates prior to rescaling.

This coexistence condition is equivalent to the one
obtained by Chesson (1994, 2000) by imposing the
requirement of invasibility, which demonstrates its
robustness. We found formally identical coexistence
conditions in models with explicit competition terms
and in models where competition is induced by the
dynamics of shared resources, within a single trophic
layer and within a whole structured food web.

The mean-field approximation is not appropriate to
describe more complex competition matrices, for
instance when there is a continuum of resources
distributed along one dimension (May and MacArthur,
1972), or when species can be grouped according to
their ecological similarity. We have therefore gener-
alized the coexistence condition beyond mean-field
competition matrices. In the general case, an important
role is played by the principal eigenvector of the
competition matrix, which we named the competition
load. The angle between the vector of competition loads
and the vector of rescaled growth rates has to be
narrower for stronger competition, i.e. for increasing
average competition overlap and number of species.
This generalizes the condition on the variance of the
distribution of rescaled growth rates to the case of a
generic matrix.

The coexistence condition Eq. (7), stating that the
variance of the rescaled growth rates must decrease as
1=S due to competition, is reminiscent of May’s
theorem, according to which the coexistence of S species
randomly interacting requires that the variance of their
interactions vanishes as 1=S (May, 1974). In fact, May’s
theorem was derived imposing local stability of the
fixed point of population dynamics and, for the
simplest models of competition, the condition that all
densities are positive at the fixed point also implies local
stability. The condition for the coexistence of species
whose rescaled growth rate lies below the average is
stricter: they must differ from the average at most
by an amount of the order of 1=S; which is smaller than
that imposed by the condition on the variance. This
appears more demanding than the condition in May’s
theorem, probably because here all species are in
competition with each other instead of being randomly
interacting.

The coexistence condition that we described does not
limit biodiversity, as long as the angle between rescaled
growth rates and competition loads can be made
arbitrarily small. However, environmental fluctuations,
due to biological or abiotic processes with time-scales
shorter than those of population dynamics, necessarily
limit the possibility to fine tune ecological parameters
in order to accommodate a larger biodiversity. We

include environmental variations in our competition
model in an effective way, as a force broadening
the distribution of rescaled growth rates. Considering
this new ingredient sets a limit on the maximal
biodiversity that a system of competing species can
host. In the companion paper, we will combine this
limitation to ‘‘horizontal’’ biodiversity imposed by
competition, with either dissipation of energy or growth
of perturbations in the ‘‘vertical’’ direction along the
food chain.

Environmental changes characterized by longer time
scales, as seasonal changes or the storage effect, have
not been included in our analysis, although they
certainly affect coexistence conditions. Interestingly, in
some cases the adaptative responses of species to these
environmental fluctuations with time scale comparable
to that of population dynamics are predicted to enhance
species coexistence (Chesson, 2003a,b). This contrasts
with the prediction presented here that a fast fluctuating
environment would set a limit on biodiversity. It would
be therefore quite desirable to set up a general theory of
how environmental noise on different time-scales
modulates biodiversity.
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Appendix A. Coexistence condition for a generic matrix

Our starting point is Eq. (4), pi ¼
P

j rijnj ; and we
want to demonstrate the coexistence condition (20)
using the spectral properties of the competition matrix
rij : For simplicity of notation we shall indicate with
a superscript a the component of a vector in the
direction of the ath eigenvector of the matrix rij ; na ¼
P

j nju
a
j : la denotes the corresponding eigenvalue. Using

this notation, Eq. (4) can be written in the eigenvector
basis as pa ¼ lana; from where we get the equilibrium
biomasses

ni ¼
X

S

a¼1

pauai
la

Xnc. (26)

We now bring to the r.h.s. the contribution of the
principal eigenvector u1i and multiply both sides times
the quantity ½ðpi $ p1u1i Þ=p

1 $ u1i '; which, as we will
demonstrate at the end, is always negative if the system
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size is large enough. We get

X

S

a¼2

pauai
la

pi $ p1u1i
p1u1i

$ 1

" #

p nc $
p1u1i
l1

" #

pi $ p1u1i
p1u1i

$ 1

" #

. ð27Þ

Summing over i, exploiting the orthonormality of the
eigenvectors, and rearranging the factors, we obtain

X

S

a¼2

ðpaÞ2

la
p ðp1Þ2

l1
$ ncð2p1hu1i $h piÞ. (28)

Here brackets denote average over the S species. It
holds hpi ¼

P

a p
ahuai: Neglecting, just for the sake of

simplifying the final formula, the contribution of the
eigenvectors with aX2 to the mean productivity, which
is small since the components pa and the mean
eigenvectors huai are much smaller than the correspond-
ing quantities for the principal eigenvector, we get
PS

a¼2 ðp
aÞ2=la

ðp1Þ2
p 1

l1
1$

nc
hni

" #

. (29)

Noticing that l2 is the largest of all eigenvalues with
aX2; and that

PS
a¼2 ðp

aÞ2 ¼
PS

i¼1 p
2
i $ ðp1Þ2; and sub-

stituting the expression for l1; we finally get Eq. (20):
P

i p
2
i $ ðp1Þ2

ðp1Þ2
p l2

Sr0 þ ð1$ r0Þ
1$

nc
hni

" #

. (30)

This expression demonstrates our previous statement
that the quantity ðpi $ p1u1i Þ=p

1u1 is always smaller than
one if system size is large enough, which is the property
that we have used for deducing the above formulae.

Appendix B. Effective competition in a food web

Starting from the food web equations (21), we want to
obtain effective fixed point equations for level l in the
form (22). First, we write the fixed point equations in
matrix notation:

ðgðlÞÞNðl$1Þ $ aðlÞ $ ðbðlÞÞNðlÞ $ ðgðlþ1ÞÞTNðlþ1Þ ¼ 0. (31)

Bold face symbols represent column vectors, while the
other symbols represent matrices. An upper T indicates
transposition of a matrix. The boundary conditions are
gðLþ1Þ ¼ 0 (the top level L has no predators) and a
formally identical equation with constant growth rate
for the renewable abiotic resources at level 0:

gð0ÞR$ ðgð1ÞÞTNð1Þ ¼ bð0ÞN ð0Þ. (32)

We now focus on an intermediate level l. Species
below level l can be integrated out solving for their
equilibrium densities starting from level 0 upwards.
Species above level l can be integrated out similarly,
starting from the maximum level L. Both kinds of

species contribute to the effective competition matrix
CðlÞ and effective productivity vector PðlÞ of Eq. (22).
The recursive equations to obtain these quantities are

CðlÞ ¼ ðgðlÞÞðM ðl$1ÞÞ$1ðgðlÞÞT þ bðlÞ

þ ðgðlþ1ÞÞT ð ~M
ðlþ1ÞÞ$1ðgðlþ1ÞÞ, ð33Þ

PðlÞ ¼ ðgðlÞÞðM ðl$1ÞÞ$1Qðl$1Þ $ aðlÞ

þ ðgðlþ1ÞÞT ð ~M
ðlþ1ÞÞ$1 ~Q

ðlþ1Þ
. ð34Þ

Quantities with the tilde are recursively obtained from
the upper levels, starting from level L:

~M
ðlÞ ¼ bðlÞ þ ðgðlþ1ÞÞT ð ~M

ðlþ1ÞÞ$1ðgðlþ1ÞÞ, (35)

~Q
ðlÞ

¼ $aðlÞ þ ðgðlþ1ÞÞT ð ~M
ðlþ1ÞÞ$1 ~Q

ðlþ1Þ
. (36)

The boundary condition is ð ~M
ðLÞÞ ¼ bðLÞ; ~Q

ðLÞ
¼ $aðLÞ:

Quantities without the tilde are similarly obtained
starting the recursion from level zero:

M ðlÞ ¼ ðgðlÞÞðMðl$1ÞÞ$1ðgðlÞÞT þ bðlÞ, (37)

QðlÞ ¼ ðgðlÞÞðMðl$1ÞÞ$1Qðl$1Þ $ aðlÞ. (38)

The boundary conditions are in this case ðM ð0ÞÞ ¼ bð0Þ

and Qð0Þ ¼ gð0ÞR:
The effective competition matrix CðlÞ

ij is positive
defined if all of the b and g matrices are so.

References

Abrams, P.A., Ginzburg, L.R., 2000. The nature of predation: prey
dependent, ratio dependent or neither? Trends Ecol. Evol. 15,
337–341.

Arditi, R., Ginzburg, L.R., 1989. Coupling in predator-prey dynamics:
ratio dependence. J. Theor. Biol. 139, 311–326.

Armstrong, R.A., McGehee, R., 1980. Competitive exclusion. Am.
Nat. 115, 151–170.
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