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Abstract

This is the second of two papers dedicated to the relationship between population models of competition and biodiversity. Here,
we consider species assembly models where the population dynamics is kept far from fixed points through the continuous
introduction of new species, and generalize to such models the coexistence condition derived for systems at the fixed point. The
ecological overlap between species and shared preys, that we define here, provides a quantitative measure of the effective interspecies
competition and of the trophic network topology. We obtain distributions of the overlap from simulations of a new model based
both on immigration and speciation, and show that they are in good agreement with those measured for three large natural food
webs. As discussed in the first paper, rapid environmental fluctuations, interacting with the condition for coexistence of competing
species, limit the maximal biodiversity that a trophic level can host. This horizontal limitation to biodiversity is here combined with
either dissipation of energy or growth of fluctuations, which in our model limit the length of food webs in the vertical direction.
These ingredients yield an effective model of food webs that produce a biodiversity profile with a maximum at an intermediate
trophic level, in agreement with field studies.
r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In the first paper of this suite, we have considered
coexistence at a fixed point of population dynamics.
This is justified for some of the simplest population
models, where it can be shown that the fixed point is
both locally and globally stable, such that the asympto-
tic dynamics converge to it. However, the dynamics of
more complex ecological models wander on periodic or
chaotic attractors. Even when the trajectory would tend
asymptotically to a fixed point, the time necessary to
reach it may be very large, so that disturbances such as
immigrations, speciations or environmental variations

can take place before the system effectively attains
equilibrium.

In the present paper, we consider the coexistence of
competing species in the framework of models of species
assembly, in which the ecological community is con-
tinuously perturbed through immigration, speciation
and extinction event that build up its biodiversity
(MacArthur and Wilson, 1967). We argue that the
relationship between the competition matrix and the
productivity distribution derived for static ecosystems
can be generalized in the slow assembly regime, in which
new species arrive at the ecosystems over time-scales
much larger than those of population dynamics.

In a previous work (Bastolla et al., 2001), we
have modeled an insular ecosystem characterized by a
constant immigration rate and by extinction produced
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by population dynamics. After a transient time, the
model ecosystem reaches a statistically stationary state
where the extinction rate and the immigration rate
balance, as predicted by the equilibrium theory of island
biogeography (MacArthur and Wilson, 1967).

We have shown that the model yields in a natural way
to species area relationships in qualitative agreement
with field observations. Despite the fact that space is not
represented explicitly in our model, we represent the
area A of the island as an effective parameter,
influencing both the immigration rate I and the thresh-
old density Nc at which extinction takes place. As
pointed out by MacArthur and Wilson (1967), the
immigration rate is expected to increase with the size of
the island. We assume that I ¼ I0 þ kA1=2: The case
I0 ¼ 0 corresponds to an immigration rate proportional
to the perimeter. We use it to model immigrations from
a continent to an archipelago. The case k ¼ 0 in which
the immigration rate does not depend on area is used to
describe immigration coming from nearby islands in the
same archipelago, since in this case, the immigration
rate is expected to depend mainly on the distance from
the closest island. The other parameter depending on
area is the threshold density Nc: We assume that the
number of individuals in the population is relevant for
extinction, so the critical density is inversely propor-
tional to the area, or Nc / 1=A:

Under the above assumptions, the model reproduces a
broad range of observed Species Area Relationships.
The logarithmic Species Area Law, observed for the
central islands of the Solomon archipelago (Diamond
and Mayr, 1976), is reproduced under the hypothesis
that the immigration flux is independent of area, I ¼ I0:
The power law S / A0:54; observed by Adler (1992) for
the number of bird species on archipelagos versus their
area, is reproduced assuming that I /

ffiffiffiffi

A
p

; a plausible
assumption for archipelagos.

In this paper, we generalize our previous model
considering speciation events beside immigrations. We
show that simulations of the new model reproduce
qualitatively the distributions of the ecological overlap
measured for three large natural food webs, a quantity
that we define here and that allows the characterization
of the food web structure and of the interspecific
competition.

We then define and study an effective model for the
biodiversity profile in food webs. In the previous paper,
we have shown that environmental fluctuations on time-
scales much shorter than those of population dynamics,
combined with a coexistence condition for competing
species, limit the maximal biodiversity the system can
host. This role of rapid environmental fluctuations
complements the result that fluctuations on slower
time-scales can promote biodiversity through mechan-
isms such as the storage effect and the nonlinearities in
the environmental response (Chesson, 2000).

Our effective model of biodiversity consists of the
condition on the maximum allowed biodiversity at each
trophic level, combined with equations obtained from
population dynamics for the across level variation of the
competition overlap, the biomass density and the
fluctuations in rescaled growth rates. This effective
model produces a profile of biodiversity versus trophic
level presenting a maximum at intermediate level, in
qualitative agreement with field observations (Cohen et
al., 1990). A mean field study of the model was
preliminarily reported in Lässig et al. (2001).

2. Species assembly through immigration and speciation

Here, we generalize our previous species assembly
model (Bastolla et al., 2001), including speciation events
in it. Some features of this new model have been
described in Bastolla et al. (2002). For a recent review of
several models of food web structure, dynamics and
assembly, see Drossel and McKane (2003).

In our model, biodiversity arises from a balance
between species origination through immigration and
speciation events, and extinction of species resulting
from population dynamics. The ecosystem is continu-
ously maintained far from the fixed point of population
dynamics through species origination events that occur
regularly, at time intervals equal to Tmig: Eventually, a
state of statistical equilibrium is reached where the
average properties do not vary with time.

As described in the companion paper, population
dynamics equations have the form of generalized
Lotka–Volterra equations,

1

nðlÞi

dnðlÞi
dt

¼ Z
X

j

~gðlÞij n
ðl%1Þ
j % ~aðlÞi

%
X

j

rðlÞij n
ðlÞ
j %

X

j

~gðlþ1Þ
ij nðlþ1Þ

j , ð1Þ

where the superindex stands for the level where the
species belongs. The dynamical variables ni are rescaled
population densities, ni ¼

ffiffiffiffiffi

bii
p

Ni; where Ni is the
population density and bii; defined in the first paper, is
proportional to the inverse of the carrying capacity,
bii ¼ ai=N&

i : The coefficient Zo1 is the efficiency of
conversion of prey biomass into predator biomass,
and it is assumed to be independent of level. The
coefficients of the Predator Functional Response, ~gðlÞij ;
and the death rates ~aðlÞi have been rescaled dividing them
by

ffiffiffiffiffi

bii
p

:
Using rescaled variables, the competition overlaps rij

are dimensionless parameters with rii ' 1: We assume
that rij for iaj is proportional to the predation overlap
qij ; rij ¼ lqij ; where qij is defined as the fraction of
common preys shared by species i and j. Introducing a
predation matrix pik; such that pik equals one if k is a
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prey for i, and zero otherwise, the predation overlap is
formally defined as

qij ¼
P

k pikpjk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

k pik
P

k pjk
p . (2)

This definition guarantees that qij is one if and only if
species i and j share exactly the same preys. Since
competition for common preys is already implicitly
represented through the prey dynamics, the coefficients
rij model competition for resources not explicitly
included in the ecosystem. The reason for the propor-
tionality between the non-diagonal elements of the
competition matrix rij and the predation overlap qij is
that we expect that species sharing more prey are more
closely related ecologically, so that their overall require-
ments are more similar.

The population dynamics equations are complemen-
ted by a threshold density nc ¼

ffiffiffiffiffi

bii
p

Nc below which a
species is considered extinct and is eliminated from the
system. The community is maintained by a number of
external resources, which are represented as extra
populations Ni with intrinsic growth rate gi0R and
predators only. The dimensionless parameter R=Nc;
ratio between the carrying capacity determined by the
external resources and the density threshold for extinc-
tion, plays an important role in controlling the
biodiversity in the model.

The introduction of new species is modeled as
follows. First, we choose at random one of the species
present i which acts as ‘‘mother species’’ for the new one,
with label i0 ¼ i þ 1 (old species with j4i are renum-
bered accordingly). Three parameters define the simi-
larity between i and i0 regarding their preys and
predators. Each link of the mother is (i) either deleted
from the daughter species with probability pdelete; (ii) or
copied with probability pcopy; (iii) or redirected to
another species with the complementary probability 1%
pdelete % pcopy: After this is done, with probability pnew a
new link is added, such that i0 gets a new prey or a new
predator.

The links that are copied mutate their strength with
respect to that of the mother species according to the
stochastic rule gi0j ¼ ðgij þ dgmaxxÞ=ð1þ dÞ; where x 2
½1;%1) is a randomly chosen number, gmax is the
maximal allowed value of the connection strengths,
and d ¼ 0:05: For newly extracted links, the connection
strength is chosen uniformly in the interval ½0; gmax):
New preys are extracted only in the set of species with
joi0; while new predators are extracted in the set of
species with j4i0: This condition is imposed in analogy
with the cascade model (Cohen et al., 1990), and
prevents the formation of feeding loops.

In the limit pcopy ! 0; the introduction of new species
proceeds through pure immigration, as in our earlier
model (Bastolla et al., 2001). When pcopy ! 1 the

daughter species are most similar to their mothers,
apart from deletions and additions of links and small
mutations in the link strength. This mimics a system
where biodiversity is maintained by speciation rather
than immigration events.

3. Productivity distribution in species assembly models

In our simulations, population dynamics never
reaches a fixed point between two immigration events:
the system contains species with a positive growth rate
as well as species with a negative growth rate, which are
slowly driven towards extinction. These can be either
unsuccessful immigrants or resident species outcom-
peted by newly arrived ones. As in our earlier model
(Bastolla et al., 2001), the system reaches a stationary
state where the average biodiversity does not vary with
time. This stationary biodiversity increases as a power
law of the immigration rate 1=Tmig and as the logarithm
of the external resources R=Nc:

To get analytical insight on this species assembly
model, we note that in the stationary state the typical
time required for the extinction of one species must
coincide with the time between arrivals of new species,
Tmig: Species that get extinct more rapidly than this do
not contribute to the stationary biodiversity. This
implies the following condition for species that belong
to the instantaneous transient community:

1

ni

dni
dt

X%
1

Tmig
. (3)

This equation generalizes the fixed point equations
that we studied in the first paper, which correspond to
the limit Tmig ! 1:We can apply this condition to one-
layer communities or structured food webs, as we
already did in the case of fixed point coexistence.
Applying a mean field approximation to the effective
competition matrix, the condition of coexistence in
transient communities can be generalized to

hpi % pi
hpi

p 1% nc=hni
1þ Sr=ð1% rÞ

þ
1

hpiTmig
, (4)

where pi is the effective rescaled growth rate arising both
from preys and predators of species i, after eliminating
the effective competition with species with shared preys
(see the companion paper). Here and elsewhere, angular
brackets denote averaging over species at the same
trophic level.

If the quantity hpiTmig is large, i.e. for slow immigra-
tion rates, the system can get close to the fixed point,
and the above equation modifies only slightly the result
for static systems ðTmig ! 1Þ presented in the previous
paper, which is equivalent to a previous result by
Chesson (1994). Therefore, in the slow immigration
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regime the variance of the distribution of the pi
decreases as 1=S; as for systems at the fixed point.

For more frequent immigration (smaller hpiTmig), the
variance of the productivity distribution increases. Thus
it becomes easier to pack a larger number of species in
the ecosystem, in agreement with the results of our
simulations, where the stationary biodiversity increases
as a power law of the immigration rate 1=Tmig (Bastolla
et al., 2001), and consistently with the predictions of the
theory of island biogeography (MacArthur and Wilson,
1967).

We show in Fig. 1 the productivity distribution for the
first trophic level of the simulated ecosystem. As
expected, the distribution is narrow, and its variance
decreases with the number of species S1 (see Inset), the
inverse of the variance being well fitted with a linear
function of S1; as predicted by Eq. (4).

In addition to the dependence of biodiversity on the
immigration rate, the number of species at the sta-
tionary state also increases as the fraction of speciation
events gets larger (growing pcopy). Also this behavior is
easy to rationalize through Eq. (4). In fact, new species
originated through speciation have a higher probability
of remaining in the ecosystem, since all of their
ecological parameters are similar to those of their
mother species, which have been already selected
through the ecological dynamics. Thus, a larger fraction
of speciation events implies a higher effective rate of
appearance of new species.

4. Ecological overlap in real and model ecosystems

To characterize the structure of food webs, we have
studied the distribution of the ecological overlap,
defined in Eq. (2). The overlap distribution is a property
that bears the fingerprint of the topology of the species
network. In the framework of species assembly models,
this distribution is influenced both by the process of
species origination, either through immigration or
through speciation, and by the extinctions driven by
population dynamics. Furthermore, the overlap distri-
bution can be measured in real food webs for which
sufficiently detailed information is available, and in this
way it allows to compare the results of our model with
empirical observations.

We show in Fig. 2 the overlap distribution obtained
from simulations of our model for non-basal species
above the first trophic level. To better compare different
ecosystems, the delta function at overlap equal to zero is
eliminated and the continuous part of the distribution is
normalized to one. The peaks that one sees arise from
the discreteness of the system: the number of prey per
species is a small integer number. Peaks at high overlap
are produced by speciation events, while peaks at small
overlap are due to distantly related species.

In the inset of Fig. 2, we notice that the fraction of
species with overlap equal to zero increases with the
number of possible preys at trophic level one, S1: This is
expected on the ground of the following simple
calculation, based on a mean-field argument. We assume
that all species at level two have koS1 preys at level
one, and that these preys are chosen at random.
Neglecting terms of higher order in 1=S1; we can
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Fig. 2. Overlap distribution for species at level larger than one in the
model ecosystem. A delta function in zero has been removed. Inset: the
probability that the overlap is exactly zero increases with the number
of possible preys at level one. All parameters are as in Fig. 1.
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compute the average predation overlap as q̄ ¼ k=S1:
Under these assumptions, the distribution of the overlap
is expected to be Poissonian, so that the expected
fraction of pairs with zero overlap is given by Pfq ¼
0g ¼ expð%k=S1Þ; which is an increasing function of S1:

We have considered three of the largest food webs
analysed in field studies: a freshwater marine interface
(Ythan estuary, see Huxham et al., 1996), a lake (Little
Rock, see Martinez, 1991), and a community associated
to a single plant (Silwood Park, see Memmott et al.,
2000). They have been studied in enough detail to allow
a statistical characterization of their network structure
(Montoya and Solé, 2002). For these three large food
webs, we have calculated the overlap between all pairs of
predators as defined in Eq. (2), and we have obtained the
overlap distribution and the average overlap, q̄:

The Ythan estuary food web, described in Huxham et
al. (1996), is formed by S ¼ 134 species and contains 592
links from predators to preys. Of these species, 42 are
metazoan parasites contributing to a total of 52 top
species. Only 5 species are basal. The average number of
preys per predator is 6.4 and the number of predators
per prey 4.6. The average overlap for this food web is
q̄ ¼ 0:102:

Silwood park network is constituted by trophic
interactions between herbivores, parasitoids, predators,
and pathogens associated with a single plant, the broom
Cytisus scoparius (Memmott et al., 2000). This web is
formed by 154 species, of which 66 are parasitoids, and
60 predators. There are 117 top species and a total of
370 links: the average number of preys per predator is
2.4, the number of predators per prey is 10, and the
average overlap between predators is q̄ ¼ 0:134:

Finally, the study of Little Rock lake (Martinez, 1991)
reports a total of 182 consumer, producer, and decom-
poser taxa. This is a highly lumped food web: in Little
Rock, 63% of ‘‘species’’ correspond to genera-level
nodes. This lack of resolution is probably responsible
for systematic statistical deviations, as the fact that some
‘‘species’’ have a very large number of predators or
preys. The network has 2430 links from predators to
preys, 63 basal species and a single top species. The
average number of preys per predator is 20.4, and the
number of predators per prey is 13.4. The average
overlap between predators is q̄ ¼ 0:195:

In Fig. 3 we represent the distributions of overlaps
PðqijÞ for the three natural food webs described above.
For the sake of comparison, we also show a distribution
obtained in our simulations, with the parameters shown
in the figure caption. The comparison shows that our
model is able to reproduce overlap distributions in good
agreement with field observations, at least in some range
of its space of parameters. The probability that the
overlap is zero is also in reasonable agreement with field
data: its value is 0.7 in the Ythan and Little Rock food
webs, and 0.8 in the Silwood food web. These values are

quite comparable with those shown in the inset of Fig. 2
for the model ecosystems.

5. Environmental fluctuations and biodiversity profiles in
food webs

We have shown in the companion paper that the
combination of a general condition for coexistence of Sl

species competing at trophic level l and an effective
model of short time-scale environmental fluctuations
yields the following limit on biodiversity:

Slp1þ
1% rl
rl

" #

1% Dl % nc=hnli
Dl

" #

, (5)

where rl is the typical competition overlap between a
pair of distinct species at level l, hnli is the average
rescaled density of the Sl competing species, nc is the
threshold density below which extinction takes place,
and Dl represents the minimal width of the productivity
distribution at level l compatible with environmental
fluctuations. The variability Dl is considered level
dependent, since fluctuations in productivity propagate
along the trophic chain and are expected to increase at
higher levels (see below). This is important for
characterizing the variation of biodiversity with trophic
levels and the length of food webs.

In Lässig et al. (2001) we have used Eq. (5), with level-
independent Dl ' D; in order to get an analytical insight
on the biodiversity of a hierarchical trophic web. We
assumed that the biodiversity at level l is the maximal
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one allowed by Eq. (5). The validity of this assumption
depends on the species assembly process, and we think
that it is plausible for mature food webs, where there
was enough time for filling all ecological niches.

Using the above assumption, we can define an
effective model for the biodiversity profile across the
trophic levels of hierarchical food webs. Being extremely
simplified, this model presents the advantage that it can
be solved analytically through some further approxima-
tion, and that the main processes responsible for the
biodiversity profile can be individuated rather clearly.
The model predicts under general conditions that
biodiversity has a maximum at an intermediate trophic
level, as observed in real food webs.

For fixed biodiversities Sl ; we can calculate the
average rescaled densities hnðlÞi through a mean field
approximation of the generalized Lotka–Volterra equa-
tions describing the population dynamics on the trophic
web:

hnðlÞi *
cZ~gðlÞhnðl%1Þi % c

Slþ1

Sl
~gðlþ1Þhnðlþ1Þi % ~aðlÞ

1% rl þ Slrl
, (6)

where cX1 is the average number of preys per predator,
which is assumed to be independent of level, cSlþ1=Sl is
the resulting average number of predators per prey, Zo1
is the efficiency of conversion of prey biomass into
predator biomass, also assumed to be independent of
level, ~gðlÞ is the average rescaled rate at which preys at
level l % 1 are consumed for unit of predator at level l,
and ~aðlÞ is the average death rate or energy consumption
rate of species at level l. In the calculations, for
simplicity, the two last quantities were assumed to be
independent of l.

Inserting the densities hnðlÞi in Eq. (5), we obtain the
maximum allowed biodiversities fSlg: This procedure is
applied iteratively, until convergence to a stable profile
hnðlÞi and fSlg that solves simultaneously the maximum
coexistence condition and the mean-field equations for
the densities.

For all parameters sets we studied, the resulting hnðlÞi
decreases approximately as a negative exponential of l,
as a result of metabolic energy dissipation along the
food chain. In order to improve the analytical under-
standing of the model, we adopt in the following this
phenomenological relationship, assuming that

hnðlÞi * R expð%l=l0Þ. (7)

Apart from the decrease across levels of the rescaled
biomass density, the other effect that limits the length of
the food web in this model is the propagation of the
fluctuations along the chain, which determine an
increase of the width of the productivity distribution as

Dl * D0 expðl=lDÞ. (8)

A justification of this ansatz is provided in the next
section.

To fully define the model, we still need an effective
model for the variation of the overlap rl across the level.
For this purpose, we assume that each of the Sl species
at level l is coupled to c species at the level below,
provided there are more than c species at that level;
otherwise it is coupled to all species: cl ¼ minðc;Sl%1Þ:
We consider two different ways in which these connec-
tions are drawn, leading to two different models for the
overlap:

1. The connections are drawn at random. In this case,
the fraction of common links between two species at
level l is ql ¼ cl=Sl%1: We further assume that the
competitive overlap rl is proportional to the link
overlap ql : rl ¼ lql ; with lp1: We interpret l as the
fraction of limiting factors that are represented by the
species at the level l % 1: We thus have

rl ¼ lcl=Sl%1,

Sl ¼ 1þ
Sl%1

lcl
% 1

" #

1% Dl % ðNc=RÞel=l0

Dl

" #

. (9)

2. In the second case, we consider that the Sl species
are divided into Sl=sl clusters of size sl : Species in
different clusters are not in competition. Species in the
same cluster compete with the maximal possible overlap
r ¼ l: We get

sl ¼ 1þ
1

l
% 1

" #

1% Dl % ðNc=RÞel=l0

Dl

" #

,

Sl ¼ Sl%1=clsl . (10)

In both cases, at small l and for a broad range of
parameters, biodiversity increases at low levels: S24S1:

At high levels, the second term in brackets on the
r.h.s. of Eq. (10) becomes small and the biodiversity
decreases with the level, either because nðlÞ=Nc decreases
with l, Eq. (7), or because the minimal width of the
productivity distribution, Dl ; grows with l, Eq. (8). Thus,
our model food webs present a maximum in the
distribution of the biodiversity per level in a broad
region of parameter space (Lässig et al., 2001). This
result is consistent with studies of real food webs, where
the maximum of biodiversity is attained at the second or
third trophic level (Cohen et al., 1990).

Eventually, biodiversity is limited by either of the two
mechanisms to just one species. This defines the
maximum food web length in our model.

The qualitative description outlined above is sup-
ported by numerical computations of the full effective
model, and by simulations of the species assembly
model.

Summarizing, in the framework of this model the
biodiversity profile is shaped by two very simple
processes: horizontal (within level) competition, limiting
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the maximum biodiversity at each trophic level, and
vertical (across level) hardening of competition, either
due to the propagation of fluctuations (the growth of Dl

with the level), or energy dissipation (the decrease of nl
with the level).

6. Propagation of perturbations along a food chain

Here, we justify the assumption that the minimal
width of the distribution of rescaled growth rates
increases for higher levels along a food web: Dl /
expðl=l0Þ: This assumption was used in the previous
section to yield a limitation on biodiversity at high
levels, and ultimately to constrain the maximal length of
food webs.

For simplicity, we consider a food chain with just one
species per level. In this way, we do not have to consider
the number of species at each level as an additional
unknown parameter coupled to Dl through Eq. (5). We
start from the system of equations that determine the
fixed point of a food chain with linear prey-dependent
functional responses,

Zglnl%1 % al % nl % glþ1nlþ1 ¼ 0. (11)

As usual, the level specific densities nl and the
parameters gl (coefficients of the functional response)
and al (death rate) have been rescaled so that the
coefficient of the self-damping term equals one.

The equations can be solved iteratively starting from
the lowest level in the form

nl ¼ pl %
glþ1nlþ1

Bl
, (12)

where the rescaled growth rates pl and the rescaled self-
damping terms Bl are recursively given by

pl ¼
pl%1 % al=ðZglÞ

gl=Bl%1 þ 1=ðZglÞ
, (13)

Bl ¼ 1þ
Zg2l
Bl%1

. (14)

We now consider a perturbation that changes the
(fictitious) growth rate at level zero by a relative amount
D0 ¼ ðp00 % p0Þ=p0: This perturbation propagates along
the food chain, leading to relative changes in the growth
rates equal to

Dl ¼
Dl%1

1% al=ðZglpl%1Þ
4Dl%1. (15)

This is larger than Dl%1 because all the factors in the
denominator are strictly positive and, moreover, Z is
smaller than one. Since pl decreases at higher levels, the
factor 1=ð1% al=ðZglpl%1ÞÞ also increases with the level,
so that Dl increases even faster than exponentially
with l. This rapid amplification of perturbations along
the food chain justifies our expectation that the

distribution of rescaled growth rates becomes broader
with the level.

7. Discussion

In this paper, we have generalized to transient
ecological communities far from fixed points the
coexistence conditions derived in the companion paper
for systems at the fixed point. Also in the general case,
species with rescaled growth rates much lower than
average will disappear very rapidly and will not be
observed.

For systems maintained out of equilibrium through
immigration, the relevant time-scale is given by the
inverse of the immigration rate. A non-zero ratio
between the immigration rate and typical growth rates
of the population dynamics, 1=hpiTmig; makes it easier
to fulfill the coexistence condition. This analytical result
leads to the prediction that the biodiversity in the
stationary state of the species assembly model increases
with the immigration rate, as observed in the simula-
tions.

Coupling the coexistence condition with the unavoid-
able fluctuations in productivity values (due to environ-
mental noise with time-scale much smaller than that of
population dynamics), we predicted in our previous
paper that competition and fluctuations limit the
maximum biodiversity that can be hosted in a trophic
level. This result complements, but does not contradict
the prediction that environmental fluctuations with a
time-scale comparable to that of population dynamics
enhance species coexistence (Chesson, 2003a,b). It
would be desirable to develop a more general theory
of the interaction between environmental fluctuations
and population dynamics from which the two results
can be derived.

The coexistence condition also depends on the typical
competition overlap between species at the same trophic
level. We have defined the competition overlap to be
proportional to the predation overlap qij ; defined
through Eq. (2). The distribution of the overlap is a
useful property for characterizing the structure of
ecological networks. Our modified model of species
assembly through immigration and speciation yields
overlap distributions in good agreement with those
obtained from three well-studied natural food webs: the
Ythan estuary, the Little Rock lake, and the Silwood
Park system.

These steps allowed us to define an effective model for
the variation of biodiversity across the levels of a
hierarchical food web. In our model, two main processes
control biodiversity: competition, on the horizontal
within-level direction; and modulation of competition,
on the vertical across-level direction.
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In the framework of the effective model, this last
process controls the decay of the number of species
across higher levels, and therefore the length of food
webs, an issue that received a considerable attention in
ecological literature (see for instance Post, 2002 for a
recent review). Accommodating more competing species
becomes harder at higher levels, because of two
complementary mechanisms: the dissipation of meta-
bolic energy across the food web, which make energetic
constraints more difficult to fulfill, and the propagation
of environmental perturbations across the food web,
which makes it more difficult to finely tune ecological
parameters in order to accommodate new species.

The first mechanism is reminiscent of the so-called
productivity hypothesis for the length of food webs,
which goes back almost 80 years (Elton, 1927).
However, weak or no correlation was found between
food chain length and primary productivity in field
studies (Briand and Cohen, 1987; Post et al., 2000).
These and other results suggest that resources limit the
length of food chains below some threshold level, above
which other factors come into play (Post, 2002).

The other mechanism proposed here, relating food
chain length to the amplification of environmental
perturbations across the chain, is a novel variant of
the stability hypothesis that states that environmental
disturbance limits the length of food webs (Menge and
Sutherland, 1987). This hypothesis was originally
grounded on the observation that the dynamical
stability of model ecosystems decreases as chain length
increases (Pimm and Lawton, 1977). However, the
generality of this model result was questioned later
(Sterner et al., 1997). The mechanism proposed here
constitutes a new theoretical justification for the
disturbance hypothesis, which is supported by some
empirical evidence, but only indirectly (Post, 2002).

In addition, simulations of the species assembly model
provide a third mechanism that may limit the length of
food webs. In the simulations, longer food webs can be
generated by increasing the immigration rate, which
makes the coexistence condition more permissive and
increases the overall biodiversity, therefore allowing
more opportunities for dynamically generating longer
networks. A positive relation between colonization and
food chain length was also suggested in another model
of species assembly (Holt, 1996). Assuming a relation
between the size of the ecosystem and the immigration
rate, the effect of the immigration rate may explain the
observed positive correlation between food chain length
and ecosystem size (Post, 2000), to date the strongest
empirical determinant of food chain length found in
field studies.

This work can be extended in several directions. The
most important, in our opinion, would be to build a
mechanistic model in which environmental fluctuations
are explicitly modeled, instead of including them in an

effective way as we have done here. This might permit a
more quantitative comparison between model results,
parameters, relevant mechanisms, and variables operat-
ing in natural ecosystems.
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