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We study the evolution of transcription factor-binding sites in
prokaryotes, using an empirically grounded model with point
mutations and genetic drift. Selection acts on the site sequence via
its binding affinity to the corresponding transcription factor. Cal-
ibrating the model with populations of functional binding sites, we
verify this form of selection and show that typical sites are under
substantial selection pressure for functionality: for cAMP response
protein sites in Escherichia coli, the product of fitness difference
and effective population size takes values 2N�F of order 10. We
apply this model to cross-species comparisons of binding sites in
bacteria and obtain a prediction method for binding sites that uses
evolutionary information in a quantitative way. At the same time,
this method predicts the functional histories of orthologous sites
in a phylogeny, evaluating the likelihood for conservation or loss
or gain of function during evolution. We have performed, as an
example, a cross-species analysis of E. coli, Salmonella typhi-
murium, and Yersinia pseudotuberculosis. Detailed lists of pre-
dicted sites and their functional phylogenies are available.

Regulatory interactions between genes are believed to provide
an important mode of evolution, which accounts for a substan-

tial part of the differentiation between species (1). This is reflected
by the sequence variability of regulatory DNA: there is ample case
evidence of compensatory evolution at conserved function but also
of rapid functional changes even between closely related species (2).
Lacking a quantitative model of regulatory evolution, however,
alignments of regulatory sequences and predictions of their func-
tionality have proven notoriously difficult.

A large body of existing work has focused on the identification of
transcription factor-binding sites as the main functional elements of
regulatory DNA. For factors with known binding specificity (given
in the form of a position weight matrix), putative binding sites are
identified from their conservation in cross-species comparisons.
Different measures of conservation have been introduced, which
involve, e.g., the sequence similarity of aligned loci or their inde-
pendent high scoring in all species compared (3–7). These methods
are powerful prediction tools for binding sites. From an evolution-
ary point of view, however, the conservation criteria are heuristic.
Hence, it is difficult to quantify the statistical significance of the
results, which depends on the number and evolutionary distance of
the species compared. Sequence conservation tends to be too
restrictive in cases where substantial sequence variation is compat-
ible with the position weight matrix, in particular for distant species.
Simple sequence similarity measures implicitly assume neutral
evolution, whereas independent scoring of orthologous sites ignores
the evolutionary link between the species altogether. Most impor-
tantly, none of these conservation measures allows a consistent
statistical treatment of functional innovations in the evolution of
binding sites.

A more explicit model for regulatory DNA should address two
issues: How does the sequence divergence between species depend
on their evolutionary distance, and how does the specific biological
function of binding sites enter? Answering these questions is a
considerable task for experiment and theory, which must link the
biophysics of binding sites with their population dynamics. In
particular, it involves quantifying the selection by which the se-
quence evolution at functional loci is distinguished from that of

neutral background DNA. As an important step in this direction,
the notion of a fitness landscape for binding-site sequences has been
introduced, where the fitness of a site depends on the binding
energy of the corresponding factor (8). The evolutionary impor-
tance of the binding energy has also been highlighted in ref. 9, where
it was shown that nucleotide substitution rates within functional
sites in Escherichia coli depend on the energy difference induced by
the substitution as predicted from the position weight matrix. The
biophysics of factor-DNA binding imposes stringent constraints on
the form of the fitness landscape (10) and has important conse-
quences for bioinformatic binding site searches (11). Using such
fitness landscapes, we have introduced a stochastic evolution model
for functional loci, which is based on Kimura–Ohta point substi-
tutions with rates governed by the fitness difference between the
corresponding sequence states (12, 13). This model demonstrates
the possibility of rapid adaptive formation of binding sites under
positive selection and provides evolutionary constraints on eukary-
otic promoter architecture. A similar evolutionary model (14)
underlies a recently introduced method to identify conserved
binding sites in multiple alignments (15).

In this paper, we develop a quantitative evolutionary rationale for
the cross-species analysis of regulatory sequences, which goes
beyond the mere prediction of binding sites. For aligned regulatory
DNA of orthologous genes, our method predicts sites together with
their functional evolution. The method is based on the evolution
model of refs. 12 and 13 and uses a bioinformatic measurement of
selection pressures for functionality, which is obtained from se-
quence data of verified functional sites. Typical functional loci for
pleiotropic factors, as exemplified by the cAMP response protein
(CRP) family in E. coli, are found to be under substantial selection,
in contrast to nonfunctional loci, which evolve neutrally. For
families of aligned loci, our method assigns likelihood values to
different modes of evolution and associates them with functional
histories: (i) neutral evolution of nonfunctional loci, (ii) evolution
of functional loci under time-independent selection, and (iii) evo-
lution under time-dependent selection, corresponding to loss or
gain of function along a given branch of the phylogeny.

Theory
Evolution Models for Nonfunctional Sequence and Functional Loci. We
consider genomic loci a � (a1, . . . , al) consisting of l contiguous
nucleotides and elementary substitution processes a3 b, where a,
b are any two sequence states differing by exactly one nucleotide.
For nonfunctional (background) sequences, we use uniform nucle-
otide substitution rates �a3b depending on the nucleotide to be
mutated and on its nearest sequence neighbors (16). Models of this
type are neutral with respect to factor binding and have been shown
to provide a good description of intergenic background DNA in E.
coli (11). A locus is defined as functional if binding of the corre-
sponding factor at that locus affects the regulation of a gene.
Functional loci are assumed to be under selection. This is described
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by a (Malthusian) fitness function F(a), which measures the con-
tribution of a genotype a to the growth rate of the number of
individuals carrying that genotype (and is therefore defined only up
to an additive constant, the genotype-independent fitness). Notice
that this definition of a functional locus is weaker than that of a
functional binding site, which is a functional locus with a sequence
state a that is likely to actually bind the factor. A functional locus
can lose its binding sequence due to deleterious mutations, and
conversely, a nonfunctional locus can become a spurious binding
site. According to the Kimura–Ohta theory (17–19), selection leads
to modified substitution rates at functional loci,

ua3b � �a3b N
1 � exp[� 2�F�b� � F�a��]

1 � exp[� 2N�F�b� � F�a��]
, [1]

where N denotes the effective population size. In writing Eq. 1, we
have assumed �N �� 1, so that subsequent substitution processes
are well separated in time and can be assumed to be independent.

Stationary Population Distributions and Evolutionary Scoring. For
background sequences, we use a stationary distribution of the
form (11)

P0�a� � p0�a1��
i�2

l

�0�ai�ai�1� , [2]

where p0(a) is the single-letter equilibrium distribution, and �0(a�a�)
is the conditional distribution for letter a given its left neighbor a�
(see Supporting Text, which is published as supporting information
on the PNAS web site). Assuming the underlying neutral dynamics
with rates �a3b satisfies detailed balance, the dynamics under
selection satisfies detailed balance as well, and the stationary
distribution for functional loci takes the form (12, 13)

Q�a� � P0�a� exp�2NF�a� � const.� , [3]

with the constant given by the normalization ¥a P0(a) � ¥a Q(a) �
1. These distributions give the probability density to find a locus
with sequence a, which can be inferred from long-term frequency
counts at a given locus, or equivalently, from the fraction count of
sequence a in a large ensemble of independently evolving loci. We
identify the distributions P0 and Q with the ensembles of back-
ground respective functional loci for a given factor in a genome.
(This involves the approximation that all functional loci are under
similar selection pressure.) Hence, the usual position weight matrix
(20) for the factor is given by the single-nucleotide (marginal)
distributions

qi�a� � �
a1, . . . ,ai�1,ai	1, . . . ,al

Q�a� . [4]

If the background distribution is approximated by a factorized
form, P0(a) � 
i�1

l p0(ai), and if the fitness is an additive function
of the nucleotide positions, F(a) � ¥i�1

l fi(ai), the Q distribution
factorizes as well, Q(a) � 
i�1

l qi(ai) with qi(a) � p0(a) exp[2N fi(a)
	 const.]. This form of the stationary distribution has previously
been introduced in ref. 14 for protein-coding sequences and has
been used in ref. 15. For binding sites, however, the factorized form
is a heuristic approximation, because generic fitness landscapes are
not additive. Regulatory fitness effects follow from the expression
level of the regulated gene, which in turn depends on the relevant
binding sites through the binding probability of the corresponding
transcription factor (8, 13). The factor-binding energy is often
nearly additive in the nucleotide positions (21). The individual
contributions �i(a) can be inferred in an approximate way from the
position weight matrix (20, 22) (up to an overall constant �0),

E � �
i�1

l

�i�ai� with � i�a� � �0 log
qi�a�

p0�a�
. [5]

The binding probability, however, is a strongly nonlinear func-
tion of the energy. Hence, the fitness effect of a substitution at
one position depends on the nucleotides present at all other
positions. This induces correlations between nucleotide frequen-
cies at any two positions within functional loci (13), in addition
to the short-ranged correlations already present in background
sequences. These correlations prevent the factorization of the
distributions P0(a) and Q(a). However, because the fitness F(a)
depends on the sequence state a only via the binding energy
E(a), we can project these distributions on the energy E as
independent continuous variables, summing over all sequence
states a with an (approximately) equal value of E. Denoting the
projected ensembles for simplicity with the same symbols P0 and
Q, Eq. 3 takes the form

Q�E� � P0�E�exp�2NF�E� � const.� . [6]

It is this simplification that enables us to infer the functional form
of these distributions from bioinformatic frequency counts. The
total distribution of energies in the noncoding part of the
genome is

W�E� � �1 � ��P0�E� � �Q�E�. [7]

From a bioinformatic point of view, this is a hidden Markov
model for the sequence composition of noncoding DNA. The
two alternative distributions P0(E) and Q(E) have prior prob-
abilities 1 � � and �, i.e., the parameter � measures the overall
fraction of the genome covered by functional loci. The relative
likelihood between the distributions Q and P0 is described by the
score function S(E) � log[Q(E)�P0(E)]. Comparing with Eq. 6,
we obtain the identification

S�E� � 2NF�E� � const., [8]

which establishes an important and rather general evolutionary
grounding of the bioinformatic log-likelihood score.

Time-Dependent Distributions and Cross-Species Scores. It is straight-
forward to generalize the probabilistic analysis to pairs of species
separated by an evolutionary time t. Defining the conditional
transition probabilities G0

t (E2�E1) and Gs
t(E2�E1), we obtain the joint

distribution of energy pairs for orthologous loci

P0
t �E1, E2� � G0

t �E2�E1�P0�E1�, [9]

at neutrality and

Qt�E1, E2� � Gs
t�E2�E1�Q�E1�, [10]

under constant selection. The total distribution of energy pairs is

Wt�E1, E2� � �1 � ��P0
t �E1, E2� � �Qt�E1, E2�. [11]

The ensembles P0
t and Qt define the log-likelihood score

St�E1, E2� � log
Q�E1�

P0�E1�
� log

Gs
t�E2�E1�

G0
t �E2�E1�

, [12]

which is easily shown to be symmetric in its two arguments,
because detailed balance ensures reversibility of the evolution-
ary dynamics at equilibrium. Eq. 12 is a key result of this paper:
it shows how the specific evolution of binding loci can be
integrated into a bioinformatic scoring procedure. The evolu-
tionary information is contained in the second score term, i.e.,
the log ratio of the transition probabilities. This term measures
a difference in evolutionary fates: A locus with energy E1 in the
‘‘twilight region’’ between the Q and P0 ensembles on average
maintains its binding energy if functional but evolves toward
lesser binding if nonfunctional. The energy transition probabil-
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ities G0
t (E2�E1) and Gs

t(E2�E1) can be obtained in a straightfor-
ward way from the underlying sequence evolution process (see
Supporting Text). They are shown in Fig. 1 for fixed E1 and for
various evolutionary distances t. The difference between the
distributions G0

t and Gs
t , i.e., the additional discriminatory power

of the evolutionary information, is seen to increase with the
distance of the species compared. In the long-distance limit, we
have G0

t (E2�E1) 3 P0(E2) and Gs
t(E2�E1) 3 Q(E2), leading to

independent scoring of aligned loci in Eq. 12.

Time-Dependent Selection and Functional Switching. Here we gen-
eralize the evolutionary model to include loss or gain of function
at the level of individual loci. Consider a rooted phylogeny
consisting of two species at evolutionary distances t1 and t2 from
their last common ancestor, i.e., at distance t � t1 	 t2 from each
other. We assume that an initially functional locus can lose
function at a small rate �� (with ��t �� 1), and conversely, an
initially nonfunctional locus can gain function at a comparable
rate �	 (such that the average fraction � of functional loci is
maintained). There are now four alternative evolutionary his-
tories involving at most one functional switch: evolution under
time-independent neutrality or selection, time-dependent selec-
tion leading to functionality at t1, and nonfunctionality at t2, and
vice versa (see Fig. 2). These occur with probabilities �0

t � (1 �
�)(1 � �	t), �Q

t � �(1 � ��t), �s0
t � (1 � �)�	t1 	 ���t2,

and �0s
t � (1 � �)�	t2 	 ���t1, respectively, with the abbre-

viation t � (t1, t2). The four corresponding energy pair distri-
butions are P0

t (E1, E2), Qt(E1, E2),

Rs0
t �E1, E2� �

1
� s0

t � dE�

	 � �1 � ���	 �
0

t1

dt�Gs
t1�t��E1�E��G0

t2	t��E� �E2�P0�E2�

� ��� �
0

t2

dt�G0
t2�t��E2�E��Gs

t1	t��E� �E1�Q�E1�� , [13]

and P0s
t (E1, E2), which is defined in an analogous way. In Eq. 13

t� denotes the switching point and E� the energy at that point. We

have approximated the ancestral energy distribution by the station-
ary ensembles P0 or Q and have used detailed balance. Within this
switch mode, we have summed over the probabilities of gain and
loss of function. Disentangling these alternatives is possible but
statistically insignificant in phylogenies with few species. Neglecting
histories with more than one functional switch, the total distribution
of energy pairs is now

W t�E1, E2� � �0
t P0

t �E1, E2� � �Q
t Qt�E1, E2�

� � s0
t Rs0

t �E1, E2� � �0s
t R0s

t �E1, E2� , [14]

and there are three independent log-likelihood scores weighing
each of the ensembles Qt, Rs0

t , R0s
t against the background ensemble

P0
t . The hidden Markov model can readily be extended to rooted

phylogenies with more than two species. The expressions for the P0,
Q, and R distributions generalizing Eqs. 9, 10, and 13 involve a
factor G0 for each branch under neutral evolution and a factor Gs

for each branch under selection, as well as integrations over the
(unobserved) energies at the internal nodes of the phylogeny and
the variables E� and t� of the switching point. In the case of three
species, there are eight different functional histories: time-
independent neutrality and selection, as well as time-dependent
selection leading to a functional locus in any one or any two species
(see Supporting Text for details).

Site Prediction and Quality Measures. For a given pair of aligned loci
with energies (E1, E2), the hidden Markov model (Eq. 14) deter-
mines the probability of belonging to each of its four ensembles. The
probability of conserved functionality is


Q
t �E1, E2� �

�Q
t Qt�E1, E2�

W t�E1, E2�
. [15]

The corresponding probabilities 
0
t(E1, E2) for conserved neutrality,


s0
t (E1, E2) and 
0s

t (E1, E2) for functional switching, and 
Q(E) for
functionality in the single-species case are defined in an analogous
way. These probabilities form the basis of our predictions for
individual sites and site pairs, and they serve to quantify the
predictive quality. For functional loci, we further distinguish func-
tional and nonfunctional binding sites, using as approximate thresh-
old the energy Emax of the weakest verified site. Hence, given a total
of n aligned pairs of loci, an expected number

nf
tot � n �


Q
t �
min

dE1dE2 
Q
t �E1, E2�W t�E1, E2� [16]

Fig. 1. Cross-species energy transition probabilities G0
t (E2�E1) for neutral

evolution (blue) and Gs
t(E2�E1) for evolution under time-independent selection

in the fitness landscape of Fig. 3a (red). Curves are shown for fixed initial
energy E1 � 8 and various evolutionary distances t. The third curve in each
family belongs to the distance between aligned loci of E. coli and S. typhi-
murium. Typical loci evolve toward weaker binding under neutrality but
maintain their binding energy under selection.

Fig. 2. Functional phylogenies for two species at evolutionary distances t1

and t2, counted from their last common ancestor at time ta � 0. Branch
segments with neutral evolution are shown in blue with evolution under
selection in red. (a) Neutral evolution of nonfunctional loci, described by the
energy pair distribution P0

t . (b) Evolution of functional loci under time-
independent selection, described by the distribution Qt. (c) Evolution under
time-dependent selection generating a functional locus in species 1 and a
nonfunctional locus in species 2, described by the distribution Rs0

t . This mode
involves either a gain of function between ancestor and 1 or a loss of function
between ancestor and 2. The switching event at time t� is denoted by a green
arrow. The corresponding mode where the roles of the two species are
interchanged is described by the distribution R0s

t .

15938 � www.pnas.org�cgi�doi�10.1073�pnas.0505537102 Mustonen and Lässig



with 
min � 
Q
t (Emax, Emax) are conserved functional sites.

(Because 
Q
t is small for entries of order Emax, this number

depends only weakly on the cutoff 
min.) A predicted set of
functional site pairs with 
Q

t (E1, E2) � 
0 � 
min contains

n�
0� � n �

Q

t �
0

dE1dE2W t�E1, E2� [17]

entries, of which nf (
0) are expected to be true functional pairs.
The number nf (
0) is given by the integral of Eq. 16 over the
region 
Q

t � 
0. Hence, the expected fractions of false positives
and of false negatives are

�	�
0� � 1�
nf�
0�

n�
0�
, ���
0� � 1�

nf�
0�

nf
tot . [18]

Analogous definitions apply to the single-species case.

Results
Selection Pressure for CRP Sites in E. coli. Scanning the genome of E.
coli (obtained from the NCBI database, accession no. NC�000913)
produces sequence counts of n � 520,729 loci in 4,244 intergenic

regions. We use a relatively large window size of l � 22, taking into
account core binding motifs as well as informative flanking posi-
tions. Our CRP position weight matrix qi(a) (i � 1, . . . , l; a � A, C,
G, T) is obtained from 48 experimentally verified binding sites in the
DPInteract database (23). For each sequence count a � (a1, . . . ,
al), we hence infer the CRP-binding energy E(a) from Eq. 5 (in
units of �0 and with E � 0 set to the point of maximal binding). The
resulting energy histogram is shown in Fig. 3a. In the region E �
Emax 
 13, where no factor binding is expected, the data are well
approximated by the background distribution P0(E), whereas the
excess counts for E � Emax are attributed to functional loci. Their
distribution Q(E) in this region can be estimated independently
from the ensemble of verified binding sites. Optimal consistency
with the hidden Markov model (Eq. 7) is reached for � � 0.00065,
where the distribution W(E) produces a very similar form of Q(E)
and fits the entire histogram well; see Fig. 3b. The effective fitness
landscape for functional loci is then inferred from the data using Eq.
6. In the nonbinding region E � Emax, the fitness takes a constant
value F0, i.e., the evolution is always neutral in that region, as
expected. The constant F0 is unimportant, because only fitness

Fig. 3. Energy statistics and fitness landscape for CRP-binding loci in E. coli. (a)
Count histogram with energy bins of width 0.1 (black), expected background
counts (blue), and excess counts above background (red), with a 30-fold zoom
into the region E 
 14. The color bar indicates the probability of functionality

Q(E), ranging from 1 (red) to 0 (blue). (b) Decomposition of the counts (log-scale,
left y axis) according to the single-species hidden Markov model: background
distribution (1 � �)P0(E) (blue), distribution �Q(E) of functional loci (red), and
total distribution W(E) (orange). The resulting fitness landscape �F(E) according
to Eq. 6 is also shown in orange (thick curve, right y axis).

Fig. 4. Binding energy pairs and functional histories for aligned loci in E. coli
and S. typhimurium. (a) Dot plot of counts (E1, E2), including verified binding
sites (light blue). The background color shading indicates the likelihood of
functional histories, varying between blue (conserved neutrality), red (con-
served function), and green (functional switching). Isoprobability lines 
�

t �

0.55 (� � 0, Q, 0s, s0) are dotted. (b) Energy pair density obtained from the
counts (filled contours), compared with the distribution Wt(E1, E2) (contour
lines, Wt � 10�7, 10�6, 10�5, 10�4).
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differences enter the evolutionary dynamics (Eq. 1). Larger values
occur in the binding region E � Emax. The excess fitness landscape
2N�F(E) � 2N(F(E) � F0) is shown as the orange line in Fig. 3b.
Loci with strong binding (i.e., with energies E � 8) have substantial
effective fitness values in the range 2N�F � 6–11, which are
interpreted as typical selection pressures for functionality. Genetic
drift counteracts selection, producing also loci with weaker binding
(8 � E � 12) and reduced effective fitness 2N�F � 6. These fitness
estimates are rather robust results of our procedure. It should be
kept in mind, of course, that the shape of the fitness landscape
�F(E) reflects an average over the family of CRP-binding sites,
which have a spectrum of individual selection coefficients and
selected binding strengths.

With this fitness landscape, the hidden Markov model (Eq. 7)
thus gives an excellent description of the CRP-binding energy
statistics in intergenic DNA of E. coli. For an individual locus, the
model predicts the probability 
Q(E) of being functional, given its
binding energy E. This probability is indicated by the color shading
in Fig. 3a. The parameter � determines the total number of
predicted functional binding sites, nf

tot � 340. The power to predict
individual binding sites remains limited, however. The reason is
apparent from Fig. 3a: Many functional sites have energy values in
the ‘‘twilight region’’ (appearing in violet), where there is already a
sizeable amount of background counts. Hence, any prediction will
be torn between many false negatives or many false positives,
depending on the energy cutoff chosen. This situation will be
drastically improved by the cross-species analysis to which we now
turn.

Evolution Between E. coli and Salmonella typhimurium. The Salmo-
nella genome is also obtained from NCBI (accession no.
NC�003197). Our alignment of the two genomes contains 135,534
pairs of loci in well aligned intergenic regions flanked by ortholo-
gous genes (for details, see Supporting Text and refs. 24 and 25). The
average identity between aligned sequences is 93%, which measures
the evolutionary distance t between the two species. The CRP-
binding energies E1 in E. coli and E2 in S. typhimurium are inferred
using the same position weight matrix, which is justified, because the
factor itself is highly conserved (3, 9). The resulting dot plot of
energy pairs (E1, E2) is shown in Fig. 4a. The distribution is
significantly pinched to the diagonal in the binding region E1, E2 �
12, indicating the expected higher conservation of the energy for
functional binding sites (9). We quantify this effect by the condi-
tional probability Gs

t(E2�E1) of evolving from energy E1 to E2 under
selection as compared with its neutral counterpart G0

t (E2�E1) (see
Theory). Both distributions are readily obtained from numerical
simulations of the evolution processes; examples are shown in Fig. 1.

Fig. 4b contains again the energy pair counts together with the
distribution Wt(E1, E2) of the two-species hidden Markov model
(Eq. 14). We use the same fitness landscape F(E) as for E. coli and
a midpoint approximation for the root point of the tree, i.e., t1 �
t2 � t�2. The fit parameter � � 0.0018 is now higher than in the
single-species case (reflecting a higher fraction of functional loci in
aligned regions), and there are small probabilities of selection gain
and loss, �	t � ��t � 0.025. Quite remarkably, this distribution
reproduces the entire energy pair data well, which indicates the
consistency of our approach as well as an overall similarity of the
evolutionary characteristics between the two species compared.

Functional Histories. For an individual pair of aligned loci with
energies (E1, E2), the hidden Markov model (Eq. 14) predicts the
probabilities of conserved neutrality and conserved function, 
0

t and

Q

t , and of functional switching, 
s0
t and 
0s

t ; see Eq. 15. These
probabilities are indicated by the color shading in Fig. 4a. The
twilight region between the Qt and P0

t ensembles (appearing in
violet) is seen to be much smaller and pushed toward larger energies
(E1, E2 � 10) than in Fig. 3a. This indicates that the additional
evolutionary information substantially improves the predictions

already for two species. For example, a prediction list for conserved
functionality is obtained by ranking the pairs of loci in order of
decreasing 
Q

t with a lower cutoff 
0. It has estimated fractions
�	(
0) of false positives and ��(
0) of false negatives, which are
given by Eq. 18. Plotting the two parameters against each other
produces a so-called detection error trade-off curve (26), which can
be compared with its single-species counterpart (see also ref. 11).
Both curves are shown in Fig. 5, which is published as supporting
information on the PNAS web site, which quantifies the predictive
power gained by the cross-species comparison (see Supporting Text).
The Qt list with a cutoff 
0 � 0.30, which contains 211 pairs of loci,
is available upon request (see Supporting Text). Among them are 32
of the 40 verified binding sites in the aligned region. Compared with
recently published lists of sites in E. coli (9, 11) and to our own
single-species analysis, this list is considerably shorter at a compa-
rable detection level of true sites. Yet it contains a substantial
number of new entries, which are statistically significant at the level
of two species but not of a single one.

A fraction of the functional binding sites in one species is
predicted to lose their binding ability during evolution due to
deleterious mutations, although their loci remain functional, i.e.,
under conserved selection. From E. coli to Salmonella or vice versa,
we estimate this fraction to be 
5%, by using the energy transition
probabilities Gs

t(E2�E1). However, our model also contains another
mode of functional switching, which is due to loss or gain of
selection for a locus. The corresponding site pairs have widely
differing energies (E1, E2), which lead to high values of 
0s

t or 
s0
t .

Examples include CRP loci in the intergenic regions prmA-yhdG
and ytfJ-ytfK, which are predicted to be functional E. coli but not in
S. typhimurium. In the first case, there is no other likely CRP-
binding site in the same intergenic region, indicating a possible
functional change in the promoter as a whole. The second case,
where one finds also a conserved site in the same region, may point
to a compensatory change between loci, which leaves the function
of the promoter as a whole intact. The evolutionary analysis gets
simpler if experimental information is available even in one of the
species compared. For example, the second CRP-binding locus
from DPInteract (23) for nupG has energies E1 � 2.8 in E. coli and
E2 � 8.8 in S. typhimurium. Because we know that the site is
functional in E. coli, we need to compare only the probabilities of
evolution under constant and time-dependent selection, leading to
a substantial likelihood for a functional switch. There is a conserved
site in the same intergenic region, which could take over the binding
function in S. typhimurium. Note that the statistical weight in favor
of a switch stems solely from the large energy change; both sites
would individually qualify as functional under standard indepen-
dent scoring. Of course, these predictions bear a higher level of
uncertainty, because alignment ambiguities can lead to an artifi-
cially high value of the energy difference, and the prior switching
probabilities �	, �� are only order-of-magnitude estimates.

We have extended our analysis to include a third species, Yersinia
pseudotuberculosis (NCBI accession no. NC�006155). Dot plots of
energies (E1, E2, E3) for triplets of aligned loci and their probabi-
listic scoring are reported in Supporting Text and Figs. 6 and 7, which
are published as supporting information on the PNAS web site. As
expected, we find a further improvement of the detection error
tradeoff for prediction of loci with conserved function; see Fig. 5.
This is due in part to the alignment, which introduces a bias toward
conserved loci. We also find candidate loci with loss or gain of
function, such as the fourth malE-malK locus in E. coli, which we
predict to be nonfunctional in both S. typhimurium and in Y.
pseudotuberculosis. Three other verified sites in that region are
conserved in all three species. Similar candidates for functional
switches are the second verified binding sites for dadAX, tsx,
and araB.
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Discussion
Binding Sites in Bacteria Evolve Under Substantial Selection. Our
evolutionary model is based on stochastic substitutions in the space
of sequences (a1, . . . , al) of binding loci. These loci are treated as
coherent population genetic units, taking into account that the
evolution of any two nucleotides within a functional locus is
correlated (13). This differs from standard bioinformatic ap-
proaches such as position weight matrices, which assume the
nucleotides ai to be independent. Our in silico measurement of the
selection pressure is based on the sequence ensemble Q of func-
tional loci and its background counterpart P0. Assuming that
functional loci evolve under selection, and background loci evolve
neutrally, the log-likelihood score of these ensembles determines
the effective fitness difference of sequence states at these two kinds
of loci: S � log(Q�P0) � 2N�F, where N is the effective population
size. For CRP loci in E. coli, we obtain effective fitness differences
2N�F of order 10 between strong factor binding and no binding.
Because our method involves ensembles, this is an order-of-
magnitude estimate for typical loci, which does not exclude that
some sites may be under substantially stronger or weaker selection.
We note, however, that our estimate also predicts the correct
amount of energy conservation for functional loci found in our
cross-species analysis.

A substantial level of selection explains well known evolutionary
characteristics of regulatory sequences (2): they may be well con-
served between distant species (if under constant selection for
functionality) but can also show considerable variation even be-
tween closely related species (if under positive selection for
change). At the level of selection found, binding-site gain by rapid
adaptive evolution as discussed in ref. 13 is indeed possible. On the
other hand, conservation will not be complete even under selection.
A certain fraction (increasing with evolutionary distance) of ini-
tially functional sites will be lost because of deleterious mutations.
This opens the possibility of compensatory changes involving
different loci, as they are observed in ref. 27. It also indicates that
the theory of promoter evolution should not stop at the level of
individual binding sites. Selection couples not only the nucleotides
within one locus but also the evolutionary fate of different loci.
Understanding the long-term dynamics of regulation ultimately
requires a consistent population-genetic theory of entire promoters.

Improving Binding Site Searches Requires a Quantitative Evolutionary
Rationale. The difficulty of predicting functional sites from their
binding score in a single species is well known and has been
called the ‘‘futility theorem’’ in ref. 28. It is caused by the
coexistence of functional and nonfunctional loci in the twilight
region of marginal binding. In the framework of our probabilistic
model, this is quantified by tradeoff curves between false
positives and false negatives. What is a computational dilemma,
may, however, reflect evolutionary design. If a sufficient reser-
voir of marginal binding seeds is present even in background

sequences, a fully functional site can form by rapid adaptation as
a response to new demand, ensuring the evolvability of regula-
tory interactions (13).

To overcome the futility theorem, we have introduced here a
quantitative method that includes evolutionary information into
binding-site searches. At the core of our model are the cross-species
energy transition probabilities Gs

t and G0
t , which quantify the

‘‘phenotypic’’ evolution of loci and discriminate efficiently between
functionality and nonfunctionality (see Fig. 1). These probabilities
can be used to build a systematic likelihood score for families of
aligned orthologous loci in a phylogeny, which is of the general form
S � log(Q�P0) 	 log(Gs

t�G0
t ). This scoring allows clear significance

estimates and rankings of the results.
We have applied the method to comparative analysis of three

bacterial species. We find a substantial improvement of the
predictive quality already at the level of two species and a further
improvement for three species. This confirms the results of a
recent study of conserved sites in several Saccharomyces species,
where the significance of the evolutionary information as a
function of evolutionary distances is discussed in detail (15). Of
course, elementary evolutionary steps other than point muta-
tions are expected to become important in eukaryotes. Never-
theless, our general rationale of inferring selection pressures
from site frequencies should remain applicable.

Putative Regulatory Innovations in Bacterial Phylogenies Can Be
Traced by Comparative Sequence Analysis. Previous approaches
have focused on the conservation of regulatory sequences as a
sign of their functionality. Here we aim at a more comprehensive
view, which includes functional changes into a quantitative
statistical model. We emphasize again that in the presence of
selection, there are two conceptually different modes of change:
binding sites can lose or gain functionality due to deleterious or
beneficial mutations at constant selection for binding, or they
can respond to changes in the selection itself. Our model
distinguishes these modes statistically by their energy transition
probabilities and thus builds functional phylogenies for specific
loci (as exemplified in Fig. 2).

In our comparative analysis of bacterial species, we find a large
number of loci predicted to have conserved function but also
some cases with evidence for gain or loss of function. It has been
shown that changes in the gene regulation of orthologous genes
can lead to phenotypic differences between E. coli and S. typhi-
murium (29). With caveats due to uncertainties in the rates of
loss or gain of function, our findings provide at least a starting
point for further targeted cross-species experiments. We can
thus begin to quantify the role of regulatory innovations in
molecular evolution.
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