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1 Introduction

Genomic functions often cannot be understood at the level of single genes
but require the study of gene networks. This systems biology credo is nearly
commonplace by now. Evidence comes from the comparative analysis of entire
genomes: Current estimates put, for example, the number of human genes
at around around 22000, hardly more than the 14000 of the fruit fly, and
not even an order of magnitude higher than the 6000 of baker’s yeast. The
complexity and diversity of higher animals therefore cannot be explained in
terms of their gene numbers. If, however, a biological function requires the
concerted action of several genes, and conversely, a gene takes part in several
functional contexts, an organism may be defined less by its individual genes
but by their interactions. The emerging picture of the genome as a strongly
interacting system with many degrees of freedom brings new challenges for
experiment and theory, many of which are of a statistical nature. And indeed,
this picture continues to make the subject attractive to a growing number of
statistical physicists.

Genes encode proteins, and proteins perform functions in the cell. Hence, a
gene takes part in a biological function only if it is expressed, i.e., if the protein
produced from it is present in the cell. Genes interact by regulation: the
protein of one gene can influence the production of protein from another gene.
Gene regulation can take place during transcription, the process by which the
cell reads the information contained in a gene and copies it to messenger RNA
(which is subsequently used to make a functional protein). This is the most
fundamental level of interactions between genes: the transcription of one gene
may be enhanced or reduced by the expression of other genes. Transcriptional
regulation is thus a good starting point for theory. We should keep in mind,
however, that it is not the only mode of gene interactions. Especially in
eukaryotes, additional regulation mechanims involving histones, chromatin,
micro-RNAs etc. become relevant, which are just entering the stage of model
building. An excellent introduction to the biology of regulation can be found
in [1].

This article is a primer on theoretical aspects of gene interactions, and we
limit ourselves to transcriptional regulation. Clearly, the subject has rather
diverse aspects:
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(1) Transcription is a biophysical process, which involves the interaction of
DNA and proteins. Its regulation takes place through the binding of proteins
to DNA at specific loci in the vicinity of the gene to be regulated. Already at
this level, this process is rather complex and not yet fully understood. What
enables the protein to find one or a few specific functional sites in a genome
of up to billions of base pairs, bind there with sufficient strength to influence
transcription, and leave again once its task is performed?

(2) Given the protein can find its functional sites, can we as well? If that
is possible, we can predict the specific gene interactions building regulatory
networks from sequence data. The analysis of regulatory DNA is a major
topic of research in bioinformatics, with the aim of identifying statistical
characteristics of functional loci and of building search algorithms.

(3) Regulation is also becoming an important part of evolutionary biol-
ogy [2, 3]. If regulatory networks are to explain the differentiation of higher
animals, there must be efficient modes of evolution for the interactions be-
tween genes. At the level of regulary DNA, these modes remain largely to be
explored. It is clear, however, that the underlying evolutionary dynamics is
the basis of a quantitative understanding of regulatory networks.

All three aspects of regulation contribute to a unified theoretical picture.
Key concepts such as the biophysical binding energy, the bioinformatic scor-
ing function, and the evolutionary fitness turn out to be rather deeply related.
We will focus on these crosslinks between different fields, which are likely to
become important for future research. A challenge for an introductory presen-
tation is the diversity of relevant background material, only a rather ecclectic
account of which can be presented here. Yet, I hope it transpires even from
this short introduction that present quantitative genomics is an area of sci-
ence shaped by a remarkable confluence of ideas from different disciplines.

2 Biophysics of transcriptional regulation

The fundamental step in the regulatory interaction between two genes is a
binding process: the protein produced by the first gene acts as a transcrip-
tion factor for the second gene, i.e., it binds to a functional site on the DNA
close to the second gene and thereby enhances or suppresses its transcription.
Binding sites are short, typically segments of 10 to 15 base pairs in prokary-
otes and even shorter segments in eukaryotes. They are primarily located in
the cis-regulatory region of a gene, which lies just upstream of its protein-
coding sequence and extends over hundreds of base pairs in prokaryotes and
over thousands of base pairs in eukaryotes. The scenario of transcriptional
regulation is sketched in Fig. 1. A transcription factor bound to a functional
binding site regulates the downstream gene by recruiting or repelling RNA
polymerase. This protein-protein interaction catalyzes or suppresses the pro-
cess of transcription of the gene. All these binding processes should not be
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Fig. 1. Transcriptional regulation. Transcription is the synthesis of messen-
ger RNA (1) whose genetic code is a copy of the coding DNA (2) of a gene, by
means of RNA polymerase (3). A transcription factor (4) bound to a DNA target
site interacts with RNA polymerase molecules, (a) enhancing or (b) reducing the
transcription rate of a nearby gene.

understood as on or off; they happen with certain probabilities, which are de-
termined by the binding energies and the numbers of the molecules involved.

Factor-DNA binding energies. The interaction of a transcription factor
protein with DNA is two-fold: There is a position-unspecific attraction with
energy Eu and a specific interaction, whose energy depends on the particular
locus where the factor binds. The unspecific part is the electrostatic interac-
tion between the positively charged protein and the negatively charged DNA
backbone, while the specific part involves hydrogen bonds between the bind-
ing domain of the protein and the nucleotides of the binding locus. A locus
is specified by its starting position r and its length ` (with relevant values
` of order 10). The specific binding energy E(r) depends on ` consecutive
nucleotides a = (a1, . . . , a`) counted downstream from the starting position,
the sequence state or genotype of that locus. Switching between unspecific and
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Fig. 2. Thermodynamic states of a transcription factor. (1) Unbound state,
with three-dimensional diffusion. (2) Unspecific bound state, with one-dimensional
diffusion along the DNA backbone. (3) Specific bound state. The binding energy
depends on the genotype at the binding locus, which has length ` and whose position
is specified by the coordinate r.

specific binding takes place via a conformation change of the factor protein.
As a result of these interactions, the factor protein can be in three thermody-
namic states as shown in fig. 2: unbound (i.e., freely diffusing), unspecifically
bound (i.e., diffusing along the DNA backbone), and specifically bound.

The biophysics of factor-DNA binding has been established in a series of
seminal papers [4, 5, 6, 7]. More recently, the characteristics of specific binding
have been measured for some bacterial transcription factors [8, 9, 10, 11, 12].
These can be summarized as follows:

(a) The single nucleotides of a binding locus a ≡ (a1, . . . , a`) give approx-
imately independent contributions to the binding energy,

E(a) =
∑̀
i=1

εi(ai). (1)

(b) At each position i, there is typically one preferred nucleotide a∗i with
εi(a∗i ) = mina εi(a). Hence, there is a unique “ground state” sequence a∗ =
(a∗1, . . . a

∗
` ) with minimal binding energy E∗ ≡ E(a∗), i.e., with strongest

binding.
(c) Mismatches with respect to the minimum-energy sequence involve

energy costs εi(a)− εi(a∗i ) ≈ 1− 3 kBT per nucleotide.
(d) There is an energy difference Eu − E∗ ∼ 15 kBT between unspecific

and strongest specific binding.
Experimental data for the binding energies εi(a) are known only for a few

transcription factors. Approximate values for these energies can also be in-
ferred from nucleotide frequencies in functional binding sites [10]. For order-
of-magnitude estimates, one often uses the so-called two-state approxima-
tion [7], which is homogeneous in the nucleotide positions and distinguishes
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only between match and mismatch:

εi(a)− εi(a∗i ) =
{

ε if ai 6= a∗i
0 if ai = a∗i

(2)

with ε ≈ 2kBT . In this approximation, the binding energy of a sequence
a is simply related to the Hamming distance d(a,a∗), i.e., the number of
nucleotide mismatches between a and a∗,

E(a) = E∗ + ε · d(a,a∗). (3)

Energy distribution in the genome. Fig. 3(a) shows the sequence of
energy values E(r) found in a segment of the E. coli genome for a specific
transcription factor, the cAMP response protein (CRP) This “energy land-
scape” looks quite random, i.e., consecutive energy values are approximately
uncorrelated. The distribution Wdat(E) of energies over the entire noncoding
part of the E. coli genome is shown in fig. 3(b). We can compare this with
the distribution W0(E) obtained from a random sequence with the same nu-
cleotide frequencies (i.e., from a scrambled genome). The distribution W0(E)
is approximately Gaussian as expected for a sum of independent random
variables εi according to eq. (1). The actual distribution Wdat(E) is indeed
of the same form as W0(E) for most energies. However, a closer look at the
low-energy tail of the distribution shows that there are significantly more
strong binding sites than expected from a random sequence [13, 14, 15]. So
at least some of them are there not by chance but for a reason.

Search kinetics. All three thermodynamic modes of a factor molecule -
free diffusion, unspecific binding, and specific binding - are important for the
search kinetics towards a functional site [4, 5, 6]. The unspecific attraction
causes the transcription factor to be bound to DNA with a finite probabil-
ity, i.e., a given molecule spends about equal amounts of time on and off
the DNA backbone. Hence, the search process is a mixture of effectively
one-dimensional diffusion along the DNA backbone and three-dimensional
diffusion in the surrounding medium. This proves more efficient than purely
one- or three-dimensional diffusion. In the 1D mode, the factor diffuses in
a flat energy landscape if it is in the conformation of unspecific binding, or
in the landscape E(r) if it is in the conformation of specific binding. In this
way, it can sample the low-energy part of the landscape E(r) while avoiding
its barriers. The main obstacles on its way to a functional site are spurious
binding sites, which have a low energy E(r) by chance and act as traps. We
lack a completely satisfactory picture of the search kinetics, which is an area
of current research [13, 16]. However, this process proves to be remarkably
fast. Typical search times are less than a minute, i.e., substantially shorter
than typical functional intervals in a cell cycle of at least minutes. Therefore,
the regulatory effect of a site is related to its probability of binding a factor
molecule at equilibrium, which can be evaluated by standard thermodynam-
ics.
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Fig. 3. Transcription factor binding energies of the E. coli genome. (a) En-
ergy “landscape” E(r) for specific binding of the CRP factor at 200 consecutive
positions r in an intergenic region, with a binding site at position 59. (b) Count
histogram Wdat(E) with energy bins of width 0.1 obtained from all intergenic re-
gions, together with the distribution W0(E) for a random sequence (dashed line,
shown with a 30fold zoom into the region E < 14). From [15].

Thermodynamics of factor binding. We start with the idealized but
instructive problem of a single factor protein interacting with a genome of
length L � 1, which contains a single functional site, while the rest of the
sequence is random. Since the protein is bound to the DNA with a proba-
bility of about 1/2, we neglect the unbound state for the subsequent prob-
ability estimates and study only the bound protein, which is at equilibrium
between specific and unspecific binding. At each position r, the likelihood
of these two states is given by the Boltzmann factors exp[−E(r)/kBT ] and
exp[−Eu/kBT ], respectively. Hence, the partition function for a single protein
has the form

Z =
L∑

r=1

e−E(r)/kBT + L e−Eu/kBT . (4)

The functional site, which is assumed to be positioned at r = rf , must have
a low specific binding energy E ≡ E(rf ). We now single out this position and
write

Z = e−E/kBT +
∑
r 6=rf

e−E(r)/kBT + L e−Eu/kBT

≈ e−E/kBT + Z0, (5)

where Z0 is the partition function of a completely random sequence. The
probability of the factor being bound specifically at the functional site is
then
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p(E) =
e−E/kBT

Z
=

1
1 + e(E−F0)/kBT

, (6)

where F0 = −kBT log Z0 is the free energy for a random genome. Thus, the
binding probability depends on the binding energy in a sigmoid way, with
a threshold energy E = F0 between strong and weak binding. This strongly
nonlinear dependence is known to physicists as a Fermi function.

It is easy to generalize the thermodynamic formalism to more than one
factor molecule. Ignoring the overlap between close sites, each position r can
be empty or be occupied either by an unspecifically or by a specifically bound
factor. Using a chemical potential σ, the many-factor partition function can
hence be written as

Z(σ) =
L∏

r=1

Z(σ, r), (7)

where Z(σ, r) is a sum over the three thermodynamic states at position r,

Z(σ, r) = 1 + eσ−E(r)/kBT + eσ−Eu/kBT . (8)

The chemical potential σ is determined by the number of factor molecules, n,
via the relation n = (d/dσ) log Z(σ). For actual transcription factor numbers,
which are of order 1− 104, this relation is well approximated by [13]

σ =
F0

kBT
+ log n. (9)

The functional site is now occupied by a specifically bound factor with prob-
ability

p(E) =
eσ−E/kBT

Z(σ, rf )
=

1
1 + e(E−F0)/kBT−log n

. (10)

The binding probability - and hence the effects of the functional site on the
regulated gene - are thus determined by the binding energy, the number
of factor molecules, and on the genomic background (via the free energy
F0). The dependence p(E) is a Fermi function with threshold energy E =
F0 + kBT log n, which is shifted with respect to the single-molecule case.
Clearly, p is also a Fermi function of log n at fixed binding energy, with a
threshold at log n = (E − F0)/kBT .

Sensitivity and genomic design of regulation. The regulatory machin-
ery can be very efficient: in bacteria, it has been shown that single factor
molecules can have regulatory effects. We can use eq. (6) to enquire how
the cell can reach this high level of sensitivity, following mostly ref. [13]. We
assume a minimal genome which has a single functional site of maximum
binding strength E∗ and is otherwise random. If a single factor molecule
is to affect regulation, its binding to the functional site must not be over-
whelmed by the remainder of the genome. This leads to a criterion on the
signal-to-noise ratio of regulatory interactions,
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F0
>∼E∗, (11)

which in turn imposes a number of constraints on the design of regulatory
DNA:

(a) In a random genome, there must be at most of order one minimum-
energy binding sites, i.e., L(1/4)` >∼ 1. This gives a lower bound on the site
length, ` >∼ log L/ log 4. For a bacterial genome (L ∼ 106), we obtain ` >∼ 10,
which gives the right length of functional binding sites. However, this bound
is not fulfilled in eukaryotes. Indeed, eukaryotic genomes use a different design
with groups of adjacent binding sites.

(b) For each minimum-energy site, there are ` suboptimal sites of Ham-
ming distance 1 from the minimum-energy sequence. These must not suppress
the binding to the minimum-energy site, i.e., exp(−E∗/kBT ) >∼ ` exp[−(E∗+
ε)/kBT ] in the two-state approximation. This gives a lower bound on the
binding energy per nucleotide, ε/kBT >∼ log ` ≈ 2− 3.

(c) Finally, the unspecific binding in the entire genome must not sup-
press the specific binding to a minimum-energy site, i.e., exp(−E∗/kBT ) >∼
L exp(−Eu/kBT ). This produces a lower bound on the energy gap between
unspecific and optimal specific binding, (Eu − E∗)/kBT >∼ log L ≈ 15.

Quite remarkably, these bounds are fulfilled as approximate equalities in
bacteria. Hence, the machinery of transcriptional regulation operates just at
the treshold of single-molecule sensitivity, i.e, F0 ≈ E∗.

Programmability and evolvability of regulatory networks. Of course,
not every regulatory interaction is equally sensitive. To switch genes on or
off, the cell uses the dependencies of the binding probability both on factor
numbers and on binding energies. During the cell cycle, the level of n can vary
over several orders of magnitude, say, between a few and tens of thousands
of molecules. At a given value of n, the effects on the regulated genes differ
since their functional sites have different values of E. The binding energies
can change on evolutionary time scales by mutations of the site sequence,
which leads to regulatory differences between individuals and, ultimately,
between species. Both parameters are thus necessary to encode pathways
in regulatory networks. This is most flexible if minimum-energy sites are
indeed sensitive to a single factor molecule as discussed above. Differential
programmability as a network design principle [13] thus favors complicated
molecular structures with longer binding sites and larger binding energies.
However, this competes with the evolvability of the system by a stochastic
evolution process [17]. We have seen that the single-molecule sensitivity is
just marginally reached in bacteria. This indicates that the actual machinery
may result from a compromise between programmability and evolvability:
binding sites are just complicated enough to work. It also indicates that
genomic structures can only be understood from their evolution; this aspect
will be developed further in Section 4.
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3 Bioinformatics of regulatory DNA

Predicting regulatory interactions between genes is clearly a key problem
in bioinformatics, which is as important as the analysis of individual genes
and proteins. It is not surprising that this problem is very difficult since, as
we have discussed in the last section, targeting regulatory input in a large
genome is a tremendous signal-to-noise problem even for the cell itself. Its
solution via the analysis of regulatory DNA requires finding statistical criteria
to distinguish between functional binding sites and background sequence.
A general introduction to the relevant sequence statistics can be found in
ref. [18].

Markov model for background sequence. We begin by specifying a
stochastic model for the nonfunctional segments of intergenic DNA. These are
assumed to be Markov sequences with uniform single-nucleotide frequencies
p0(a) (a = A,C,G, T ). Hence, the probability of finding a given sequence has
the factorized form

P0(a1, . . . , ak) =
k∏

i=1

p0(ai). (12)

This assumption should not be taken too literally. The term “nonfunctional”
refers to binding of a particular transcription factor. Intergenic DNA contains
plenty of non-random elements with other functions (e.g., binding sites for
other factors) or without known function (such as repeat elements). The
salient point is, however, that most of intergenic DNA is well approximated
by a Markov sequence with respect to binding of a given transcription factor.
To make this more precise, we project the distribution P0(a) for segments
of length ` onto the binding energy E as independent variable. Denoting the
projected distribution for simplicity with the same letter P0, we have

P0(E) ≡
∑
a

P0(a) δ(E − E(a)). (13)

This distribution is close to the actual genomic distribution Wdat(E) for
most values of E, as we have seen in fig. 3. It is possible to improve the back-
ground model by introducing small frequency couplings between neigboring
letters [14, 15].

Probabilistic model for functional sites. The sequences a = (a1, . . . , a`)
at functional sites of a given transcription factor are assumed to be drawn
from a different distribution Q(a). We write this distribution in the form

Q(a) = P0(a) exp[S(a)]. (14)

The quantity S(a), which is called the relative log likelihood score of the
distributions P0 and Q, will turn out to have an important evolutionary
meaning as well.



10 Michael Lässig

The single-nucleotide distribution qi(a) at a given position i within func-
tional loci is obtained by summing the full distribution Q over all other
positions

qi(a) =
∑

a1,...,ai−1,ai+1,...,a`

Q(a). (15)

The set of these marginal distributions, qi(a) (i = 1, . . . , `; a = A,C,G, T )
is called the position weight matrix for binding sites of a given factor [19]. If
the score function is additive in the nucleotide positions, S(a) =

∑`
i=1 si(ai),

the Q distribution has a factorized form, Q(a) =
∏`

i=1 qi(ai) with

qi(a) = p0(a) exp[si(a)]. (16)

This additivity assumption is made in most of the existing literature since the
position weight matrix (15) can be inferred from a sample of known functional
site sequences, which in turn determines directly the single nucleotide scores
(16). This scoring is the basis for a number of site prediction methods in
single species and by cross-species analysis; see, e.g., refs. [19, 20, 21, 22, 23].

Here we treat functional sites as coherent statistical units and do not
make the assumption of additivity of the score function [15]. As will be dis-
cussed in the next section, functionality imposes correlations between the
nucleotide frequencies within a functional site, preventing factorization of
the Q distribution. Of course, it is not possible to reconstruct the full dis-
tribution Q(a), which lives on a 4`-dimensional sequence space, from a lim-
ited sample of experimentally known functional sites. However, we can again
project this distribution onto the binding energy as independent variable,
Q(E) ≡

∑
a Q(a)δ(E−E(a)). Since all regulatory effects of a functional site

depend on its sequence a only via the binding energy, we can also write the
score as a function of the energy, S(a) = S(E(a)) (this will become obvious
in the next section). Hence, the relationship (14) has the same form for the
projected distributions,

Q(E) = P0(E) exp[S(E)]. (17)

Bayesian model for genomic loci. Assuming that functional loci are dis-
tributed randomly with a small probability λ, we now combine the models
for background sequence and for functional sites into a model for the full
distribution of sequences a in intergenic DNA,

W (a) = (1− λ)P0(a) + λQ(a). (18)

(At the moment, we are ignoring the possible overlap between functional
sites). In the language of statistics, this is a probabilistic model with hidden
variables. The output of this model consists of pairs (m,a): First, the model
variable m ∈ {f, 0} is drawn with probabilities λ and 1 − λ (i.e., a locus
is labelled as nonfunctional or functional), then the sequence is drawn from
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the corresponding distribution P0(a) or Q(a). However, only the sequence
counts a are available data. The “hidden” variable m can be inferred from
the data in a probabilistic way using Bayes’ formula, which expresses the
joint probability distribution of data and model in terms of its conditional
and its marginal distributions

prob(a,m) = prob(a|m) prob(m) = prob(m|a) prob(a) (19)

with prob(a) =
∑

m prob(a|m)prob(m). We can solve for the conditional
probability of the model for given data a,

prob(m|a) =
prob(a|m) prob(m)∑
m prob(a|m) prob(m)

. (20)

For the probability of functionality, ρf (a) ≡ prob(f |a), this formula reads

ρf (a) =
λQ(a)
W (a)

=
1

1 + exp[−S(a) + log 1−λ
λ ]

. (21)

The dependence on S has again the form of a Fermi function. Its threshold
value S = log[(1 − λ)/λ] separates sequences that are more likely to be
functional or more likely to be background.

The full Bayesian model (18) can again be projected onto the energy
variable,

W (E) = (1− λ)P0(E) + λQ(E). (22)

In this form, it can be tested against genomic data [15]. To plot the distribu-
tions P0, Q, and W as functions of E, we use eq. (1) with an energy matrix
εi(a) = ε0 log[qi(a)/p0(a)] estimated from the position weight matrix up to
an overall constant ε0 [10]. For our example of the CRP transcription factor,
the distribution Q(E) can be estimated from the about 50 known binding
sites in the E. coli genome. Using this Q distribution and a probability of
functionality λ ≈ 6 × 10−4, the full distribution W (E) produces an excel-
lent fit of the count histogram Wdat(E) over the entire range of energies; see
fig. 4(a). The log likelihood score function S(E) = log[Q(E)/P0(E)] is shown
in fig. 4(b), shifted such that the curve has its zero at a point Es ≈ 13 beyond
which binding becomes negligible.

The resulting probability of functionality ρf (E) as given by eq. (21) is also
shown in fig. 4(b). This indicates the dilemma for the prediction of individual
binding sites based on sequence data from a single species. Many functional
sites have energies in the “twilight” region between the ensembles λQ and
(1−λ)P0, where ρf takes values around 1/2. Hence, depending on the energy
cutoff chosen, any prediction is torn between many false negatives or many
false positives.

Dynamic programming and sequence analysis. It is straightforward
to generalize the Bayesian approach to longer segments of intergenic DNA,
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Fig. 4. Bayesian model for regulatory DNA and score function. (a) En-
ergy count histogram Wdat(E) for CRP sites in E. coli as in fig. 3 (log scale), model
distribution W (E) (thick line), and its decomposition (22) into background com-
ponent (1 − λ)P0(E) (thin dashed line) and component λQ(E) (E < Es ≈ 13) of
functional sites (thin solid line). (b) Log-likelihood score S(E) = log[Q(E)/P0(E)]
(shifted by a constant, thick line) and probability of functionality ρf (E) (thin line).
From [15].

which are covered by an unknown number s of non-overlapping functional
sites as shown in fig. 5 [21]. The hidden variables are now the sequence of left
initial positions rf ≡ (r1, . . . , rs) of the functional sites (with the no-overlap
constraint rν+1 ≥ rν + ` for ν = 1, . . . , s− 1). The full sequence distribution
in a segment of length L has the form

WL(a1, . . . , aL) = Z−1
∑
rf

λ̃sWL(a1, . . . , aL|rf ), (23)

where Z is a normalization factor, λ̃ = λ + O(λ2) is a weight factor for
each functional locus (the negligible correction terms originate from the no-
overlap constraint), and WL(a1, . . . , aL|rf ) is the sequence distribution for
given positions of functional loci,

WL(a1, . . . , aL|rf ) =

p0(a1) . . . p0(ar1−1)
s∏

ν=1

Q(arν
, . . . , arν+`−1) p0(arν+`) . . . p0(arν+1−1) =

p0(a1) . . . p0(aL) exp

[
s∑

ν=1

S(arν , . . . , arν+`−1)

]
(24)

with rn+1 ≡ L + 1. The sum over sequences rf of arbitrary length s seems
formidable at first, but WL is easy to compute from the recursion
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r1 r3r2 rsrs-1
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f
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Fig. 5. Analysis of regulatory sequences. A configuration of s nonoverlapping
binding sites is given by the sequence of left initial positions rf = (r1, . . . , rs)
(with rν+1 − rν ≥ ` for ν = 1, 2, . . . , s − 1). It can be associated with a path
m(r) which takes the values m = f at the nucleotide positions of binding sites and
m = 0 elsewhere. Dynamic programming algorithms based on a Bayesian model (24)
of genomic sequences assign to each site configuration a probability of occurence
ρ(r|a1, . . . , aL) for given sequence data a1, . . . , aL; see eq. (26).

Wr(a1, . . . , ar) = (1− λ̂)p0(ar)Wr−1(a1, . . . , ar−1)
+λ̃Q(ar−`+1, . . . , ar)Wr−`(a1, . . . , ar−`) (25)

with the initial condition W0 = 1 and λ̂ = λ̃ + O(λ̃2). This type of recur-
sion relation is usually called a dynamic programming algorithm in computer
science. In physics, it is known as a transfer matrix, and the sum (24) is
recognized as the corresponding discrete path integral in imaginary time r,
if we interpret rf as encoding a path m(r) that takes the value m = f at the
nucleotide positions rν , . . . , rν +`−1 (ν = 1, . . . , s) within functional loci and
m = 0 otherwise (see fig. 5). Both concepts prove very useful also in more
general problems of sequence alignment.

In analogy to (21), the probability of a set rf of functional loci for given
sequence data is

ρ(rf |a1, . . . , aL) =
WL(a1, . . . , aL|rf )
WL(a1, . . . , aL)

. (26)

The most likely set r∗f can be obtained by the following “backward” algo-
rithm: Given the sequence (W1, . . . ,WL) obtained from the “forward” recur-
sion (25), we can decide for every point r whether it is more likely to be a
background position or the endpoint of a functional locus, ignoring all se-
quence information from positions > r. This depends on whether the leading
contribution to Wr comes from the first or second term on the r.h.s. of (25)
and defines the local optimum model m∗(r). The global optimum set of func-
tional loci respecting the no-overlap constraint is then r∗f = {r|b(r) = 1},
where b(r) is given by the recursion b(r) = ` if b(r + 1) ≤ 1 & m∗(r) = f and
b(r) = max(b(r +1)− 1, 0) otherwise, with the initial condition b(L+1) = 0.

The Bayesian model can easily be extended to sequences containing sev-
eral types of binding sites, which bind different transcription factors and are
distinguished by their Q distributions. Dynamic programming algorithms can
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thus predict the likely coverage of a sequence with binding sites of known
type [21]. This is the first step in extending the statistical analysis from sin-
gle binding sites to entire regions of regulatory DNA. Indeed, models of this
kind have been applied successfully to predict regulatory elements in eukary-
otes, which typically consist of functional groups of adjacent binding sites. In
the algorithms currently used, however, the scoring in (24) is strictly addi-
tive for groups of non-overlapping binding sites: it does not take into account
dependencies between the sites within one functional group or overlapping
sites within one sequence.

4 Evolution of regulatory DNA

In statistical picture developed so far, background sequences and functional
sites are reduced to ensembles P0 and Q. This picture is incomplete in two
ways. One one hand, it is quite disconnected from the biophysical aspects
discussed before: the specific function of binding sites hardly enters the stan-
dard formalism of position weight matrices. On the other hand, there is not
yet any notion of time and dynamics. Sequences change by various mutation
processes, and the observed sequence ensembles derive from this evolution-
ary dynamics. The evolution of functional loci is fundamentally different from
that of background sequence: it is subject to natural selection, that is, the
fitness of an organism depends on its genotype a at a functional locus via the
effects on the regulated gene. At this point, the biophysics of binding enters
the evolution of functional sequences [24, 25, 26]. Moreover, it becomes clear
that the statistical framework has to be extended from individual sequences
to distributions of genotypes in a population. In this section, we develop an
evolutionary picture of regulatory DNA, from which we obtain expressions
for the sequence ensembles P0, Q, and the score function S. The next four
paragraphs are a self-contained introduction to the underlying concepts of
population genetics.

Deterministic population dynamics and fitness. We start by describing
the evolution of a large population, which contains individuals of different
genotypes a. Each genotype is assumed to produce a specific phenotype, which
may influence the reproductive success of the individuals carrying it. With
respect to factor binding, the phenotype can be associated with the binding
energy E(a), since presumably all organismic effects of a locus depend on
its genotype only via the binding energy. However, the discussion in the
following paragraphs is more general. For a more detailed presentation, see,
e.g., ref. [27].

We first assume that the subpopulations of a given genotype reproduce
separately, i.e., there neither transitions between genotypes through muta-
tions nor (in a sexually reproducing population) mixing through genomic
recombination. Writing the dynamics of the subpopulations in the form of
simple growth laws,
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d
dt

Na(t) = Fa(t)Na(t), (27)

defines the (Malthusian) fitness Fa(t) of each genotype. For notational sim-
plicity, we now limit ourselves to the case of just two genotypes a and
b, where (27) can be written as growth laws for the total population size
N(t) ≡ Na(t) + Nb(t) and for the population fraction x(t) ≡ Nb(t)/N(t) of
genotype b,

d
dt

N(t) = F̄ (t)N(t), (28)

d
dt

x(t) = ∆Fab(t) x(t)[1− x(t)], (29)

with F̄ (t) ≡ [1 − x(t)]Fa(t) + x(t)Fb(t) and ∆Fab(t) ≡ Fb(t) − Fa(t). This
decomposition is useful since the overall growth rate F̄ (t) is often strongly
time-dependent due to external conditions (e.g., seasonality), while fitness
differences, which reflect intrinsic properties of the phenotypes, are more
stable. Different genotypes coexisting in a population frequently produce the
same or very similar phenotypes and thus have equal fitness (∆Fab = 0).

Assuming ∆Fab to be constant over the time of observation, the solution
of eq. (29) is the evolutionary trajectory

x(t) =
x0 exp[∆Fab(t− t0)]

1 + x0(exp[∆Fab(t− t0)]− 1)
(30)

with the initial condition x(t0) = x0, shown in fig. 6(a). For ∆Fab 6= 0, the
fixed points of this dynamics are the monomorphic population states x = 0,
and x = 1, of which x = 1 is stable for ∆Fab > 1 and x = 0 for ∆Fab < 1.
The approach to the stationary state takes place on a characteristic time
scale τd = 1/∆Fab. In the important case of neutral evolution (∆Fab =
0), the evolutionary outcome remains indefinite. These results, which can
readily be generalized to more than two phenotypes, are a simple version
of Fisher’s fundamental theorem of natural selection: any population with
initially coexisting phenotypes of different fitness will evolve towards a state
where only the fittest phenotype is present.

Fisher’s theorem seems to prove the popularized Darwinian notion of the
“survival of the fittest”. However, it rests on very restrictive assumptions
that are never fulfilled in a natural population. The deterministic growth
law (29) neglects mutations and recombinations, as well as the reproductive
fluctuations present in any population due to its finite number of individuals.
These other evolutionary forces have to be incorporated in our theoretical
picture before we can even define fitness as a measurable quantity and before
the theory can address the important case of neutral evolution.

Stochastic dynamics and genetic drift. Stochastic fluctuations of the
reproduction process in a large but finite population have been studied ex-
tensively in population genetics, see [28, 29]. They are called genetic drift, an
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unfortunate name which may falsely suggest a deterministic effect. To take
these fluctuations into account, we replace eq. (27) by a stochastic growth
law,

d
dt

Na(t) = Fa(t)Na(t) + χa(t), (31)

where χa(t) are Gaussian random variables with χa(t) = 0 and

χa(t)χb(t′) = Na(t) δ(t− t′) δa,b. (32)

This form of noise is simply due to the law of large numbers, and the contin-
uum dynamics (31) emerges as an effective large-N description for a plethora
of discrete evolution models, which are defined at the level of individuals and
have finite generation times. In the application to real populations, N has to
be interpreted as the so-called effective population size, which can be inferred
from genome data and is in general smaller than the actual population size.

In the case of two genotypes, eq. (31) can again be projected onto the
population fraction x,

d
dt

x(t) = ∆Fab(t) x(t)[1− x(t)] + χx(t), (33)

where χx(t) = (∂x/∂Na)χa(t) + (∂x/∂Nb)χb(t) are Gaussian random vari-
ables with zero mean and

χx(t)χx(t′) =
x(1− x)

N
δ(t− t′). (34)

This dynamics produces stochastic evolutionary trajectories x(t) as shown in
fig. 6(b). To capture their statistics, we convert the Langevin equation (33)
into a Fokker-Planck equation for the probability distribution of the genotype
composition [30, 28],

∂

∂t
P(x, t) =

1
2N

∂2

∂x2
x(1− x)P(x, t)−∆Fab(t)

∂

∂x
x(1− x)P(x, t). (35)

The mathematical subtlety of this equation lies in the x-dependent diffusion
“constant” x(1−x)/2N , which reflects the multiplicative nature of the repro-
duction process. As a consequence, the two monomorphic population states
x = 0 and x = 1 are also fixed points also of the stochastic dynamics. Any
evolutionary trajectory x(t) will eventually lead to one of these states with
probability 1; this is called the fixation of the corresponding genotype in the
population. In other words, the Fokker-Planck equation (35) describes dif-
fusion in the interval (0, 1) with absorbing boundaries. There is a family of
stationary states

P(x) = (1− φ)δ(x) + φδ(1− x), (36)

parametrized by the fixation probability φ of genotype b. The value of φ
depends on the initial condition x0 and can be computed by solving the
backward diffusion equation



Statistics of gene regulation 17

∂

∂t
P(x, t|x0, t0) = x0(1− x0)

(
1

2N

∂2

∂x2
0

−∆Fab(t)
∂

∂x0

)
P(x, t|x0, t0). (37)

For time-independent ∆Fab, the stationary solution φ(x0) ≡ limt→∞ P(x =
1, t|x0, t0) has the form [30, 28]

φ(x0,∆Fab, N) =
1− exp(−2N∆Fabx0)
1− exp(−2N∆Fab)

, (38)

which for near-neutral evolution (N∆Fab � 1) reduces to

φ(x0, 0, N) = x0 + N∆Fab x0(1− x0) + . . . . (39)

The characteristic time τs of the stochastic dynamics interpolates between the
diffusive scale N and the deterministic scale: τs ≈ min(N, τd). It determines
the typical time of the evolution process up to fixation, shown shaded in
fig. 6(b).

Hence, the stochastic population dynamics depends no longer only on
the fitness difference of the genotypes as in the deterministic case, but also
on the initial state of the population and the the population size. Yet, our
evolutionary picture is still incomplete. Population states with coexisting
genotypes enter the dynamics as initial conditions, but since mutations are
neglected, the model does not explain how this coexistence is generated and
maintained.

Mutation processes and evolutionary equilibria. At the level of an
individual, mutations are rare stochastic genotype changes a → b, which
take place with rates µa→b, often coupled to the reproduction process. (These
rates are all of the same order of magnitude, in estimates we therefore omit
the indices.) We include mutations into the population dynamics (31) by their
systematic effect on the genotype subpopulations,

d
dt

Na(t) = Fa(t)Na(t) +
∑
b

[µb→aNb(t)− µa→bNa(t)] + χa(t), (40)

while their stochastic effect (whose variance is of order Nµ) is neglected since
it is small against the reproductive sampling noise χa(t). In the case of two
different genotypes, this dynamics can again be projected onto the variable
x,

d
dt

x(t) = ∆Fab(t) x(t)[1− x(t)] + µa→b[1− x(t)]− µb→a x(t) + χx(t), (41)

which leads to the Fokker-Planck equation [31]

∂

∂t
P(x, t) =

1
N

∂2

∂x2
x(1− x)P(x, t)−∆Fab(t)

∂

∂x
x(1− x)P(x, t)

−µa→b
∂

∂x
(1− x)P(x, t) + µb→a

∂

∂x
xP(x, t). (42)
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Fig. 6. Evolution of genotype composition x(t). (a) Deterministic evolution
with fitness difference ∆Fab > 0, leading to certain fixation of genotype b (time is
shown in units of τd = 1/∆Fab). (b) Stochastic evolution with selection and genetic
drift, leading to fixation of one of the genotypes. The time to fixation (grey shading)
is of order τs (N∆Fab = 0.5, time is shown in units of N). (c) Stochastic evolution
with selection, genetic drift, and mutations in the regime Nµ � 1, leading to a
substitution dynamics with rates ua→b and ub→a given by (46). Substitution events
are marked by dashed lines. The typical time between initial mutation and fixation
(grey shading) for a given substitution, τs, is much shorter than the time between
subsequent substitutions, 1/ua→b resp. 1/ub→a (N∆Fab = 0.5, Nµ = 0.05, time
is shown in units of 1/µ).

For time-independent ∆Fab, this equation has a single stable stationary state,

P(x) =
1
Z

x−1+Nµa→b(1− x)−1+Nµb→a exp(2N∆Fab x) (43)

with a normalization constant Z that can be expressed in terms of Bessel
and Gamma functions [32].

Substitution dynamics. Here we are interested in the stochastic evolution
(42) and its equilibrium state (43) for Nµ � 1, which is the relevant dynam-
ical regime for nuclear DNA in eukaryotes and in most prokaryotes (but not
in viral systems). In this regime, the mutation term in (42) is small against
the diffusion term except for values of x close to the boundaries 0 or 1. In this
region, the continuum approximation of eq. (42) is no longer valid, and (43)
has to be replaced by a stationary solution Pd(Na) of the underlying discrete
evolution model, which gives the probability that the population contains Na

individuals of genotype a (with Na = N − Nb = 0, 1, . . . , N). The discrete
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solution is easily shown to have the singularity Pd(0) ' (Nµa→b)−1Pd(1).
This singularity is correctly captured if we use the approximation Pd(Na) '∫ (Na+1)/N

Na/N
dxP(x) for all Na (except at the other boundary, where there is a

similar singularity Pd(N) ' (Nµb→a)−1Pd(N − 1)) [33].
From this solution, we read off the following characteristics of the evolu-

tionary dynamics at equilibrium, which are illustrated by the trajectory of
fig. 6(c) [32]:

(a) For sufficiently small values of µ, the population remains monomorphic
for most of the time. Using the shorthands Q(a) ≡ Pd(Na = 0) and Q(b) ≡
Pd(Na = N), we have

Q(a) + Q(b) = 1−O(µN log N). (44)

(b) The ratio of probabilities for the two monomorphic population states
is given by the ratio of “forward” and “backward” mutation rate, the fitness
difference, and the effective population size:

Q(b)
Q(a)

=
µa→b

µb→a
exp(2N∆Fab) + O(Nµ). (45)

(c) The monomorphic population states x = 0 and x = 1 are unstable
due to mutations even at arbitrarily small values of µ, which cause occasional
transitions of the entire population from genotype a to b, and vice versa.
These so-called substitutions are marked by dashed lines in fig. 6(c). The
substitution rate ua→b can be evaluated as the product of creating a single
mutant of genotype b in an initially monomorphic a population, Nµa→b, and
its probability of fixation, φ(x0 = 1/N, ∆Fab, N). The time between initial
mutation and fixation (shown by grey shading in fig. 6(c)) is still of order τs

and thus much shorter than the time scale 1/µ, on which mutation effects
become important. Hence, the fixation probability φ is given to leading order
by (38), which has been derived for µ = 0. Together we have [30, 28]

ua→b = Nµa→b
1− exp(−2∆Fab)

1− exp(−2N∆Fab)
. (46)

Hence, the substitution rate ua→b is enhanced over µa→b for ∆Fab > 0 and
suppressed for ∆Fab < 0, as shown in Fig. 7. For weak selection (N |∆Fab| �
1), eq. (46) becomes

ua→b = µa→b(1 + N∆Fab + . . .). (47)

This reproduces Kimura’s famous original result: for neutral evolution, the
substitution rate equals the mutation rate in an individual, independently of
the population size. For this reason, the rates µa→b are referred to as neutral
mutation rates. For strong selection (N |∆Fab| � 1 � |∆Fab|), eq. (46) takes
the asymptotic forms
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Fig. 7. Substitution rate in a population versus mutation rate in an
individual. The ratio of these rates, ua→b/µa→b, depends on the product N∆Fab

of effective population size and fitness difference between the genotypes (in the
relevant regime N � 1, ∆Fab � 1, N∆Fab finite). The substitution rate ua→b is
equal to µab for neutral mutations (∆Fab = 0), reduced for deleterious mutations
(∆Fab < 0), and enhanced for advantageous mutations (∆Fab > 0).

ua→b = µa→b

{
2N |∆Fab| exp(2N∆Fab) (2N∆Fab � 1),
2N∆Fab (2N∆Fab � 1). (48)

The backward substitution rate ub→a is given by a formula similar to (46)
with ∆Fba = −∆Fab. Forward and backward substitution rate have the
simple ratio

ua→b

ub→a
=

µa→b

µb→a
exp(2N∆Fab) (49)

for N � 1. Comparing with (45), we obtain the consistency condition

ua→b

ub→a
=

Q(b)
Q(a)

. (50)

Hence, for sufficiently small mutation rates (µN log N � 1), a simple
picture emerges: The evolution of a population can be described as a se-
quence of transitions between monomorphic genotype states (substitutions).
The substitution rate u is determined by the corresponding mutation rate in
an individual, the fitness difference between the genotypes, and the effective
population size.

Neutral dynamics in sequence space, sequence entropy. This evolu-
tionary picture can be generalized to multiple genotypes, for example, the
4` dimensional sequence space of genomic loci a = (a1, . . . , a`). Transitions
between different sequence states are point mutations a → b, which change
exactly one nucleotide. (We neglect here insertion and deletion processes,
which change the length of the sequence). We first discuss neutral evolution,
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where the substitution rate ua→b equals the mutation rate in an individual,
µa→b, for all elementary transitions a → b. Bona fide neutral mutation rates
can be inferred from DNA sequence alignments of sufficiently close species,
recent insights have also come from studying repeat elements.

We assume the neutral dynamics has an equilibrium distribution P0(a)
which obeys detailed balance, i.e., the relation

µa→b

µb→a
=

P0(b)
P0(a)

(51)

holds for each pair of sequence states linked by an elementary transition
process a → b. This says that the probability current at equilibrium,
µa→bP0(a) − µb→aP0(b), vanishes for each elementary transition. Clearly,
any distribution P0(a) satisfying the conditions (51) is stationary under the
dynamics with rates µa→b, but not every such dynamics has a stationary
distribution which satisfies (51) (the simplest counterexample involving three
states and a circular probability current a → b → c at stationarity). How-
ever, as will be verified below, detailed balance is a good approximation for
the genomic substitution dynamics at least in prokaryotes. (There are known
violations at CpG islands in eukaryotes [34]). In the simplest type of models,
every nucleotide a mutates independently of all other positions with uniform
rates µa→b (i.e., µa→b = µa→b for any two sequences a = (. . . , a, . . .) and
b = (. . . , b, . . .) differing by exactly one nucleotide). This produces a factor-
ized equilibrium distribution P0(a) of the form (12).

We can project the equilibrium distribution onto a measurable quantity
as independent variable. For binding site sequences, a convenient choice is the
binding energy E, and the projected distribution P0(E) has the form (13).
Hence we can define the sequence entropy [35]

S0(E) = log P0(E), (52)

which counts the log density of sequence states a at energy E, weighed by
the distribution P0(a).

Dynamics under selection, the score-fitness relation. The dynamics
of substitutions can be studied in the same way for evolution under selection,
which is specified at the level of genotypes by an arbitrary fitness function
F (a) [37, 17]. This generalizes the results of [36] for a model with selection act-
ing independently at different nucleotide positions, i.e., F (a) =

∑`
i=1 fi(ai).

For each elementary transition a → b, the substitution rate ua→b is deter-
mined by the neutral rate µa→b, the fitness difference ∆Fab, and the effective
population size N according to (46). Given the detailed balance (51) of neu-
tral evolution and the relation (49) between forward and backward rates,
it then follows immediately that the evolutionary dynamics under selection
also obeys detailed balance, as given by (50) with an equilibrium distribution
Q(a) of the form (45). Thus we have [37, 17]:
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The equilibrium distribution Q(a) of fixed genotypes generated by a substitu-
tion dynamics (46) with fitness function F (a) is related to its neutral coun-
terpart P0(a) by

Q(a) = P0(a) exp[2NF (a) + const.], (53)

with the constant given by normalization.

We can project eq. (53) onto the fitness as independent variable. Defin-
ing the distribution Q(F ) ≡

∑
a Q(a)δ(F (a) − F ), similarly P0(F ), and the

sequence entropy S0(F ) ≡ log P0(F ), the projected identity takes the form

Q(F ) = exp[2NF + S0(F ) + const.] (54)

For binding site sequences, we have a similar projection on the binding en-
ergy, Q(E) = exp[2NF (E) + S0(E) + const.], since all genotypes with the
same “phenotype” E have the same fitness, i.e., the same score S. The pro-
jected identities express the equilibrium distribution under selection in terms
of fitness and sequence entropy, reflecting the balance between stochasticity
(genetic drift) and selection [17]. For strong selection, the exponent 2NF−S0

is dominated by the fitness term, and Q(F ) takes appreciable values only at
points of near-maximal fitness, i.e., where Fmax − F <∼ 1/2N . For moderate
selction, there is a nontrivial balance between both terms, and for weak se-
lection, the Q distribution can be approximated by its neutral counterpart
P0 = exp(S0). Clearly, the roles of fitness and sequence entropy are formally
analogous to those of energy and entropy in statistical physics of thermody-
namic systems, if 2N is identified with the inverse temperature 1/kBT . Some
consequences of this analogy are discussed in ref. [38].

The dynamics of substitutions establishes a rather general evolutionary
grounding of genome statistics, if we identify the equilibrium distributions
P0(a) and Q(a) with the genomic distributions discussed in the previous
section, as already anticipated by our notation. Comparing eqs. (53) and
(14) gives a relation between fitness and score [17, 15]:

The log-likelihood score S(a) = log[Q(a)/P0(a)] equals the fitness function
multiplied by twice the effective population size up to a constant,

S(a) = 2NF (a) + const.. (55)

This relation allows us to use sequence data of a given genome to infer
quantitative patterns of its evolution. We now discuss specific consequences
for the evolution of regulatory DNA; an application to protein evolution can
be found in ref. [36].

Measuring selection for binding sites. We first give a precise definition
of functionality for regulatory (and other) elements: A binding locus is func-
tional if the genotype at that locus is under selection (for binding of the
corresponding factor). Nonfunctional loci have evolutionarily neutral geno-
types. This definition asks whether binding at a given locus makes a difference



Statistics of gene regulation 23

to the organism or not. It is weaker than that of a functional binding site,
which is a functional locus with a sequence a that is likely to actually bind
the factor. A functional locus can lose its binding sequence due to deleterious
mutations, leading to suboptimal fitness of the organism. Conversely, a non-
functional locus can have by chance a sequence which does bind the factor:
this is a spurious binding site without consequences for the organism.

To measure the selection on functional sites in silico, we apply the identity
(55) to the genomic distributions P0(a) and Q(a). (Assuming equilibrium
for most loci seems to be justified for our example of CRP binding sites in
E. coli since we find very similar distributions in the distant bacterial species
Salmonella typhimurium, and the factor protein itself is highly conserved
between these species.) After projection onto the energy, the fitness landscape
2NF (E) for CRP binding sites is thus given by fig. 4(b) [15]. The fitness is
constant in the no-binding region (E >∼Es ≈ 13) since the evolution is always
neutral in that region. This constant is set to 0 in our normalization, i.e., F (E)
measures the fitness gain of functional sites due to factor binding. Loci with
strong binding are also under strong selection, with effective fitness values
2NF of order 10. Genetic drift counteracts selection, producing also loci with
weaker binding and reduced effective fitness. This fitness “landscape” is thus
qualitatively of the form predicted from the underlying biophysics [24, 17]. Of
course, it should be kept in mind that this landscape results from averaging
over a family of binding sites, which may have a spectrum of individual
selection coefficients and selected binding strengths.

Nucleotide frequency correlations. A further consequence of (54) is
the generic occurence of nucleotide frequency correlations within functional
loci [17]. If the fitness function F (a) is not additive in the nucleotide posi-
tions, nucleotide frequencies are correlated in selected genotypes even if they
are independent under neutral evolution. This happens quite generically since
selection acts on the entire genotype a as a functional unit and not on its
single nucleotides. For binding sites, fitness effects follow from the expression
level of the regulated gene, which depends on the sequence a via the bind-
ing probability of the corresponding transcription factor. While the binding
energy is often approximately additive in the nucleotide positions as given
by (1), the binding probability (10) is a strongly nonlinear function of the en-
ergy. This introduces correlations between nucleotide frequencies at any two
positions within functional loci, preventing factorization of the distribution
Q(a).

Stationary evolution of binding sites. Functional loci with a substantial
level of selection (as found for the CRP binding sites in E. coli) evolve in a
way quite different from background sequence. This is quantified in fig. 8(a),
which shows pairs of binding energies (E1, E2) for experimentally verified
CRP binding sites in E. coli and the corresponding sites regulating ortholo-
gous genes in S. typhimurium [26, 15]. The evolutionary distance t between
the two species and characteristics of the neutral mutation process can be in-
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Fig. 8. Evolution of binding sites. (a) Binding energy pairs (E1, E2) for 32 ex-
perimentally verified CRP binding sites in E. coli from the DPInteract database [41]
and their aligned orthologs in S. typhimurium (dots). Conditional expectation value
for the binding energy in S. typhimurium under neutral evolution, 〈G0(E2|E1)〉
(dashed line), and under selection, 〈Gf (E2|E1)〉 (solid line). (b) Distribution of
energy pair counts Wdat(E1, E2) (filled contours), compared to the distribution
W (E1, E2) given by the Bayesian model (59). The symmetry of these distributions
under exchange of E1 and E2 reflects detailed balance of the substitution dynamics.
From [15, 39].

ferred from alignments of background sequence. The “phenotypic” evolution
of CRP binding is quantified by the energy transition probabilities G0(E2|E1)
under neutral evolution and Gf (E2|E1) under stationary selection [15]. These
are readily obtained by simulating the substitution dynamics over a time in-
terval t for given initial value E1, both with neutral rates µa→b and with rates
ua→b given by (46) and the fitness function 2NF (E) measured in E. coli.
The resulting conditional expectation values 〈G0(E2|E1)〉 and 〈Gf (E2|E1)〉
for the binding energy in S. typhimurium are also shown in fig. 8(a). The data
conform to the selection model, showing a substantially stronger conservation
of binding energy than expected for neutral evolution [26, 15, 39].

We can now build a probabilistic model for cross-species comparisons [15].
It is based on the joint distributions of energy pairs

P0(E1, E2) = G0(E2|E1) P0(E1) (56)

under neutral evolution and

Q(E1, E2) = Gf (E2|E1) Q(E1) (57)

under stationary selection, which are determined by the corresponding dis-
tributions in one species and the energy transition probabilities. Detailed
balance of the substitution dynamics implies
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P0(E2)
P0(E1)

=
G0(E2|E1)
G0(E1|E2)

and
Q(E2)
Q(E1)

=
Gf (E2|E1)
Gf (E1|E2)

, (58)

i.e., the joint distributions P0(E1, E2) and Q(E1, E2) must be symmetric
functions of their arguments. These distributions combine into a model for
pairs of aligned loci, which generalizes the single-species model (22) and takes
the form

W (E1, E2) = (1− λ)P0(E1, E2) + λQ(E1, E2). (59)

(This model can be extended further to include non-stationary selection.)
The distribution W (E1, E2) with a fraction of functionality λ = 0.0018 is
in excellent agreement with the count distribution Wdat(E1, E2) obtained
from E. coli and S. typhimurium, as shown in fig. 8(b). The symmetry of
Wdat thus corroborates the underlying assumption of detailed balance. Anal-
ogous Bayesian models can be defined for more than two species related by
a phylogeny. This approach has been applied to binding site prediction in
bacteria [15]; a related study of several species of funghi has been reported
in ref. [40].

Adaptive evolution of binding sites. What does this picture say about
the adaptive evolution of transcriptional regulation in response to a newly
arising selection pressure? The evolution from a genotype with marginal bind-
ing (E(a) ≈ Es) to strong binding requires only about three uphill point
mutations in the fitness landscape of fig. 4(b), i.e., there is an effective fitness
gain 2N∆F ≈ 3 per mutation. Hence, according to (48), the rate of uphill
substitutions per locus is enhanced by a factor 2N∆F · d(a,a∗) at least of
order 10 over the neutral point mutation rate per nucleotide. At the same
time, the downhill rate is strongly suppressed. This shows that the adaptive
formation of a binding site from background sequence can indeed be a rapid
mode of regulatory evolution, due to the substantial level of selection [17].

However, this mode is only efficient if adaptation can set in immediately
after the selection pressure is established. In larger regulatory regions, the
exact position of a binding site is often not important. We assume the initial
genome contains a set of L̃ shadow sites, i.e., positions r1, . . . , rL̃ where a given
sequence a would have the same regulatory effect. If one of these shadow sites
has already a genotype with marginal binding, it acts as a “seed” for the onset
of adaptation [42]. On the other hand, if all shadow sites of the initial genome
have energy E > Es, there is typically a substantial waiting time of neutral
evolution before one of them reaches the threshold energy Es. Assuming the
initial genome to be entirely background sequence, it will contain at least
one such seed if

∫
E<Es

P0(E)dE >∼ 1/L̃, which is a joint condition on L̃ and
the site length `: the shadow regulatory region must be long enough and
binding sites must be short enough. The example shows that the evolvability
of regulation imposes constraints on genome architecture [17].
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5 Towards a dynamical picture of the genome

The relationship S = 2NF +const. between score and fitness is a cornerstone
of the theoretical picture developed so far, which links its population genetic,
bioinformatic and biophysical arches. It relates a key evolutionary variable
with the statistics of genomic frequency counts. The physical binding energy
is an appropriate phenotypic variable on which fitness and score depend,
because molecular function is determined by binding interactions.

We have discussed this picture for transcription factor binding sites, but
it can be applied more generally to functional elements in genomes. It re-
lates the statistics of these elements in one genome with their evolutionary
dynamics, which is observed in cross-species comparisons. This dynamics is
shaped by selection: The components of functional elements are coupled by a
common fitness function. Hence, functional correlations lead to evolutionary
correlations. These can be traced in the Q distribution over fixed genomes
of a functional element; other methods use the statistics of polymorphisms
within a population.

Thus, the picture of the genome as a system with multiple interactions has
a fundamental dynamical significance. This is important since it allows us to
trace functional modules from evolutionary patterns. We conclude the article
with a brief outlook on various levels of functional integration for regulatory
sequences.

Evolutionary interactions between sites. Regulatory function is often
determined not by single binding sites, but jointly by a group of sites in the
same regulatory region [43]. An important mechanism is binding cooperativity,
i.e., the formation of a protein complex between two (or more) factors bound
to their corresponding DNA sites. The binding energy of this complex has the
form E = E1 + E2 + ∆E12, where E1 and E2 are the energies of the factors
bound individually and ∆E12 < 0 is the energy gain due to the protein-
protein interaction, which is of the order of a few kBT . Cooperative binding
has a number of functional effects [1]:

(a) It increases the signal-to-noise ratio for the targeting of regulatory
input to a specific gene, which is important in larger eukaryotic genomes,
where single spurious binding sites are abundant in background sequence.

(b) It sharpens the response of the binding probability to variations in
the factor concentrations around their threshold value. This follows from the
thermodynamics of two factors, which is a straightforward generalization of
the case of a single factor discussed in section 2.

(c) It implements logical connections between regulatory input signals to a
given gene. The simplest example is an AND connection between two factors,
where the regulated gene is affected only if both factors are simultaneously
present. This happens if the binding energies and factor concentrations are
such that individual binding is weak but joint binding is strong. Larger groups
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of binding sites can encode a whole repertoire of more complicated logical
functions [44].

Regulatory modules with several jointly acting binding sites are frequently
found in eukaryotes. The functional coupling of sites in a module translates
into interactions between these sites in their sequence evolution. The genomic
functional element, i.e., the subset of the regulatory region on which selection
acts, is the module as a whole. Its fitness F (E1, E2,∆E12, . . .) is a joint func-
tion of the binding energies as the relevant phenotypic variables [24, 17]. The
evolutionary dynamics under this selection allows for a large number of com-
pensatory changes, i.e., pairs of correlated substitutions changing two binding
energies such that the fitness remains constant. These lead to nucleotide fre-
quency correlations between different sites. Such compensatory changes have
indeed been observed in experiments on Drosophila promoters [45].

Site-shadow interactions. In larger regulatory regions, there is a number
of shadow sites where a binding sequence a would have a similar regulatory
effect as at the functional sites present. In that case, the genomic functional
element contains not only the functional binding sites but also the shadow
sites. Once a functional site has disappeared due to deleterious mutations,
a shadow site can turn functional by adaptive evolution as described in the
last section. The resulting evolutionary dynamics leads to sequence turnover
with the actual binding sites present at different but functionally equivalent
positions [37]. Substantial sequence turnover has been observed in a number
of case studies [46, 45, 47, 48, 49, 50]. Also the number of actual sites is
subject to evolutionary variation since the same regulatory effect, i.e., the
same fitness, can be distributed over fewer stronger or more weaker sites.
With increasing number L̃ of shadow positions, one expects that the number
of actual sites grows while individual sites get weaker [37].

Gene interactions. Evolutionary interactions are not limited to regulatory
elements for the same gene. An example are gene duplications and the sub-
sequent evolution of the daughter genes. Selection acts jointly on this pair
of genes [51], which have initially identical functions, eventually leading to
either loss of one of them or to subfunctionalization, which has been argued
to be an important mode of genome evolution in eukaryotes [52, 53]. This
process can take place by regulation, i.e., via a correlated distribution of the
regulatory elements on the daughter genes. More generally, the evolution of
genes in a regulatory network is correlated if their functions are coupled ei-
ther in series (i.e., one gene acts on the other) or in parallel (i.e., they are
part of alternative pathways for the same function). Although some regula-
tory networks in model organisms – e.g. the embryonic development in the
sea urchin [54] – have been studied in detail, we lack a coherent view of their
functional evolution to date.

Evolutionary innovations. Under stationary selection, functional elements
are more conserved than background sequence, and the score-fitness relation



28 Michael Lässig

quantifies the amount of conservation. But evolution is, of course, not lim-
ited to conservation. On one hand, there is typically a multitude of different
genotypes yielding the same molecular function, and the evolutionary dynam-
ics continuously plays with these alternatives. On the other hand, organisms
face long-term changes of their environment, which lead to new selection pres-
sures and a response by adaptive evolution of new functions. If regulation is
to account for a large part of the diversification in higher eukaryotes, loss or
gain of regulatory function should be an important mode of molecular evolu-
tion. Changes in regulatory DNA leading to new functions of gene networks
have been observed [55], and it is possible to extend the statistical models
described in the previous section to include evolutionary gain or loss of func-
tion of individual binding sites [15]. On a broader scale, understanding the
molecular basis of evolutionary innovations is a major challenge for theory
and experiment in the coming years. It will profoundly change our dynamical
view of the genome.
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