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This Letter addresses the statistical significance of structures in random data: Given a set of vectors and

a measure of mutual similarity, how likely is it that a subset of these vectors forms a cluster with enhanced

similarity among its elements? The computation of this cluster p value for randomly distributed vectors is

mapped onto a well-defined problem of statistical mechanics. We solve this problem analytically,

establishing a connection between the physics of quenched disorder and multiple-testing statistics in

clustering and related problems. In an application to gene expression data, we find a remarkable link

between the statistical significance of a cluster and the functional relationships between its genes.
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Clustering is a heavily used method to group the ele-
ments of a large data set by mutual similarity. It is usually
applied without information on the mechanism producing
similar data vectors. Any clustering depends on two ingre-
dients: a notion of similarity between elements of the data
set, which leads to a scoring function for clusters, and an
algorithmic procedure to group elements into clusters.
Diverse methods address both aspects of clustering:
similarities can be defined by Euclidean or by
information-theoretic measures [1,2], and there are many
different clustering algorithms ranging from classical k
means [3] and hierarchical clustering [4] to recent
message-passing techniques [5].

An important aspect of clustering is its statistical sig-
nificance, which poses a conceptual problem beyond scor-
ing and algorithmics. First, we have to distinguish ‘‘true’’
clusters from spurious clusters, which occur also in random
data. An example is the starry sky: true clusters are gal-
axies with their stars bound to each other by gravity, but
there are also spurious constellations of stars which are in
fact unrelated and may be far from one another. Second,
clustering procedures generally produce different and com-
peting results, since their scoring functions depend on free
parameters. The most important scoring parameter weighs
the number versus the size of clusters and is contained
explicitly (e.g., the number k in k-means clustering) or
implicitly (e.g., the temperature in superparamagnetic [6]
and information-based clustering [2]) in all clustering pro-
cedures. Choosing smaller values of k will give fewer, but
larger clusters with lower average similarity between ele-
ments. Larger values of k will result in more, but smaller
clusters with higher average similarity. None of these
choices is a priori better than any other: both tight and
loose clusters may reflect important structural similarities
within a data set.

Addressing the cluster significance problem requires
a statistical theory of clustering, which is the topic of
this Letter. Our aim is not to propose a new method for

clustering, but to distinguish significant clusters from in-
significant ones. The key result of the Letter is the analytic
computation of the so-called cluster p value pðSÞ, defined
as the probability that a random data set contains a cluster
with a similarity score larger than S. This result provides a
conceptual and practical improvement over current meth-
ods of estimating p values by simulation of an ensemble of
random data sets, which are computationally intensive [7]
and, hence, often omitted in practice.
Our approach is based on an intimate connection be-

tween cluster statistics and the physics of disordered sys-
tems. The score S of the highest-scoring cluster in a set of
random vectors is itself a random variable, whose cumu-
lative probability distribution defines the p value pðSÞ. For
significance analysis, we are specifically interested in the
large-S tail of this distribution. Our calculation employs
the statistical mechanics of a system whose Hamiltonian
is given by (minus) the similarity score function. In
this system, logpðSÞ is the entropy of all data vector

FIG. 1. Clustering a set of random vectors. In a set of ran-
domly chosen vectors, subsets of highly similar elements can
arise by chance. Here a cluster is shown with its center of mass
pointing upwards, and the shading indicates score contributions.
Large clusters with high similarity among their elements occur
only in exponentially rare configurations of the random vectors.
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configurations with energy below �S. We evaluate this
entropy in the thermodynamic limit, where both the num-
ber of random vectors and the dimension of the vector
space are large. In this limit, the overlap of a data vector
with a cluster center is a sum of many variables; the
resulting thermodynamic potentials can then be expressed
in terms of averages over Gaussian ensembles.

High-scoring clusters have to be found in each fixed
configuration of the random data vectors, which act as
quenched disorder for the statistics of clusterings. It turns
out that the disorder generates correlations between the
scores of clusters centered on different directions of the
data vector space. These correlations, which become par-
ticularly significant in high-dimensional data sets, show
that clustering is an intricate multiple-testing problem:
spurious clusters may appear in many different directions
of the data vectors. Here, we illustrate our results by a
simple biophysical example: analysis of gene co-
expression clusters. In this case, high-dimensional data
vectors are generated by multiple measurements of a
gene under different experimental conditions. The link
between quenched disorder and multiple testing statistics
is more generic than clustering, as discussed in the
conclusion.

Distribution of data vectors and scoring.—We consider
an ensemble of N vectors x1;x2; . . . ;xN , which are drawn
independently from a distribution P0ðxÞ. We are specifi-
cally interested in data vectors with a large number of
components, M. Clusters of such vectors are generically
supported by multiple vector components, which is the
source of the intricate cluster statistics discussed in this
Letter. We assume that the distribution P0ðxÞ factorizes in
the vector components, P0ðxÞ ¼ p0ðx1Þ . . .p0ðxMÞ (this
assumption can be relaxed; see below). Such null models
are, of course, always simplifications, but they are useful
for significance estimates in empirical data (an example is
a p value of sequence alignments [8]).

A subset of these vectors forms a cluster. The clustered
vectors are distinguished by their mutual similarity or,
equivalently, their similarity to the center z of the cluster;
see Fig. 1. We consider a simple similarity measure of
vectors, the Euclidean scalar product: each vector x con-
tributes a score

sðxjz; �Þ ¼ 1ffiffiffiffiffi
M

p x � z��: (1)

The scoring parameter� acts as a threshold; vectors xwith
an insufficient overlap with the cluster center z result in a
negative score contribution. The squared length of the
cluster centers is normalized to z � z ¼ M.

A cluster can now be defined as a subset of positively
scoring vectors. The cluster score is the sum of contribu-
tions from vectors in the cluster,

Sðx1; . . . ;xNjz; �Þ ¼ XN
i¼1

max½sðxijz; �Þ; 0�: (2)

Large values of � result in clusters whose elements have a
large overlap; small values result in looser clusters. The
total score is determined both by the number of elements
and by their similarities to the cluster center; that is, tighter
clusters with fewer elements can have scores comparable
to those of looser but larger clusters. Both the direction z
and width parameter � of clusters are a priori unknown.
Cluster score statistics.—To describe the statistics of an

arbitrary cluster score Sðx1; . . . ;xNÞ for vectors drawn
independently from the distribution P0ðxÞ, we consider
the partition function

Zð�Þ ¼ YN
i¼1

Z
dxiP0ðxiÞe�Sðx1;...;xNÞ ¼

Z
dSpðSÞe�S: (3)

The second step collects all configurations of vectors
(x1; . . . ;xN) with a cluster score S, so pðSÞ denotes the
density of states as a function of score S. Asymptotically
for large N, this density can be extracted from Zð�Þ as

logpðSÞ ’ N�ðsÞ � 1
2 logðgNÞ: (4)

Here �ðsÞ is the entropy as a function of the score per
element, s � S=N, which is the Legendre transform of the
reduced free-energy density �fð�Þ ¼ � logZð�Þ=N, i.e.,
�ðsÞ ¼ �max�½�fð�Þ þ �s� � ���fð��Þ � ��s. The

prefactor g of the subleading term is given by g ¼
2�jð@2=@�2Þ�fð�Þj�¼�� . The p value of a cluster score

S is defined as the probability
R1
S dS0pðS0Þ to find a score

larger or equal to S. Inserting (4) shows that this p value
equals pðSÞ up to a proportionality factor of order 1.
Clusters in a fixed direction.—As a first step, and to

illustrate the generating function (3), we compute the
distribution of scores for clusters with a fixed center z.
We assume that the null distribution p0 for vector compo-
nents has finite moments, we set the first two moments to 0
and 1 without loss of generality, and we choose z to lie in
some direction which has nonzero overlap with a finite
fraction of all M directions. Hence, the overlap xi � xi � z
is approximately Gaussian-distributed by the central limit
theorem. The generating function (3) gives

� �fcð�;�Þ ¼ log½ð1�Hð�ÞÞþ eð�2=2Þ���Hð�� �Þ�;
(5)

where the index c denotes the evaluation for a fixed cluster
center and HðxÞ ¼ R1

x dxGðxÞ is the cumulative distribu-

tion function of the Gaussian GðxÞ ¼ expð�x2=2Þ= ffiffiffiffiffiffiffi
2�

p
.

The result is an integral over the component x � x � z of a
data vector in the direction of the cluster center: below the
score threshold �, the component gives zero score, which
contributes the cumulative distribution

R�
�1 dxGðxÞ to the

partition function. Above the score threshold, the compo-
nent gives a positive score, which generates a contribution
of

R1
� dxGðxÞ expf�sðxj�Þg. The resulting score distribu-

tion is given by (4), logpcðSÞ ¼ N�ðs ¼ S=NÞ
�ð1=2Þ logðgcNÞ; see Fig. 2(a).
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Maximal scoring clusters.—To gauge the statistical sig-
nificance of high-scoring clusters in actual data sets, we
need to know the distribution of the maximum cluster score
in random data. The maximum cluster score is, in turn,
implicitly related to the optimal cluster direction in a data
set: for a given subset of vectors x1; . . . ;xk, the maximal
cluster score is reached if the direction of the center z
coincides with the direction of the ‘‘center of mass,’’ xav ¼
ðx1 þ . . .þ xkÞ=k. However, adding or removing vectors
shifts the center of mass xav of the cluster and changes the
score of each vector. Thus, finding the maximum score for
a given data set,

Smaxðx1; . . . ;xNj�Þ ¼ max
z

Sðx1; . . . ;xNjz; �Þ; (6)

is a hard algorithmic problem, in particular, for large
dimensions M. We calculate the distribution of Smax for
independent random vectors from the generating function
(3) with the integral representation

e�Smaxðx1;...;xN j�Þ ¼ lim
�0!1

�Z
dze�

0Sðx1;...;xN jz;�Þ
�
�=�0

(7)

for the statistical weight of a configuration x1; . . . ;xN . For
large values of the auxiliary variable �0, only directions z
with a high cluster score Sðx1; . . . ;xNjz; �Þ contribute to
this integral over cluster directions z, and the maximum
over the cluster score (6) is reproduced in the limit �0 !1.
We obtain

� �fð�;�Þ ¼ min
a

�
��fc

�
�;�� a

2

�
þ M

2N

� log

�
aþ �

a

��
: (8)

This expression is to be understood in the asymptotic limit
N ! 1 with M=N kept fixed. The result (8) involves a

variation over a, which, compared to the corresponding
expression (5) for a fixed cluster center, generates an
effective shift a=2 in the score cutoff � and an additional
entropy-like term. The calculation uses the so-called rep-
lica trick [9–11], representing the power n ¼ �=�0 of the
integral in (7) by a product of n copies (replicas). The
calculation proceeds for integer values of n, and the limit
n ! 0 (�0 ! 1) is taken by analytic continuation. A key
ingredient is the average overlap q ¼ hz � z0i=M between
directions of different cluster centers for the same configu-
ration of data vectors at finite temperature 1=�0. We find a
unique ground state (i.e., q ! 1 for �0 ! 1) and a low-
temperature expansion

q ¼ 1� a

�0 þO

�
1

�02

�
(9)

of the average overlap, similar to the case of directed
polymers in a random potential [12], which arises in the
statistics of sequence alignment [13]. Thus, the effect of
center optimization on the free-energy density (8) and on
cluster p values is related to the fluctuations between
subleading cluster centers for the same random data set.
This solution determines the asymptotic form of the

distribution of the maximum cluster score Smax ¼ S as
given by (4), logpðSÞ ¼ N�ðsÞ þOðlogNÞ. Figure 2(b)
shows this result together with numerical simulations for
several values of M and N, producing good agreement
already for moderate N. According to (8), the effect of
center optimization on score statistics increases with M
and decreases with N. For small M=N, we expand the
solution in N for fixed large M and obtain ��fð�;�Þ ¼
��fcð�;�Þ þ ðM=2NÞ logN þ const, which leads to a
distribution of maximum cluster scores,

logpðSÞ ¼ logpcðSÞ þM

2
logN

¼ N�cðsÞ þM� 2

2
logN; (10)

up to terms of order N0.
The presented calculation for the maximal cluster score

distribution can be generalized to null distributions P0 with
arbitrary correlations between vector components
x1; . . . ; xM [14].
The free-energy density (8) was derived under the as-

sumption of replica-symmetry (RS) [9], implying that only
a single direction z yields the maximal score. This is
appropriate for high-scoring clusters, since they occur in
exponentially rare configurations of the random vectors,
for which a second cluster direction with the same score
would be even more unlikely. On the other hand, RS is
known to be violated in the case � ¼ 0, which describes
clusters in typical configurations of the random vectors.
This case has been studied before in the context of unsu-
pervised learning in neural networks [10]. RS is also likely
to be broken for �< 0, which describes configurations

FIG. 2. Cluster score distributions in random data for fixed and
optimal cluster directions. Analytical distributions pðSÞ (solid
lines) are plotted against the score per element, s ¼ S=N, and are
compared to normalized histograms obtained from numerical
experiments with 106 samples (symbols). (a) Distribution pcðSÞ
of the cluster score (2) for a fixed cluster center and data sets of
N ¼ 6000 vectors with M ¼ 70, with the parameter � ¼
0:1

ffiffiffiffiffi
M

p
. Error bars show the standard error due to the finite

size of the sample. (b) Distribution of the maximum cluster score
(6) with the parameter � ¼ 0:1

ffiffiffiffiffi
M

p
for N ¼ 40 (triangles), N ¼

80 (circles), and N ¼ 120 (squares), keeping M=N ¼ 0:5 fixed.

PRL 105, 220601 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

26 NOVEMBER 2010

220601-3



with score maxima biased towards values lower than in
typical configurations. The limit � ! �1 is relevant to
the problem of sphere packing in high dimensions, for
which currently only loose bounds are known.

Application to clusters in gene expression data.—
Clusters with high statistical significance may contain
elements with a common mechanism causing their simi-
larity. Here we test the link between our p value and the
biological function of clusters in a data set of gene ex-
pression in yeast [15,16]. We trace several high-scoring
clusters over the range of � where they give a positive
score. As � increases, the cluster opening angle decreases
(see Fig. 1), leading to a tighter, smaller cluster. The cluster
p value also changes continuously, and the genes contained
in the cluster also change. We ask if specific functional
annotations [gene ontology (GO) terms] appear repeatedly
in the genes of a cluster, and how likely it is for such a
functional enrichment to arise by chance. We compute the
p value pGOðCÞ of the most significantly enriched GO term
in a cluster C, using parent-child enrichment analysis [18]
with a Bonferroni correction. A cluster with small pGOðCÞ
is thus significantly enriched in at least one GO annotation,
which points to a functional relationship between its genes.
As shown in Fig. 3, the parameter dependence of the
cluster score significance p½SðCÞ� and the significance
pGOðCÞ of gene annotation terms is strikingly similar.
The statistical measure based on cluster score p values is
thus a good predictor of functional coherence of its
elements.

Conclusions.—We have established a link between
quenched disorder physics and the multiple-testing statis-
tics in clustering. This connection applies to a much
broader class of problems, which involve the parallel test-
ing of an exponentially large number of hypotheses on a
single data set. Examples include imaging data (e.g. func-
tional magnetic resonance imaging) and the analysis of
next-generation sequencing data. If the scores of different
hypotheses are correlated with each other, the distribution

of the maximal score is not described by a known univer-
sality class of extreme value statistics. It may still be
computable by the methods used here: the state space of
the problem is the set of all hypotheses tested (here the
centers of all clusters), and configurations of data vectors
generated by a null model act as quenched random
disorder.
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